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Abstract

BACKGROUND—Increasing utilization of long-term outpatient ambulatory electrocardiographic 

(ECG) monitoring continues to drive the need for improved ECG interpretation algorithms.

OBJECTIVE—The purpose of this study was to describe the BeatLogic® platform for ECG 

interpretation and to validate the platform using electrophysiologist-adjudicated real-world data 

and publicly available validation data.

METHODS—Deep learning models were trained to perform beat and rhythm detection/

classification using ECGs collected with the Preventice BodyGuardian® Heart monitor. Training 

annotations were created by certified ECG technicians, and validation annotations were 

adjudicated by a team of board-certified electrophysiologists. Deep learning model classification 

results were used to generate contiguous annotation results, and performance was assessed in 

accordance with the EC57 standard.

RESULTS—On the real-world validation dataset, BeatLogic beat detection sensitivity and 

positive predictive value were 99.84% and 99.78%, respectively. Ventricular ectopic beat 

classification sensitivity and positive predictive value were 89.4% and 97.8%, respectively. 

Episode and duration F1 scores (range 0–100) exceeded 70 for all 14 rhythms (including noise) 

that were evaluated. F1 scores for 11 rhythms exceeded 80, 7 exceeded 90, and 5 including 

atrial fibrillation/flutter, ventricular tachycardia, ventricular bigeminy, ventricular trigeminy, and 

third-degree heart block exceeded 95.

CONCLUSION—The BeatLogic platform represents the next stage of advancement for 

algorithmic ECG interpretation. This comprehensive platform performs beat detection, beat 

classification, and rhythm detection/classification with greatly improved performance over the 

current state of the art, with comparable or improved performance over previously published 

algorithms that can accomplish only 1 of these 3 tasks.
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Introduction

Outpatient ambulatory electrocardiographic (ECG) monitoring has grown in popularity 

due to technological advancements, which have decreased monitor size, increased battery 

life, and enabled mobile telemetry. Modern ambulatory ECG monitors allow for up 

to 30 days of continuous monitoring, producing far too much data for physicians to 

comprehensively analyze. For this reason, service providers are commonly used to annotate 

ECG recordings and create reports that summarize and highlight ectopic activity. These 

reports provide clinical decision support for prescribing physicians. Service providers 

rely on certified technicians and supporting algorithms to process and annotate the data 

from ECG monitoring studies. Historically, supporting algorithms have achieved levels of 

performance well below that of humans1 but high enough to be used for prioritization and 

conservative filtering of ECG as it is queued for human interpretation.2 Better supporting 

algorithms have the potential to improve this process by more accurately detecting the 

presence and absence of cardiac arrhythmias.

Currently, most ECG interpretation algorithms rely on signal processing and classic 

machine learning; however, recent studies applying deep learning (DL) to aspects of ECG 

interpretation have generated exciting results.3–8 DL models rely on simple computational 

units that are stacked in layers and operate on raw data to extract complex features relevant 

to the classification problem at hand.9 This differs from classic machine learning, in which 

manual feature discovery and extraction are performed using signal processing. Automated 

feature discovery with DL generally delivers superior performance in domains where data 

contain subtle details and complex interactions. These factors make DL well suited for ECG 

interpretation algorithms. Previous studies applying DL to ECG interpretation performed 

only beat detection, beat classification, or rhythm classification, and only those created 

for beat classification tend to follow the American National Standards Institute (ANSI)/

Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard10 

when evaluating performance. This work details and validates the Preventice BeatLogic® 

platform, a comprehensive ECG annotation platform that leverages DL for beat and rhythm 

detection/classification. Performance was measure dusing the EC57 standard and compared 

to a commercial state-of-the-art ECG interpretation algorithm using real-world gold standard 

data and also compared to previously published work using publicly available validation 

datasets.

