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ARTICLE

Integration of rare expression outlier-associated
variants improves polygenic risk prediction

Craig Smail,1,2,* Nicole M. Ferraro,1 Qin Hui,3,4 Matthew G. Durrant,5 Matthew Aguirre,1

Yosuke Tanigawa,1 Marissa R. Keever-Keigher,2 Abhiram S. Rao,6,7 Johanne M. Justesen,1 Xin Li,8

Michael J. Gloudemans,1 Themistocles L. Assimes,9,10 Charles Kooperberg,11 Alexander P. Reiner,12

Jie Huang,13 Christopher J. O’Donnell,14,15,16 Yan V. Sun,3,4 Million Veteran Program, Manuel A. Rivas,1

and Stephen B. Montgomery5,6,*
Summary
Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual’s likelihood of a complex trait or disease.

However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report

on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body

mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity

(p ¼ 3 3 10�14), 62.3% increase in risk for severe obesity (p ¼ 1 3 10�6), and median 5.29 years earlier onset for bariatric surgery

(p ¼ 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show

that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a

mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs

(p ¼ 2 3 10�15). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across mul-

tiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale

transcriptome sequencing.
Introduction

A major goal of complex disease genetics is predicting an

individual’s disease risk. Recent efforts have aimed at sum-

marizing genome-wide risk for multiple traits and diseases

via polygenic risk scores (PRSs),1–6 which are derived by

summing genome-wide common genetic variants associ-

ated with a given trait or disease. PRSs have demonstrated

stratification of genetic disease risk, but there remains sub-

stantial unexplained variability in these predictions.7 One

potential explanation for this variability is the presence of

rare variants with large phenotypic effects that are unac-

counted for in PRS models.2

Despite the well-known contributions of specific, rare

genetic variants to complex traits and diseases,8,9 rare var-

iants in aggregate have been difficult to robustly charac-

terize and integrate into PRS predictions because of their

abundance in the genome, poor interpretability, and sam-

ple size constraints. Currently, beyond single risk loci

such as APOE in Alzheimer disease,10 BRCA1 in breast can-

cer,11 and LDLR in familial hypercholesterolemia,12 the
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majority of DNA-sequencing-based approaches focus

only on rare, protein-truncating variants (PTVs).13 New

approaches that aggregate multiple rare variants have pro-

vided opportunity to improve risk prediction,14 however

these have further focused only on missense and PTV

rare variant burden. To extend to other impactful variants,

recent studies have focused on individuals with outlier

gene expression demonstrating enrichments of multiple

classes of rare variants beyond missense and PTVs,15–18

finding that such variants can have large effects on traits

and diseases.19,20

Given the known large phenotypic effects of rare vari-

ants associated with outlier gene expression—and that

these variants are not currently included in existing

PRSs—we sought to test whether this subset of rare variants

in aggregate can aid in genetic risk prediction. We devel-

oped an approach that integrates outlier-associated rare

variants from population-scale, transcriptome sequencing

in the GTEx project (v8), and demonstrated improved dis-

ease and trait prediction in the UK Biobank (UKB)21 and

Million Veteran Program (MVP).
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Subjects and methods

GTEx v8 data
Rare SNV calls passing quality control and mapped to the hg38

genome build were obtained from GTEx (v8) whole-genome

sequencing (WGS) data (see data and code availability). Using

the software bedtools22 (–window flag), variants were linked to

genes if falling within the gene body, 10 kb upstream of transcrip-

tion start site or 10 kb downstream of the transcription end site.

The 10 kb window was chosen on the basis of prior studies that

demonstrated significant rare variant enrichment for outliers

compared to non-outliers with this window size.15,19,23 We

restricted variants to those mapping to genes within autosomes.

Using the software Vcfanno,24 variants were intersected with

gnomAD (version r2.0.2, with liftover to the hg38 genome

build)25 and CADD26 databases to obtain the minor allele fre-

quency (MAF) and CADD score, respectively, for each variant.

MAFs were calculated across all individuals in gnomAD and

were retained for variants with gnomAD MAF % 1%. Variant ef-

fect annotations were obtained with Variant Effect Predictor

(VEP) (version 88).27

RNA sequencing (RNA-seq) data were obtained from GTEx (v8)

(see data and code availability). To identify GTEx outlier gene

expression samples, normalized gene expression values (TPM)

were processed across 49 GTEx v8 tissues, limited to autosomal

genes annotated as protein coding or lincRNA. A minimum

expression filter was applied per gene (R20% individuals with

TPM > 0.1 and read count > 6); genes not passing this filter

were removed. Expression values were PEER28 factor corrected

(with 15 factors for tissues with %150 samples, 30 for tissues

with <250 samples, 45 for tissues with <350 samples, and 60

for tissues with R350 samples) and adjusted for the lead cis-

eQTL per gene for a given tissue as well as genotype principal

components of ancestry 1–3 and sex. Finally, residuals were

scaled and centered to generate expression Z scores. Individuals

exhibiting global patterns of outlier gene expression for a given

tissue were removed from the final corrected expression matrix

for that tissue. Global outlier is defined as any individual who

has a gene expression abs(Z score) R 2 in more than 100 genes

in a given tissue.

UKB data
UKB Phase 2 genome-wide association study (GWAS) summary sta-

tistics were obtained from the Neale Lab server (see data and

code availability). For the continuous trait BMI, we selected the in-

verse-rank-normalized (IRNT), both-sexes version (file name:

‘‘21001_irnt.gwas.imputed_v3.both_sexes.tsv.bgz’’). We selected a

further 1,963GWASs for permutation testing by using the following

filtering criteria: both-sexes; IRNT version for all continuous traits;

any ordinal trait (n_cases ¼ NA); or binary traits with n_cases R

1,000. As described more fully in the Neale Lab server documenta-

tion, the variants included in eachGWAShad beenfiltered for impu-

tation score > 0.8, UKB MAF > 0.1%, and Hardy-Weinberg equilib-

rium p value > 1 3 10�10. Additionally, we removed all variants

flagged as low confidence (low_confidence_variant¼ TRUE).

