Skip to main content
. 2022 Jun 17;9:896366. doi: 10.3389/fcvm.2022.896366

Table 1.

Application of artificial intelligence to reduce the radiation dose of CCTA.

Study Year Networks Algorithm ED (mSv) Degree of radiation dose reduction (%)
Wolterink et al. (18) 2017 CNN Discriminator CNN 0.2 NA
Kang et al. (19) 2018 GAN Cycle-consistent adversarial denoising network NA NA
Benz et al. (20) 2022 CNN DLIR 0.8 43
Liu et al. (21) 2020 GAN GAN, Adversarial CNN combined with CNN 0.91 55.65
Li et al. (22) 2022 DNN DLIR-H 0.75 ± 0.14 54.5
Sun et al. (23) 2022 DNN DLIR 0.57 ± 0.31 36

DNN, deep neural network; GAN, generative adversary networks; CNN, convolutional neural network; CCTA, coronary computed tomography angiography; DL, deep learning; ED, effective dose; DLIR, deep learning image reconstruction; DLIR-H, high-strength deep learning image reconstruction.