Methods

Training data

Deidentified ECG recordings from the single-channel Preventice BodyGuardian® Heart 

(Preventice Solutions, Rochester, MN) ambulatory patch-style monitor were mined from the 
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Preventice ECG monitoring platform using a combination of random selection and targeted 

mining. Targeted mining ensured sufficient representation of artifact and arrhythmias by 

selecting ECGs in which normal processing through the Preventice ECG monitoring 

platform identified the targeted arrhythmia. Targeted arrhythmias included junctional 

rhythms, heart blocks, and intraventricular conduction delay with occasional ventricular 

ectopic beats (VEBs). Training data were captured as 20,932 individual records with 

duration between 15 seconds and 4 minutes. Annotations were made in accordance with 

standard practice by a dedicated team of Certified Cardiographic Technician (CCT)-certified 

ECG technicians having experience ranging from 9–30 years. These technicians received 

specialized training to ensure that annotations were sufficiently detailed and consistent. 

The final training dataset consisted of 782.44 hours of ECG from 11,008 unique patients 

(Table 1). Beat and rhythm contents for the training dataset are detailed in the Supplemental 

Material (Supplemental Tables 1, 2, and 3).

Validation data

ECG for the gold standard validation dataset (aka gold validation) was selected from 

a candidate pool of 3000 pseudo-randomly selected deidentified BodyGuardian Heart 

recordings. The candidate pool contained 120 examples of 25 rhythms that were partially 

annotated by CCT-certified ECG technicians during normal processing through the 

Preventice ECG monitoring platform. From the candidate pool, approximately 20 examples 

of each rhythm were randomly selected from records in which the partial annotations were 

confirmed by a senior ECG technician. Comprehensive annotation was performed by a team 

of CCT-certified ECG technicians having experience ranging from9–30 years. Annotations 

were individually adjudicated by3 board-certified electrophysiologists (EPs), and records 

with, 100% agreement were adjudicated in a group forum at which time the annotations 

were adjusted to align with the group consensus. Records were excluded from the validation 

library if a consensus could not be reached. The gold validation dataset included 515, 1- to 

4-minute records from 505 patients (Table 1). No patient overlap was allowed between the 

training and gold standard validation datasets.

Validation was also performed using the MIT-BIH Arrhythmia Database11 (MIT-BIH) 

and the MIT Atrial Fibrillation Database12 (AFDB). MIT-BIH consists of 24.07 hours 

of 2-channel ambulatory ECG from 47 patients (Table 1). In accordance with previously 

published work, the full database was used to measure beat detection performance, and an 

11-record subset was used to measure VEB classification performance. AFDB consists of 

234.28 hours of 2-channel ambulatory ECG from 23 patients (Table 1) and was used to 

measure atrial fibrillation/flutter performance. Beat and rhythm contents for each validation 

dataset are detailed in the Supplemental Material (Supplemental Tables 1, 2, and 3).

BeatLogic platform

The BeatLogic platform consists of 2 DL models—BeatNet and RhythmNet—the results of 

which are consolidated using rules-based logic to produce a single contiguous annotation 

file (Figure 1). BeatNet performs artifact detection, beat detection, and beat classification. 

RhythmNet performs detection and classification of Sinus rhythm (Sinus), Atrial fibrillation/

flutter (AFib), Supraventricular tachycardia (SVT), Junctional rhythm (Junc), Second-degree 
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heart block type 1 (BII1), Second-degree heart block type 2 (BII2), Third-degree heart 

block (BIII), and Other. The consolidation algorithm generates Ventricular tachycardia 

(VT), Idioventricular rhythm (IVR), Intraventricular conduction delay (IVCD), Ventricular 

bigeminy (VBigem), Ventricular trigeminy (VTrigem), and Pause annotations using the 

BeatNet output and then splices together RhythmNet rhythms, ventricular rhythms, and 

artifact to create contiguous annotation files.

DL architecture

Both DL models rely on a similar architecture, which produces a sequence of classification 

results from a time series of single-channel ECG voltage values (Figure 2). The architecture 

is derived from preactivation ResNet,13,14 a popular image classification architecture. 

