Skip to main content
. 2022 Jun 17;9:854287. doi: 10.3389/fcvm.2022.854287

Table 2.

Comparison of discrimination performance of optimal prediction models.

Predictive model AUC difference P-Value cNRI P-Value IDI P-Value
Lasso-AdaBoost vs. FLR-L1-LR 0.019 0.002 0.208 (0.078, 0.337) <0.001 0.032 (0.019, 0.045) <0.010
Lasso-AdaBoost vs. FLR-RF 0.007 0.334 0.097 (−0.033, 0.228) 0.143 0.016 (0.007, 0.025) <0.010
Lasso-AdaBoost vs. FLR-SVM 0.016 0.047 0.167 (0.037, 0.296) 0.012 0.029 (0.016, 0.042) <0.010
FLR-RF vs. FLR-L1-LR 0.012 0.045 0.108 (−0.022, 0.238) 0.105 0.016 (0.003, 0.028) 0.010
FLR-RF vs. FLR-SVM 0.003 0.016 0.072 (−0.058, 0.203) 0.278 0.013 (0.001, 0.026) 0.040
FLR-SVM vs. FLR-L1-LR 0.010 0.118 0.278 (0.149, 0.408) <0.001 0.003 (0.001, 0.004) <0.010

AUC, area under the receiver operating characteristic curve; cNRI, continuous Net Reclassification Index; IDI, Integrated Discrimination Improvement Index; Lasso-AdaBoost, AdaBoost with Lasso regression; FLR-L1-LR, L1 regularized Logistic regression with forward Partial Likelihood Estimation; FLR-RF, random forest with forward Partial Likelihood Estimation; FLR-SVM, support vector machine with forward Partial Likelihood Estimation.