All other phenotypic and genetic data were obtained from the

data instance approved under UKB application #24983 (see data

and code availability). Based on the information provided in pro-

tocol 44532, Stanford University IRB review has determined that

the research does not involve human subjects as defined in 45

CFR 46.102(f) or 21 CFR 50.3(g). All participants of UK Biobank

provided written informed consent. Individual-level values for
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weight (UKB data field #21002) and BMI (UKB data field #21001)

were downloaded from the relevant phenotype file. We averaged

(using median) overall observations per individual for anyone

with multiple observations of the same phenotype. Additional

phenotypic and demographic data included age, sex, genotype-

derived principal components 1–10, genotyping array, and

comparative body size at age 10 (UKB data field #1687). To

compute age at bariatric surgery, we used OPCS-4 records for pro-

cedure codes G28.1 (partial gastrectomy and anastomosis of stom-

ach to duodenum), G28.2 (partial gastrectomy and anastomosis of

stomach to transposed jejunum), G28.3 (partial gastrectomy and

anastomosis of stomach to jejunum NEC), G28.4 (sleeve gastrec-

tomy and duodenal switch), G28.5 (sleeve gastrectomy NEC),

G31.2 (bypass of stomach by anastomosis of stomach to duo-

denum), G32.1 (bypass of stomach by anastomosis of stomach

to transposed jejunum), G33.1 (bypass of stomach by anastomosis

of stomach to jejunum NEC), and G71.6 (duodenal switch) com-

bined with an approximate date of birth from the fields month

of birth (UKB data field #52) and year of birth (UKB data field

#34). We followed the same procedure to obtain an approximate

age when ICD-10 code E66 (obesity) was first reported in the med-

ical record (UKB data field #130792). We further used age as

directly reported in the relevant file for diagnosis of stroke (UKB

data field #4056) and diagnosis of pulmonary embolism (UKB

data field #4022).

Individual-level genotypes for outlier-associated and matched

control rare variants were obtained from UKB genotyping callset

version 3. Variants in this callset weremapped to the hg19 genome

build; therefore, we used the software CrossMap29 to convert

genome coordinates from hg19 to hg38 given that GTEx (v8) is

mapped to hg38. We restricted variants to the high-confidence

set included in the UKB GWAS files described above.
UKB validation cohort
We defined a non-overlapping UKB cohort separate from the indi-

viduals included in the GWAS described above (see UKB data). Us-

ing the self-identified non-British White labels that were reported

in the UKB metadata, we first inferred a larger cohort of predicted

non-British White individuals by using the first and second geno-

type principal components. All individuals without a self-reported

ethnic identity that were within þ/�3 SD of the calculated mean

principal component 1 (PC1) and principal component 2 (PC2)

values were inferred to be non-British White. All self-reported

non-British White individuals that fell out of this range were

excluded. We found that the BMI PRS distribution of this non-

BritishWhite cohort did not differ significantly from a normal dis-

tribution (Shapiro-Wilk normality test; p ¼ 0.2774), suggesting

that the PRS generalizes well to this cohort. We further obtained

the plate and well information for all individuals included in the

UKB GWAS described above by using the ‘‘european_samples.tsv’’

file available from theNeale Lab server (see data and code availabil-

ity), as well as for all individuals in our non-British White cohort.

We removed any individuals who appeared in the intersecting set.
Million Veteran Program (MVP) validation cohort
DNA extracted from individual blood samples were genotyped

with a customized Affymetrix Axiom biobank array, the MVP 1.0

Genotyping Array. The array was enriched for both common

and rare genetic variants of clinical significance in different ethnic

backgrounds. Quality-control procedures used to assign ancestry,

remove low-quality samples and variants, and perform genotype
e 2, 2022



imputation to the 1000 Genomes reference panel were previously

described.30 Individuals related more than second-degree cousins

were excluded.

We conducted HARE (harmonized ancestry and race/ethnicity)

analysis by using race/ethnicity information from MVP partici-

pants.31 Genotyped MVP participants are assigned into one of

the four HARE groups (Hispanic, non-Hispanic White, non-His-

panic Black, and non-Hispanic Asian) and ‘‘other.’’ The analysis

is based on a machine-learning algorithm, which integrates

race/ethnicity information from MVP baseline survey and high-

density genetic variation data. Trans-ethnic, and ethnicity-spe-

cific principal-component analyses were performed with

flashPCA.32 BMI was calculated as average BMI with all measure-

ments within a 3-year window around the date of MVP enroll-

ment (i.e., 1.5 years before/after the date of enrollment),

excluding height measurements that were >3 in or weight mea-

surements that were >60 lbs from the average of each participant.

Genetic association with BMI in the MVP cohort was examined

among 217,980 non-Hispanic White participants. Given differ-

ences betweenMVP andUKB in genotyping array and imputation,

we could include 57,686 outlier-associated variants in the inde-

pendent outlier gene count (IOGC) score calculation for MVP—

65.6% of the total outlier-associated variant set. As a result of

data access restrictions, we were unable to calculate PRSs in MVP.
Identifying rare variants associated with GTEx gene

expression outliers and non-outliers
To link rare variants to expression outliers, we used the processed

RNA-seq data (see GTEx v8 data) for each tissue and identified indi-

viduals passing a defined absolute Z score expression level for a

given gene (abs(Z score) R 2). We also identified the set of individ-

uals with non-outlier gene expression, defined as abs(Z score) < 1

for a given gene and tissue. We retained only the genes with at least

one outlier individual. From the set of variants identified in outlier

individuals, we removed variants thatwere observed in any individ-

ual not passing the defined absolute Z score threshold in any tissue.