Modifications to the architecture included replacing 2-dimensional (2D) convolutions with 

1 dimension (1D) and removing the final pooling layer in order to repurpose the 2D 

image classification design to a 1D sequence-to-sequence classification design. As raw 

ECG flows through the network, it is compressed in the time dimension and extended 

depthwise. Compression occurs in the first convolution and at regular intervals throughout 

the remainder of the network. The input size and number of compression layers determine 

the model output resolution. The input to both DL models was 15,360 samples (60 seconds), 

which was compressed 5 times, resulting in 480 sequential outputs (every 0.125 second) for 

BeatNet, and compressed 8 times, resulting in 60 sequential outputs (every 1 second) for 

RhythmNet. Both architectures ended with a fully connected layer and softmax activation 

function, which produced classwise probabilities for each sequential output. The highest 

probability was selected as the label for each sequential output.

ECG signal processing

ECG recordings were preprocessed using a wavelet high-pass (fc = 0.5 Hz) filter15 to remove 

baseline wander and 2 second-order Butterworth band-stop (fc = 50 and 60 Hz) filters to 

remove powerline interference. After filtering, MIT-BIH and AFDB data were resampled to 

256 Hz using linear interpolation.

Training record annotations

Training record annotations were generated for each model at the designed output 

resolution. BeatNet annotations were divided into 480 sequential classification labels 

consisting of Artifact, Not-a-beat, Ventricular ectopic, Bundle branch block, Normal, and 

Other. The Normal class included supraventricular ectopic beats, and the Other class 

included paced and unclassifiable beats. Sections with artifact onset/offset were labeled 

Artifact; sections with no beat and no artifact were labeled Not-a-beat; and sections in 

which a beat peak occurred anywhere within the 0.125-second window were labeled with 

the appropriate beat class label. Training records shorter than 60 seconds were padded 

using Other. RhythmNet annotations were divided into 60 sequential classification labels 

consisting of Sinus, AFib, BII1, BII2, BIII, SVT, Junctional, and Other. Rhythm transitions 

were labele dusing the rhythm that spanned the majority of the 1-second region. Training 

records shorter than 60 seconds were padded using Other.
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Model initialization and training

DL model weights were initialized in accordance with He et al16 and trained using 

Adam17 to optimize softmax cross-entropy. Padded and Other regions were masked in the 

training loss calculation. Mini-batch size and initial learning rate were optimized using the 

hyperparameter tuning process. A development dataset was partitioned from the training 

data, which was evaluated during training to implement early stopping and at the end 

of training to compare the performance of models with different hyperparameters. The 

development dataset contained at least 10 examples of each annotation, and no patient 

overlap was allowed between the development dataset and there maining training dataset. 

After each training epoch(1 cycle through the full training dataset), micro-averaged training 

and development dataset F1 scores were calculated, and the training dataset was randomly 

shuffled. During training, learning rate was reduced when the training dataset F1 score did 

not improve for 5 consecutive epochs. Early stopping was invoked when the calculated PQ 

value18 exceeded a threshold that was set using the hyperparameter tuning process.

Hyperparameter tuning

To fully define the model architecture and training procedure, model hyperparameters 

were optimized. Because preactivation ResNet was designed for image classification, this 

base architecture was reparameterized for sequence-to-sequence ECG classification in the 

context of BeatNet and RhythmNet. Hyperparameter optimization was performed using a 

combination of grid-search and tree-structured parzen estimator optimization19 (for details 

see the Supplemental Material and Supplemental Table 4). The optimized BeatNet and 

RhythmNet models contained 81 and 113 convolutional layers.

State-of-the-art algorithm

The state-of-the-art algorithm was selected from several commercially available Food and 

Drug Administration (FDA)–cleared options capable of comprehensive beat and rhythm 

detection/classification. Candidate algorithms were evaluated using the EC57 standard, and 

the most accurate system was selected. Details of the selected algorithm are proprietary and 

were not disclosed to the authors for publication; however, the selected algorithm is known 

to leverage signal processing and classic machine learning techniques that are derived from 

the current ECG literature.

