Skip to main content
. 2022 Jun 17;14:857521. doi: 10.3389/fnagi.2022.857521

Table 3.

Model performance evaluation using training and validation cohorts.

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity
Training LR 0.837 (0.784–0.889) 0.828 0.552 0.935
KNN 0.992 (0.985–0.998) 0.904 0.658 1.000
SVM 0.781 (0.728–0.834) 0.934 0.765 1.000
DT 0.827 (0.772–0.883) 0.808 0.623 0.881
RF 1.000 (1.000–1.000) 1.000 1.000 1.000
XGB 0.884 (0.844–0.925) 0.828 0.917 0.600
ANN 1.000 (1.000–1.000) 0.759 0.548 0.905
Validation LR 0.824 (0.737–0.912) 0.802 0.444 0.932
KNN 0.792 (0.683–0.901) 0.802 0.407 0.946
SVM 0.677 (0.578–0.775) 0.772 0.259 0.959
DT 0.675 (0.559–0.791) 0.703 0.444 0.797
RF 0.858 (0.783–0.932) 0.802 0.518 0.905
XGB 0.780 (0.686–0.874) 0.693 0.77 0.481
ANN 0.858 (0.782–0.932) 0.594 0.365 0.837

LR, logistic regression; KNN, K-nearest neighbor; SVM, support vector machine; DT, decision tree model; RF, random forest; XGBoost, extreme gradient boosting; ANN, artificial neural network.