We further removed any variants linked to inconsistent outlier di-

rections in the same gene (e.g., under-expression in one outlier in-

dividual and over-expression in another). For the set of variants

identified in non-outlier individuals, we defined a corresponding

set of matching variants on the basis of the CADD score and gno-

mAD MAF of outlier variants in the same gene and tissue. For

CADD, we required a match within a þ/�1 window. For gnomAD

MAF, we required a match within 0.1% of outlier variant gnomAD

MAF (for example, for an outlier variant with gnomAD MAF of

0.3%, the match window would be 0.2%–0.4%). We subsequently

confirmed there was no difference in local linkage disequilibrium

(LD) for outlier andmatched non-outlier variants. For analyses inte-

grating PRSs, we further subset the list of outlier-associated and

non-variants mapping to genes containing R1 PRS variant.
Annotating missense variants and PTVs in UKB
To identify missense variants, we used annotations available on

the Neale Lab server (see data and code availability) by using the

‘‘consequence’’ column available in the ‘‘variants.tsv.bgz’’ file.

We annotated predicted rare protein-truncating SNVs in the UKB

by using the imputed genotype callset (version 3). We restricted

variants to the high-confidence variant set described above (see

UKB data) and further retained only those variants with a rate of

missingness < 1% and UKB MAF < 1%. We performed variant

annotation by using the Ensembl VEP27 (April 2017 version)
The America
with the LOFTEE plugin25 using the hg19 genome build. We

considered the following predicted consequences as protein-trun-

cating SNVs: frameshift variant, splice acceptor variant, splice

donor variant, stop lost, stop gained, and start lost. Finally,

repeating the same process as used for outlier-associated and

matched non-outlier variants, we restricted variants to those map-

ping to genes with R1 PRS variant. We checked for overlap be-

tween this set of PTVs and outlier-associated variants, finding

that 138 variants overlapped in both sets.

Calculating PRSs
We computed PRSs by using publicly available PRS weights ob-

tained from The Polygenic Score (PGS) Catalog (see data and

code availability): body mass index (PGS Catalog ID:

PGS000027). Scores were calculated with the software plink

(version 2.0) (–score flag, including ‘‘sum’’ modifier). Scores were

scaled to generate PRS Z scores.

GWAS effect size permutation test
We performed a permutation test (n permutations ¼ 1,000) to

assess how often randomly drawn outlier-associated variants had

larger GWAS effect sizes than matched non-outlier variants across

genes. For each GWAS, the input data are files containing outlier-

associated and non-outlier variants along with GWAS effect size,

gene ID, outlier direction (under-expression/over-expression),

and tissue. Additionally, for GWAS of traits and disease where we

also integrate PRS information, we subset outlier genes to those

with R1 PRS variant. For each tissue/gene/outlier-direction tuple,

we randomly select one outlier-associated variant and one

matched non-outlier variant. We then identify the variant (i.e.,

outlier-associated/non-outlier) with the largest GWAS absolute ef-

fect size. Summarizing across all tuples, we construct a 2 3 2 con-

tingency table to compute the odds of observing an outlier-associ-

ated variant with a larger absolute effect size than non-outlier

variant across genes. To generate a null distribution, we repeated

this analysis for matched non-outlier variants only, comparing

two randomly chosen non-outlier variants per tuple.

GTEx cis-eQTL slope and phenotype risk concordance

with outlier-associated rare variants
Significant GTEx cis-eQTL summary statistics were obtained from

the GTEx Portal (‘‘*.v8.signif_variant_gene_pairs.txt’’ file suffix;

see data and code availability). For each tissue, we selected genes

with R1 outlier-associated variant and R1 cis-eQTL variant and

filtered for SNVs only and merged variants with UKB GWAS sum-

mary statistics. For genes with >1 cis-eQTL in a given tissue, the

variant with the smallest UKB GWAS p value was retained. We

removed genes where cis-eQTLs had either risk or protective

GWAS effects but the same eQTL slope direction. Outlier-associ-

ated variants were then compared on the slope and GWAS effect

direction of gene-level summarized cis-eQTL results (e.g., for cis-

eQTL variants with a positive median cis-eQTL slope and GWAS

risk direction, we assessed if outlier-associated variants for the

same gene were overexpressed and had a GWAS risk direction).

We stratified results by cis-eQTL GWAS p value, number of cis-

eQTL tissues per gene, and outlier expression Z score.

Outlier-associated variant effect enrichment in BMI PRS

outliers
To investigate enrichments in outlier-associated variant effects in

individuals whose observed BMI differs substantially from their
n Journal of Human Genetics 109, 1055–1064, June 2, 2022 1057



PRS-group prediction, we first calculated BMI Z scores separately

across deciles of PRS risk. We then assessed enrichment across

variant effect subtypes for IOGC top and bottom decile individuals

who fall close or far frommean PRS-decile BMI. Enrichments were

composed of individuals with respect to their IOGC score direc-

tion—for bottom 10% IOGC individuals, we defined BMI Z

score < 0 and > �0.5 as close to mean and Z score < �2.5 as far

from mean. Similarly, for top 10% IOGC individuals, BMI Z

score > 0 and < 0.5 was considered close to mean and Z

score > 2.5 far from mean.

Quantifying effects of IOGC score on phenotype

prediction
Outlier-associated, non-outlier, and predicted protein-truncating

variants were written to a separate file and input to the software

plink33 (version 2.0; using –extract flag) to identify UKB individuals

in the validation cohort who are heterozygous or homozygous for

eachvariant.We thenused the relevantUKBGWAS (e.g., BMI) effect

estimate to assign effect directions to each outlier variant (i.e., risk/

protective). As noted above (see UKB validation cohort), the UKB

cohort used to estimate variant effect direction is non-overlapping

with the cohort we used to calculate IOGC scores.