Validation procedure

Algorithm validation was performed in accordance with the EC57 guidelines.10 EC57 is 

the FDA-recognized consensus standard and provides detailed instructions for measuring 

beat and rhythm detection/classification sensitivity (Se), and positive predictive value (PPV). 

Additionally, F1 scores (0–100) were calculated for each validation metric per Equation 1.

F1 = 2 × Sensitivity × PPV
Sensitivity + PPV (Eq. 1)
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Results

Beat detection

On the MIT-BIH dataset, the BeatLogic platform performed equal to or better than 5 of the 

8 previously published algorithms, whereas the state-of-the art algorithm outperformed only 

1 published algorithm (Table 2). On the gold validation dataset, BeatLogic sensitivity was 

99.84%, which exceeded the state-of-the-art algorithm by >4 percentage points. BeatLogic 

PPV was 99.78%, which exceeded the state-of-the-art algorithm by >3 percentage points 

(Table 2).

VEB classification performance

On the 11-record MIT-BIH data subset for measuring VEB performance, BeatLogic 

outperformed all other algorithms, achieving an F1 score of 98.4, which is 0.8 points 

higher than the next highest performing algorithm (Table 3). On the gold validation dataset, 

BeatLogic outperformed the state-of-the-art algorithm, achieving sensitivity of 89.4% and 

PPV of 97.8% (Table 3).

Rhythm detection and classification

On the AFDB dataset, BeatLogic outperformed the previously published algorithms. The 

BeatLogic platform achieved episode Se/PPV of 97.7%/99.3% and duration sensitivity/PPV 

of 97.7%/99.7% (Table 4). On the gold validation dataset, BeatLogic outperformed the 

state-of-the-art algorithm for all 14 rhythms in measures of episode and duration sensitivity 

and PPV (Table 4). Three rhythm classes (junctional rhythm, second-degree heart block 

type 1, third-degree heart block) were not called at all by the state-of-the-art algorithm. 

State-of-the-art episode and duration F1 scores exceeded 70 for 7 rhythms and exceeded 80 

for episode detection of 3 rhythms. State-of-the-art episode and duration F1 scores did not 

exceed 85 for any rhythm.

BeatLogic episode and duration F1 scores exceeded 70 for all 14 rhythms, exceeded 80 

for 11 rhythms, exceeded 90 for 7 rhythms, and exceeded 95 for the following 5 rhythms: 

atrial fibrillation/flutter, ventricular tachycardia, ventricular bigeminy, ventricular trigeminy, 

and third-degree heart block. Figures 3 and 4 illustrate results produced by the BeatLogic 

platform.

Discussion

This study is the first to demonstrate a comprehensive DL-based platform capable of 

performing beat and rhythm detection/classification. With the exception of 3 studies, 

the BeatLogic platform performed equal to or better than all other algorithms for beat 

detection, VEB classification, and detection/classification of the 14 evaluated rhythms. This 

work builds on previous studies using DL for single ECG interpretation tasks5,6,20 but is 

differentiated by several key factors: (1) the large diverse real-world training dataset; (2) our 

method for leveraging beat classification results to annotate ventricular rhythms and beat 

patterns; (3) hyperparameter optimization, which produced very deep networks; (4) the large 
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diverse real-world EP-adjudicated validation dataset; and (5) comparisons to previously 

published work and to a commercially available state-of-the-art ECG interpretation system.

Data quality and patient diversity

In developing this platform, training data diversity and quality were fundamental to 

achieving high performance. Initial experiments using publicly available data, which had 

limited patient and arrhythmia diversity, produced models that performed well on a 

public data holdout dataset but would not generalize to new patients. BeatLogic training 

annotations were created and adjudicated by a dedicated team of experienced ECG 

technicians using a rigorous process designed to ensure quality and consistency. The training 

dataset was meticulously and continuously grown over several years using a data-driven 

approach, which identifies algorithm failure modes and addresses them with additional 

training data.

