Table 2.
Predictive model | AUC difference | P-Value | cNRI | P-Value | IDI | P-Value |
---|---|---|---|---|---|---|
Lasso-AdaBoost vs. FLR-L1-LR | 0.019 | 0.002 | 0.208 (0.078, 0.337) | <0.001 | 0.032 (0.019, 0.045) | <0.010 |
Lasso-AdaBoost vs. FLR-RF | 0.007 | 0.334 | 0.097 (−0.033, 0.228) | 0.143 | 0.016 (0.007, 0.025) | <0.010 |
Lasso-AdaBoost vs. FLR-SVM | 0.016 | 0.047 | 0.167 (0.037, 0.296) | 0.012 | 0.029 (0.016, 0.042) | <0.010 |
FLR-RF vs. FLR-L1-LR | 0.012 | 0.045 | 0.108 (−0.022, 0.238) | 0.105 | 0.016 (0.003, 0.028) | 0.010 |
FLR-RF vs. FLR-SVM | 0.003 | 0.016 | 0.072 (−0.058, 0.203) | 0.278 | 0.013 (0.001, 0.026) | 0.040 |
FLR-SVM vs. FLR-L1-LR | 0.010 | 0.118 | 0.278 (0.149, 0.408) | <0.001 | 0.003 (0.001, 0.004) | <0.010 |
AUC, area under the receiver operating characteristic curve; cNRI, continuous Net Reclassification Index; IDI, Integrated Discrimination Improvement Index; Lasso-AdaBoost, AdaBoost with Lasso regression; FLR-L1-LR, L1 regularized Logistic regression with forward Partial Likelihood Estimation; FLR-RF, random forest with forward Partial Likelihood Estimation; FLR-SVM, support vector machine with forward Partial Likelihood Estimation.