To compute IOGC scores for each individual in our UKB valida-

tion cohort, we first count the number of unique effect directions

per gene. Per individual, we convert the beta effect estimate per

variant to an integer by using a sign function,

sgnðbkÞ :¼
8<
:

�1 if bk < 0;
0 if bk ¼ 0;
1 if bk > 0:

where bk is the UKB GWAS beta coefficient for variant k. In prac-

tice, effect sizes of zero are not generally observed, so we expect

to see only values of �1 or 1. Following this step, we take the

distinct values per gene (i.e., remove duplicates); because our

goal is to use outlier variants to quantify putative outlier gene

expression, this step prevents double counting. As such, if we

denote the vector of sgn(bk) for variants linked to a given i gene

as s, then

si ¼ fsgnðbkÞgk˛ qi
; where qi is the index set of varients in gene i:

We define si for each gene with at least one outlier variant, then

take a sum over genes to yield the IOGC score. We split the geno-

types of individual j into vectors gij for each qi and compute:

IOGCj ¼
X
i

sigij:

Linear regression was used for quantitative phenotypes and lo-

gistic regression for binary phenotypes. All statistical analyses

were performed with R (version 3.6.0). Plots were generated with

ggplot2 (version 3.3.0).34
Results

Identification of rare variants associated with gene

expression outliers

To identify candidate, large-effect rare variants, we focused

on rare variants associated with gene expression outliers

that could also be tested for their effects on complex traits

in the UKB. We first intersected the set of SNVs with
1058 The American Journal of Human Genetics 109, 1055–1064, Jun
gnomAD25 MAF > 0 and % 1% identified in GTEx v8

with high-quality imputed variants in the UKB (subjects

and methods; Figure 1A). From a starting set of 8,150,921

unique rare SNVs, we identified 1,773,318 (21.8%) variants

that overlapped with those in UKB. From this intersecting

set, we compared the set of variants found in GTEx outlier

to non-outlier individuals to isolate the subset of rare var-

iants present in gene expression outlier individuals only

(subjects and methods). Variants were subsequently anno-

tated to a gene if they fell within the gene body or þ/�10

kb around the gene. Following this approach, we identified

90,898 unique outlier-associated variants for 15,871 genes.

We observed that individuals were often carriers for mul-

tiple outlier-associated rare variants highlighting the

potential for rare variants in aggregate to contribute to a

polygenic phenotype. Within the UKB, we observed that

each individual had an average of 288 (SD ¼ 53) outlier-

associated rare variants. In comparison, each individual

had on average 25 (SD ¼ 3) rare PTVs (subjects and

methods).

Rare expression outlier-associated variants impact BMI

To assess the degree to which multiple rare variants across

genes can impact a polygenic trait, we focused on BMI

from the UKB. We first observed that outlier-associated

rare variants had the potential for large BMI effects; for

example, an outlier-associated rare variant linked to the

gene MAP2K5 had a BMI effect size in the top 0.05% of

all variants with a locus centered on the top genome-

wide significant hit (Figure 1B) and was further in the

top 0.003% across all variants genome-wide.

We next systematically assessed whether outlier-associ-

ated rare variants had larger effect sizes on BMI than

non-outlier rare variants (subjects and methods). We

observed a median odds of 1.04 when comparing outlier

versus non-outlier variants and a median odds of 1.00

when comparing non-outlier variants to themselves (Wil-

coxon test, p < 1 3 10�16) (Figure 1C). We repeated this

approach for increasing outlier expression Z score thresh-

olds, observing progressively increased odds of outlier var-

iants with larger BMI effects (median odds (BMI GWAS):

abs(Z) > 4 ¼ 1.20; abs(Z) > 6 ¼ 1.51) but not when

comparing non-outlier variants only (median odds (BMI

GWAS): abs(Z) > 4 ¼ 1.00; abs(Z) > 6 ¼ 1.00) (Wilcoxon

test, p < 1 3 10�16 for both comparisons) (Figure 1D).

We subsequently ran the permutation test across 1,963

traits and diseases including GWAS meta-categories (can-

cer, non-cancer diseases, treatment/medication) released

in UKB Phase 2 GWAS (subjects and methods). We

observed a median odds of 1.03 (SD ¼ 0.02) across all dis-

ease and traits when comparing outlier with non-outlier

variants, an effect that further increased with increasing

outlier expression Z score thresholds (Figure S1). This indi-

cates that outlier-associated rare variants are modestly en-

riched for rare variants with impacts on multiple traits

and diseases and that the degree of outlier influences the

magnitude of this effect.
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Figure 1. Phenotypic effects of rare
outlier-associated variants across genes
(A) Rare SNVs were identified in gene
expression outlier individuals across 49
GTEx v8 tissues. The phenotypic effects
of these variants were systematically
compared with protein-truncating variants
and matched rare non-outlier variants and
jointly modeled with PRS estimates.
(B) Example gene locus (MAP2K5) contain-
ing a common variant genome-wide signifi-
cant hit for BMI illustrates the large pheno-
typic effect of an outlier-associated variant:
(left) showing distribution of �log10(p
values) for UKB BMI GWAS for all outlier
(blue halo) and non-outlier (gray halo) vari-
ants linked to the gene; (right) associated ef-
fect sizes, stratified by UKB allele count and
highlighting variants included in a PRS for
BMI (pink halo). Points colored by LD
(1000 Genomes phase 3, European samples)
relative to lead variant in gene locus (purple
diamond).
(C) Distribution of odds estimates from per-
mutation testing to assess how often
randomly drawn outlier-associated variants
had larger BMI GWAS effect sizes than
matched non-outlier variants across genes
(blue shading). This process was repeated
for randomly selected non-outlier variants
only (gray). p values obtained with a Wil-
coxon test.
(D) Distribution of odds from permutation
testing (permutation testing method as
detailed in B), across more-stringent outlier
Z scores. p values obtained with a Wilcoxon
test.
To validate whether rare, outlier-associated variant effects

onBMIwere consistent inallelic serieswithcommoneffects,

we tested the consistency of their effect directions on BMI

with common cis-eQTL variants. We compared the BMI

GWAS effect direction between cis-eQTLs and outlier-associ-

ated variants at each locus (as an example, positive cis-eQTL

slope and over-expression outliers both leading to increased

BMI risk) (subjects andmethods).We stratified results by cis-

eQTL variant BMI p value and outlier-associated variant Z

score and observed an overall mean concordance of 69%

(binomial test, p ¼ 0.001) (Figure S2).