DL architecture

In designing this system, several DL architecture designs were evaluated. The sequence-

to-sequence convolutional network was selected because it achieved better performance 

at reduced computational cost compared to other architectures we tested. This finding 

was consistent with that of Hannun et al,6 who used a similar architecture to create a 

12-rhythm (including noise) classifier. One major difference in the 2 architectures is the 

number of convolutional layers (113 for RhythmNet vs 34 from Hannun et al6). Consistent 

with findings in the image classification domain,13 our optimization results demonstrated 

a preference for deeper networks with narrow filters. Combining narrow filters with more 

convolutional layers enables the network to create more complex features without reducing 

the network receptive field, that is, the region of the input that can affect the value of the 

output.21 Because deeper networks have larger receptive fields, the model can leverage 

more contextual information from the 60-second input than can be achieved using a 

shallow version of the same network. Contextual information is extremely important for 

human ECG interpretation, so we expect it should be equally important for algorithmic 

ECG interpretation. Whether Hannun et al6 experimented with deeper networks is unclear; 

however, benefits from increasing depth receptive field may have been limited by their input 

data duration, which was 30 seconds.

Ventricular rhythm detection

In contrast to previous studies that used DL rhythm classifiers to detect ventricular rhythms,6 

we leverage beat classification results for identifying ventricular rhythms. We selected this 

approach because it enables detection of standalone VEBs and couplets, but we found 

it also facilitated superior ventricular rhythm detection performance. Currently used only 

for ventricular rhythms, this approach could also be utilized for atrial, junctional, and 

supraventricular rhythms.

Comparisons with the state-of-the-art commercial algorithm

Improvements over the state-of-the-art commercial algorithm demonstrate the unique 

capacity of DL models to outperform classic machine learning for ECG annotation. Nearly 
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all commercially available algorithms we evaluated performed better on the MIT-BIH and 

AFDB datasets than on the gold validation dataset. This suggests that these algorithms 

were tuned to the public datasets, which were not captured using a patch-style monitor. 

Patch-style recordings present a unique challenge for automated systems due to the short 

dipole and placement near large muscle groups. This results in lower-amplitude p waves 

and reduced signal-to-noise ratio. In contrast, BeatLogic DL models were trained using 

patch-style recordings and in some cases performed better on the MIT-BIH and AFDB 

datasets than on the gold validation dataset. The different makeup of these datasets prevents 

strict comparisons; however, these results suggest that the DL models have discovered 

features that generalize to ECGs recorded using different methods. Because basic techniques 

used by humans for beat and rhythm detection/classification are generally device agnostic, 

this finding bodes well for the DL approach.

Comparisons with previously published work

BeatLogic outperformed previously published algorithms capable of performing only a 

single task. Performance was compared with 14 previously published algorithms, which 

represents a small proportion of the studies uncovered in our literature search. Studies 

were excluded for using nonstandard subsets of the MIT-BIH or AFDB database, for 

using nonstandard analysis techniques, and for allowing training/validation patient overlap. 

An exception was made for VEB classification performance, for which nearly all studies 

leveraged training/validation patient overlap to create patient-specific classifiers. In this 

group, only de Chazal et al22 and BeatLogic generalize without time-consuming patient-

specific training. Of the many atrial fibrillation/flutter algorithm studies, we found only one 

that followed the EC57 standard for measuring performance. Other studies used beat-by-beat 

analysis, just episode analysis, or arbitrary 1- to 10-second-long segments to calculate 

sensitivity and PPV. In a recent study, Gusev et al23 demonstrated how these nonstandard 

validation methods can fail to accurately reflect algorithm performance. Although the 

widespread use of nonstandard rhythm performance measurement techniques does not 

invalidate the findings of these studies, it does make their results difficult to interpret in 

the context of other work.

Study limitations

Patient deidentification prevented characterization of the patient population in this study. We 

sought to mediate the impact of patient subtypes by leveraging random selection and a large 

patient population; however, future work incorporating diagnosis status, medication status, 

body mass index, activity level, and other factors would allow for measuring algorithm 

performance within specific patient subsets and ensure equal representation in the training 

dataset. Unfortunately, the proprietary state-of-the-art algorithm used for comparison 

prevents us from fully describing its underlying algorithms. However, as a commercially 

available FDA-cleared system, its performance represents a meaningful baseline for 

contextualizing BeatLogic performance. Notable conditions not represented within the 

study include pacing and Ventricular Fibrillation (VF). Because remote ambulatory monitor 

antialiasing filters distort pacer artifacts, detection is commonly performed on-device rather 

than with downstream annotation algorithms. VF is a critical but rare arrhythmia, and 

because DL requires many examples for each rhythm our DL models were not trained 
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to detect VF. Instead, downstream systems leverage classic signal processing for VF 

detection. As with all learning-based algorithms, performance of this system is, in general, 

limited by the training data volume, diversity, and label consistency. We sought to mediate 

these limitations through intelligent mining of training records and standardization of 

the annotation process. Although the impact of these efforts is difficult to quantify, we 

anticipate that continuous iteration on these approaches will be fundamental to improving 

the performance of beat and rhythm detection/classification and to expanding the types of 

rhythms and beats that the platform can accurately identify.

Conclusion

As the popularity of long-term ambulatory ECG monitoring continues to grow, reliance on 

ECG interpretation algorithms will increase. Initial applications of DL to ECG interpretation 

focused on only beat detection, beat classification, or rhythm classification have shown 

promising results. By leveraging high-quality comprehensive training data and multiple DL 

models to create a system that can perform all 3 tasks, Beat-Logic represents the next stage 

of advancement for algorithmic ECG interpretation. Real-world gold standard validation 

demonstrates the superiority of this approach over the current state of the art.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BeatLogic platform flowchart. AFib = atrial fibrillation/flutter; BII1 = second-degree heart 

block type 1; BII2 = second-degree heart block type 2; IVCD = intraventricular conduction 

delay; IVR = idioventricular rhythm; Junctional = junctional rhythm; Sinus = sinus rhythm; 

SVT = supraventricular tachycardia; VT = ventricular tachycardia.
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Figure 2. 
Deep learning model architecture. ECG = electrocardiogram.
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Figure 3. 
BeatLogic results (blue) compared with gold validation truth (black) demonstrating beat 

detection/classification, noise detection, and atrial fibrillation/flutter onset/offset.
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Figure 4. 
BeatLogic results (blue) compared with gold validation truth (black) demonstrating beat 

detection/classification, ventricular bigeminy, and ventricular tachycardia detection. Where 

ventricular trigeminy transitions to bigeminy, BeatLogic elects to extend the duration of the 

higher-acuity rhythm.
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Table 1

ECG dataset general information

Records Patients Duration (h)

Training 20,932 11,008 782.44

Gold validation 515 505 12.79

MIT-BIH 48 47 24.07

MIT-BIH 11 11 11 5.52

MIT-AFDB 23 23 234.28

ECG = electrocardiography.
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Table 3

Ventricular ectopic beat classification performance

Algorithm Dataset Se (%) PPV (%) F1

de Chazal et al22 MIT-BIH 11 77.5 90.6 83.5

Jiang and Kong3 MIT-BIH 11 94.3 95.8 95.0

Ince et al32 MIT-BIH 11 90.3 92.2 91.2

Kiranyaz et al20 MIT-BIH 11 95.9 96.2 96.0

Zhang et al8 MIT-BIH 11 97.6 97.6 97.6

State of the art MIT-BIH 11 73.2 96.3 83.2

BeatLogic MIT-BIH 11 97.9 98.9 98.4

State of the art Gold validation 36.0 51.2 42.2

BeatLogic Gold validation 89.4 97.8 93.4

Abbreviations as in Table 2.
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