IOGC score improves genetic risk prediction

Bydemonstrating thatmultiple rare variants can contribute

to a polygenic trait, such as BMI, we next assessed whether

we could construct a score to aggregate their impacts in

combination with established PRS predictions. We first
The American Journal of Human G
calculated BMI and obesity PRS for

a subset of UKB individuals (n ¼
96,606) and observed the expected gra-

dients in mean BMI and weight

increasing by PRS deciles (Figure S3).

We then used a linear regressionmodel

to assess change in BMI given an indi-

vidual’s PRS, sex, age, first ten compo-
nents of genetic ancestry, genotyping array, and a novel

score that quantifies the total outlier-associated, rare

variant burden per individual, computed by subtracting to-

tal protective from total risk outlier-associated variants

collapsed to gene level (subjects and methods). We refer to

this score as the independent outlier gene count (IOGC)

score. We observed significant coefficient estimates for 10/

15 features in the model (Figure S4). Further, as PRS was

also included in the model, subsequent analyses focused

on the additional predictive benefit of the IOGC score.

We observed that each standard deviation (SD) increase in

IOGC score (mean absolute change in net outlier-associated

gene count ¼ 14.5 genes) was associated with a mean rate

of change in BMI of 0.139 kg/m2 (linear regression,

p < 1 3 10�16) (Figure 2A). We observed similar predic-

tive power for obesity (BMI R 30 kg/m2), diagnostic

history of obesity (ICD-10 code E66), and severe obesity
enetics 109, 1055–1064, June 2, 2022 1059
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Figure 2. Increasing burden of outlier rare variants is associated with a significant deviation in body mass index and obesity and
earlier age of onset for bariatric surgery
(A) Mean BMI across 96,606 UKB individuals binned by IOGC score percentile (gray points). Linear regression fit is displayed in blue.
Dashed line indicates cohort average. p value obtained from linear regression.
(B and C)Mean rates of obesity (BMIR 30 kg/m2) (B) and severe obesity (BMIR 40 kg/m2) (C), across deciles of IOGC score. Dashed line
indicates cohort averages. Error bars indicate standard error of the mean. p values obtained from logistic regression.
(D) Age at time of bariatric surgery for individuals in top and bottom 10% of IOGC score. Crossbars indicate median, error bars indicate
90% of data range. p value obtained from Wilcoxon test.
(E) Deviation from cohort mean BMI in UKB and MVP as a function of IOGC score decile. p values obtained from linear regression.
(F) Risk for obesity (BMIR 30 kg/m2) in UKB andMVP comparing individuals stratified to top and bottom 10% of IOGC score. Error bars
indicate 95% confidence interval. p values obtained from Fisher’s exact test.
(BMIR 40 kg/m2) as a function of IOGC (Figures 2B and2C;

Figures S5A and S5B; Table S1).We investigated whether the

degree of outlier gene expression integrated into the IOGC

score affected change in BMI, observing an increase in

IOGC score coefficient at more extreme Z score thresholds

(abs(Z) R 2: linear regression r ¼ 0.009, p < 1 3 10�16;

abs(Z) R 3: r ¼ 0.015, p ¼ 2 3 10�6; abs(Z) R 4: r ¼ 0.016,

p ¼ 0.02) (Figure S5C), and that the IOGC score subset to

under-expression outlier-associated variants had slightly

larger impacts than over-expression outlier-associated vari-

ants (under-expression outlier: linear regression r ¼ 0.011,

p ¼ 3 3 10�12; over-expression outlier: r ¼ 0.009, p ¼
2 3 10�12) (Figure S5D). We also see evidence that IOGC is

transferable across ancestries (Figures S5E–S5G), however

we expect that increased study of non-Europeanswill enrich

the discovery of outlier-associated rare variants.

Given the trajectories for obesity risk associated with

IOGC score, we hypothesized that IOGC could impact

the time course for obesity-related medical interventions

such as bariatric surgery. For individuals with evidence of

bariatric surgery (n ¼ 159; subjects and methods), we
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calculated age at time of procedure and observed a median

5.29 years earlier onset among individuals in the top decile

of IOGC score compared to bottom decile (median age at

bariatric surgery: decile 1 ¼ 61.28; decile 10 ¼ 55.98; Wil-

coxon test, p ¼ 0.008; Figure 2D) and a median 6.16 years

earlier medical diagnosis of obesity (ICD-10 code E66) (me-

dian age at diagnosis: decile 1 ¼ 54.30; decile 10 ¼ 48.14;

Wilcoxon test, p ¼ 0.009). Among the individuals in the

top decile of IOGC who had a medical history of bariatric

surgery, 50% would not have been considered high-risk

from their PRS alone (defined as PRS Z score < 1). Among

individuals classified as severely obese (BMI R 40 kg/m2),

we observed suggestive evidence of an earlier age of onset

for comorbidities, including stroke and pulmonary embo-

lism, as a function of IOGC score (Figure S6).

We further observed that the IOGC score was predictive

for effects thatmanifest fromchildhood.We identifieda sub-

set of individuals in UKB (n¼ 45,840) who provided self-re-

ported information on being ‘‘plumper’’ or ‘‘thinner’’ than

average at age 10 (UKB data field #1687). We tested the

associationof IOGCscorewithchildhoodbodysize (subjects
e 2, 2022
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Figure 3. Integrating expression outlier
information highlights multiple classes
of large-effect rare variants beyond PTVs
(A) Difference in outlier-associated variant
burden across categories of variant effects
as a functional of observed BMI Z score
computed within PRS decile groups. Dif-
ference is with respect to outlier-associated
variant abundance within bin [0,0.5). In-
dividuals who have an observed BMI that
deviates substantially from their PRS pre-
diction are enriched for multiple classes
of functional outlier-associated variants.
(B) BMI GWAS effect sizes for outlier-asso-
ciated variants and PTVs. p value obtained
from Wilcoxon test.
(C) BMI across deciles of IOGC score for
outlier-associated variants and PTVs. p
value obtained from linear regression.
and methods) and observed a modest increase in the

likelihood across each decile of IOGCof having a ‘‘plumper’’

comparative body size at 10 (logistic regression, p ¼ 0.003);

comparing low and high deciles of IOGC score (10%,

90%), we observed a mean ‘‘plumper’’ body size at age 10

in IOGC decile 1 of 30.41% and 33.98% in IOGC decile 10.

We investigated whether IOGC from UKB replicated in a

large-scale external cohort. We calculated IOGC inMVP by

using the intersecting set of outlier-associated variants

available in both cohorts (N variants ¼ 57,686) (subjects

and methods). We observed that IOGC was significantly

associated with BMI in MVP (linear regression, r ¼ 0.007,

p ¼ 5 3 10�9; Figure 2E). We also observed replication of

effects of IOGC on risk for obesity when comparing indi-

viduals in the top decile of IOGC score compared to bot-

tom decile (Fisher’s exact test, MVP: odds ratio ¼ 1.15 [CI

1.08–1.22], p ¼ 8 3 10�6; UKB: odds ratio ¼ 1.22 [CI

1.15–1.30], p¼ 23 10�9; subjects andmethods; Figure 2F).

To assess whether rare variants used in calculating

the IOGC were driving effects on BMI in excess of the addi-

tion of random rare variants, we compared IOGC results
The American Journal of Human Gen
for outlier-associated variants and

matched, non-outlier variants (sub-

jects and methods). We observed

anoverall 33.3% increase in incremen-

tal R2 when using outlier-associated

compared with non-outlier variants

(mean incremental R2: outlier ¼
0.047%; non-outlier ¼ 0.036%;

Wilcoxon test, p< 13 10�16). This ef-

fect was pronounced even for smaller

matched subsets of outlier and non-

outlier variants (Figure S7A) as well as

matched rare missense variants and

PTVs in intersecting genes (subjects

andmethods; FigureS7B).We repeated

this test for the subset of outlier-

associated variants at an expression

outlier threshold abs(Z score) R 3,
observing a greater than 3-fold increase in incremental R2

compared tomatchednon-outlier variants (mean incremen-

tal R2: outlier ¼ 0.016%; non-outlier ¼ 0.005%; Wilcoxon

test, p < 1 3 10�16), highlighting the larger phenotypic ef-

fects of rare variants linked tomore-extremegene expression

outliers.

IOGC aggregates multiple classes of large-impact rare

variants beyond PTVs

We investigated the composition of outlier-associated

variants contributing to IOGC-based prediction. We

compared rare variants within individuals with significant

uncaptured variance between their PRS prediction and

their observed BMI (subjects and methods). We observed

that individuals far from their predicted PRS mean were

significantly enriched for missense, regulatory, 30 and 50

UTR outlier-associated variants, and outlier-associated var-

iants proximal (þ/�1 kb) to the transcription start site

(TSS) (Figure 3A) and with further evidence of contribu-

tions from splice outlier-associated variants (Fisher’s exact

test; missense: odds ratio ¼ 1.11 [CI 0.99–1.23], p ¼ 0.05;
etics 109, 1055–1064, June 2, 2022 1061



regulatory: odds ratio ¼ 1.06 [CI 1.02–1.10], p ¼ 0.006; 30

UTR: odds ratio ¼ 1.09 [CI 1.01–1.17], p ¼ 0.04; 50 UTR:

odds ratio ¼ 1.19 [CI 1.03–1.37], p ¼ 0.02; TSS: 1.14 [CI

1.05–1.24], p ¼ 0.002). We repeated this process with

matched non-outlier variants (subjects and methods) and

observed no significant enrichments.

We further sought to establish the relative predictive po-

wer of outlier-associated variants compared to the aggre-

gated effects of rare PTVs. From the same high-confidence

UKB imputed rare variant set as described above, we identi-

fied 1,509 rare PTVs mapped to 1,354 BMI PRS genes,

comprising 344 frameshift indels, 192 splice acceptor, 317

splice donor, 78 start lost, 525 stop gained, and 53 stop

lost variants (methods). Restricting to the intersecting set

of genes with at least one outlier-associated variant and

one PTV (n genes¼ 1,016), we observed that outlier-associ-

ated variants had overall larger BMI effects than PTVs (Wil-

coxon test, p¼ 23 10�12) (Figure 3B). We calculated IOGC

scores by using the full set of PTVs and observed no signifi-

cant effect on BMI (linear regression, p ¼ 0.06) (Figure 3C).

In a permutation test using variants within the intersecting

gene set (n genes ¼ 1,016), we observed a mean increase of

19% in incremental R2 comparing IOGC by using outlier-

associated variants or PTVs (mean incremental R2: outlier-

associated variants¼ 0.0029%; PTVs¼ 0.0024%;Wilcoxon

test, p ¼ 2 3 10�15) (Figure S8).

Discussion

Integration of rare variants within PRSs provides an oppor-

tunity to improve prediction of genetic traits and dis-

eases.11,35,36 We have demonstrated that a high burden of

rare variants identified by their association with outlier

gene expression can lead to substantial deviations in PRS-

predicted phenotype. Furthermore, by integrating these

rare variants into genetic risk prediction using the IOGC

score, we demonstrated improvements in predicting risk

for obesity beyond what was achievable with common

variant-based PRSs. For example, we observed that IOGC

could account for observed instances of PRS lower-risk indi-

viduals with increased risk for severe-obesity-related medi-

cal interventions, such as bariatric surgery.

The power of this approach is enabled by identifying

expression outlier-associated rare variants in GTEx; these

variants represent strong candidates for corresponding

phenotypic effects and are not limited to protein-coding

variant effects alone.19 However, given that this cohort is

limited to 714 individuals, it is certain that many expres-

sion outlier-associated rare variants remain to be identi-

fied. Future large-scale RNA-seq studies in population

biobanks, catalogs of expression outlier-associated rare var-

iants, and personal -omics will only increase the efficacy of

this approach. Furthermore, we could recover only a subset

of outlier-associated rare variants in UKB because of limita-

tions in rare variant imputation; recently released WGS in

the UKB will recover more expression outlier-associated

rare variants including ultra-rare variants, indels, and
1062 The American Journal of Human Genetics 109, 1055–1064, Jun
structural variants (SVs).37–39 Notably however, by using

only the subset of outlier-associated rare variants between

GTEx and UKB, we demonstrated improved power for ge-

netic risk prediction beyond what could be achieved by

integrating the effects of multiple rare PTVs alone.

Our approach has the opportunity for multiple future

methodological improvements. The IOGC score assesses

the number of genes with outlier-associated variants and

does not use their effect size weights because of statistical

imprecision as a result of current cohort sizes. A number

of other rare variant burden testing approaches are avail-

able.40 A recent study by Lali et al.14 showed that it is

possible to construct an individual rare variant score

without collapsing to genes; however, this was limited to

variants mapping to only a subset of the full set of genes

containing PRS variants. By including outlier-associated

rare variants in these models, we would expect opportu-

nities to increase the power of these approaches. Further,

in this work, we focused only on gene expression outlier-

associated rare variants. Our own work has shown that

splicing outlier-associated rare variants are also abundant

and can contribute to complex traits.19 Future studies

may benefit from integrating a broader collection of

outlier-associated rare variant effects or outliers from addi-

tional multi-omics phenotypes.

Combined, our study demonstrates utility for the pre-

diction of polygenic traits and diseases with both gene

expression outlier-associated rare variants and PRS.
Data and code availability

GTEx (v8) RNA-seq and WGS data are available from dbGaP

(dbGaP: phs000424.v8.p2). GTEx (v8) eQTL summary statistics

were obtained from the GTEx Portal available at https://

gtexportal.org/home/datasets. UK Biobank (UKB) data were ob-

tained under application number 24983 (PI: Dr. Manuel Rivas).

UKB Phase 2 GWAS summary statistics were obtained from the

Neale Lab server available at http://www.nealelab.is/uk-biobank.

Polygenic risk score (PRS) for body mass index was obtained

from PGS Catalog available at https://www.pgscatalog.org/. Gene

annotation data were obtained fromGENCODE (version 19) avail-

able at https://www.gencodegenes.org/human/release_19.html.

Allele frequency data were obtained from gnomAD (version

r2.0.2) available at https://console.cloud.google.com/storage/

browser/gnomad-public/release/2.0.2/. The code generated during

this study is available at https://github.com/csmail/iogc.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.04.015.
Acknowledgments

We thank Jonathan Pritchard, Hakhamanesh Mostafavi, and other

members of thePritchardLab at StanfordUniversity forhelpful com-

ments on this manuscript. C.S. was supported by NIH grant

T32LM012409.N.M.F. andM.G.D. were supported byNSFGraduate

Research Fellowships (grant number 1656518) and, for N.M.F., the
e 2, 2022

https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
http://www.nealelab.is/uk-biobank
https://www.pgscatalog.org/
https://www.gencodegenes.org/human/release_19.html
https://console.cloud.google.com/storage/browser/gnomad-public/release/2.0.2/
https://console.cloud.google.com/storage/browser/gnomad-public/release/2.0.2/
https://github.com/csmail/iogc
https://doi.org/10.1016/j.ajhg.2022.04.015
https://doi.org/10.1016/j.ajhg.2022.04.015


Stanford Center for Computational, Evolutionary and Human Ge-

nomics. M.A. is supported by NLM training grant T15LM007033.

X.L. is supported by the NNSF of China (grant number 31970554)

and National Key R&D Program of China (grant numbers

2021YFA0805200 and 2019YFC1315804). M.J.G. was supported by

a StanfordGraduate Fellowship. Y.T. was supported by a Funai Over-

seas Scholarship from the Funai Foundation for Information Tech-

nology. M.A.R. was supported by NIH grants U01HG009080 and

R01HG010140. S.B.M. is supported by NIH grants U01HG009431,

R01HL142015, R01HG008150, R01AG066490, U01HG009080,

R01HG011432, R01MH125244, and U01AG072573. This research

was conducted with the UK Biobank Resource under application

number 24983, ‘‘Generating effective therapeutic hypotheses from

genomic andhospital linkagedata.’’ Thisworkused supercomputing

resources provided by the Stanford Genetics Bioinformatics Service

Center supported by NIH grant number S10OD023452. This

researchwas supportedby funding from theDepartmentofVeterans

Affairs Office of Research and Development, Million Veteran Pro-

gram (MVP) grant numbers I01-BX003340, I01-BX003362, and

I01-BX004821.A listofMVPcore investigatorsappears in thesupple-

mental information.Thispublicationdoesnot represent theviewsof

theNIH,VA,or theUSGovernment.The fundershadnorole in study

design, data collection and analysis, decision to publish, or manu-

script preparation.
Author contributions

Conceptualization, C.S. and S.B.M.; Methodology, C.S. and

S.B.M.; Software, C.S., N.M.F., and Q.H.; Formal Analysis, C.S.,

N.M.F., Q.H., M.G.D., Y.T., A.S.R., M.R.K., J.M.J., X.L., and

M.J.G.; Investigation, C.S., N.M.F., M.G.D., A.S.R., and S.B.M.;

Data Curation, T.L.A., M.A., and M.A.R.; Resources, Q.H., J.H.,

T.L.A., C.J.O., Y.V.S., C.K., A.R., and M.A.R.; Writing - Original

Draft, C.S. and S.B.M.; Writing - Review & Editing, C.S., N.M.F.,

M.G.D., A.S.R., M.A., Q.H., J.H., T.L.A., C.J.O., Y.V.S., M.A.R.,

C.K., A.R., and S.B.M.; Funding Acquisition, M.A.R. and S.B.M.
Declaration of interests

S.B.M. is a consultant for Myome Inc, Tenaya Therapeutics, and

BioMarin. C.J.O. is an employee of Novartis Institute for Biomed-

ical Research. S.B.M. and C.S. report a patent application related to

this work.

Received: December 1, 2021

Accepted: April 25, 2022

Published: May 18, 2022
References

1. Khera, A.V., Chaffin, M., Wade, K.H., Zahid, S., Brancale, J.,

Xia, R., Distefano, M., Senol-Cosar, O., Haas, M.E., Bick, A.,

et al. (2019). Polygenic prediction of weight and obesity trajec-

tories from birth to adulthood. Cell 177, 587–596.e9. https://

doi.org/10.1016/j.cell.2019.03.028.e9.

2. Martin, A.R., Daly, M.J., Robinson, E.B., Hyman, S.E., and

Neale, B.M. (2019). Predicting polygenic risk of psychiatric dis-

orders. Biol. Psychiatry 86, 97–109. https://doi.org/10.1016/j.

biopsych.2018.12.015.

3. Elliott, J., Bodinier, B., Bond, T.A., Chadeau-Hyam, M., Evan-

gelou, E., Moons, K.G.M., Dehghan, A., Muller, D.C., Elliott,
The America
P., and Tzoulaki, I. (2020). Predictive accuracy of a polygenic

risk score–enhanced prediction model vs a clinical risk score

for coronary artery disease. JAMA 323, 636–645. https://doi.

org/10.1001/jama.2019.22241.

4. Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C.,

Choi, S.H., Natarajan, P., Lander, E.S., Lubitz, S.A., Ellinor, P.T.,

et al. (2018). Genome-wide polygenic scores for common dis-

eases identify individuals with risk equivalent to monogenic

mutations. Nat. Genet. 50, 1219–1224. https://doi.org/10.

1038/s41588-018-0183-z.

5. Zhang, Y.D., Hurson, A.N., Zhang, H., Choudhury, P.P.,

Easton, D.F., Milne, R.L., Simard, J., Hall, P., Michailidou, K.,

Dennis, J., et al. (2020). Assessment of polygenic architecture

and risk prediction based on common variants across fourteen

cancers. Nat. Commun. 11, 3353. https://doi.org/10.1038/

s41467-020-16483-3.

6. Riveros-Mckay, F., Weale, M.E., Moore, R., Selzam, S., Krapohl,

E., Sivley, R.M., Tarran, W.A., Sørensen, P., Lachapelle, A.S.,

Griffiths, J.A., et al. (2021). Integrated polygenic tool substan-

tially enhances coronary artery disease prediction. Circ. Ge-

nom Precis Med. 14, e003304. https://doi.org/10.1161/circ-

gen.120.003304.

7. Torkamani, A., Wineinger, N.E., and Topol, E.J. (2018). The per-

sonalandclinical utilityofpolygenic risk scores.Nat.Rev.Genet.

19, 581–590. https://doi.org/10.1038/s41576-018-0018-x.

8. Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A.A.E.,

Lee, S.H., Robinson, M.R., Perry, J.R.B., Nolte, I.M., van Vliet-

Ostaptchouk, J.V., et al. (2015). Genetic variance estimation

with imputed variants finds negligible missing heritability

for human height and body mass index. Nat. Genet. 47,

1114–1120. https://doi.org/10.1038/ng.3390.

9. Mancuso, N., Rohland, N., Rand, K.A., Tandon, A., Quinque,

D., Mallick, S., Stram, A., Sheng, X., Easton, D.F., Eeles, R.A.,

et al. (2016). The contribution of rare variation to prostate can-

cer heritability. Nat. Genet. 48, 30–35. https://doi.org/10.

1038/ng.3446.

10. Leonenko, G., Baker, E., Stevenson-Hoare, J., Sierksma, A.,

Fiers, M., Williams, J., de Strooper, B., and Escott-Price, V.

(2021). Identifying individuals with high risk of Alzheimer’s

disease using polygenic risk scores. Nat. Commun. 12, 4506.

https://doi.org/10.1038/s41467-021-24082-z.

11. Kuchenbaecker, K.B., McGuffog, L., Barrowdale, D., Lee, A.,

Soucy, P., Dennis, J., Domchek, S.M., Robson, M., Spurdle,

A.B., Ramus, S.J., et al. (2017). Evaluation of polygenic risk

scores for breast and ovarian cancer risk prediction in

BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst.

109, djw302. https://doi.org/10.1093/jnci/djw302.

12. Patel, A.P.,Wang,M., Fahed, A.C.,Mason-Suares, H., Brockman,

D., Pelletier, R., Amr, S., Machini, K., Hawley, M., Witkowski, L.,

et al. (2020). Association of rare pathogenic DNAvariants for fa-

milial hypercholesterolemia, hereditary breast and ovarian can-

cer syndrome, and lynchsyndromewithdisease risk inadults ac-

cording to familyhistory. JAMANetw.Open3, e203959.https://

doi.org/10.1001/jamanetworkopen.2020.3959.

13. Akbari, P., Gilani, A., Sosina, O., Kosmicki, J.A., Khrimian, L.,

Fang, Y.-Y., Persaud, T., Garcia, V., Sun, D., Li, A., et al.

(2021). Sequencing of 640,000 exomes identifies GPR75 vari-

ants associated with protection from obesity. Science 373,

eabf8683. https://doi.org/10.1126/science.abf8683.

14. Lali, R., Chong, M., Omidi, A., Mohammadi-Shemirani, P., Le,
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