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Abstract

The first step of many research projects is to define and rank a short list of candidates for study. 

In the modern rapidity of scientific progress, some turn to automated hypothesis generation (HG) 

systems to aid this process. These systems can identify implicit or overlooked connections within 

a large scientific corpus, and while their importance grows alongside the pace of science, they lack 

thorough validation. Without any standard numerical evaluation method, many validate general-

purpose HG systems by rediscovering a handful of historical findings, and some wishing to be 

more thorough may run laboratory experiments based on automatic suggestions. These methods 

are expensive, time consuming, and cannot scale. Thus, we present a numerical evaluation 

framework for the purpose of validating HG systems that leverages thousands of validation 

hypotheses. This method evaluates a HG system by its ability to rank hypotheses by plausibility; a 

process reminiscent of human candidate selection. Because HG systems do not produce a ranking 

criteria, specifically those that produce topic models, we additionally present novel metrics to 

quantify the plausibility of hypotheses given topic model system output. Finally, we demonstrate 

that our proposed validation method aligns with real-world research goals by deploying our 

method within MOLIERE, our recent topic-driven HG system, in order to automatically generate 

a set of candidate genes related to HIV-associated neurodegenerative disease (HAND). By 

performing laboratory experiments based on this candidate set, we discover a new connection 

between HAND and Dead Box RNA Helicase 3 (DDX3).

Reproducibility: code, validation data, and results can be found at sybrandt.com/2018/

validation.
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I. Introduction

In the early stages of a research project, biomedical scientists often perform “candidate 

selection,” wherein they select potential targets for future study [1]. For instance, when 

exploring a certain cancer, scientists may identify a few dozen genes on which to 

experiment. This process relies on the background knowledge and intuitions held by 

each researcher, and higher-quality candidate lists often lead to more efficient research 

results. However, the rate of scientific progress has been increasing steadily [2], and 

occasionally scientists miss important findings. for instance, was the case regarding the 

missing connection between Raynaud’s Syndrome and fish oil [3], and in the case of five 

genes recently linked to Amyotrophic Lateral Sclerosis [4]. Hypothesis Generation (HG) 

systems allow scientists to leverage the cumulative knowledge contained across millions of 

papers, which lead to both above findings, among many others. The importance of these 

systems rises alongside the pace of scientific output; an abundance of literature implies 

an abundance of overlooked connections. While many propose techniques to understand 

potential connections [5], [6], [7], [8], [9], few automated validation techniques exist [10] 

for general-purpose HG systems (not designed for specific sub-domains or types of queries 

such as OHSUMED [11] or BioCreative datasets). Often, subject-matter experts assist in 

validation by running laboratory experiments based on HG system output. This process is 

expensive, time consuming, and does not scale beyond a handful of validation examples.

HG systems are hard to validate because they attempt to uncover novel information, 

unknown to even those constructing or testing the system. For instance, how are we to 

distinguish a bizarre generated hypothesis that turns out to produce important results from 

one that turns out to be incorrect? Furthermore, how can we do so at scale or across 

fields? While there are verifiable models for novelty in specific contexts, each is trained to 

detect patterns similar to those present in a training set, which is conducive to traditional 

cross-validation. Some examples include using non-negative matrix factorization to uncover 

protein-protein interactions [12], or to discover mutational cancer signatures [13]. However, 

HG is unlike the above examples as it strives to detect novel patterns that are a) absent 
from a dataset, b) may be wholly unknown or even currently counterintuitive, and c) not 

necessarily outliers as in traditional data mining.

Our contribution:

In this paper we propose novel hypothesis ranking methods and a method to validate 

HG systems that does not require expert input and allows for large validation sets. This 

method judges a system by its ability to rank hypotheses by plausibility, similarly to how 

a human scientist must rank potential research directions during candidate selection. We 

start by dividing a corpus based on a “cut date,” and provide a system only information 

that was priorly available. Then, we identify predicates (clauses consisting of subject, verb, 

and object) whose first co-occurrence in a sentence is after the cut date. Because typical 

corpora contain only titles and abstracts, these recently introduced connections represent 

significant findings that were not previously formulated, thus we can treat them as surrogates 

for plausible hypotheses from the perspective of the system under evaluation. To provide 

implausible hypotheses, we randomly generate predicates that do not occur in the corpus 
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as a whole. Then, the HG system must rank both the plausible and implausible predicates 

together by evaluating the predicted connection strength between each predicate’s subject 

and object. The system’s evaluation is based on the area under this ranking’s Receiver 

Operating Characteristic (ROC) curve, wherein the highest area under curve (AUC) of 1 

represents a ranking that places all plausible connections above the implausible, and the 

lowest AUC of 0.5 represents an even mixture of the two.

We note that many HG systems do not typically produce a ranking criteria for potential 

hypotheses. Particularly, we find that those systems that produce topic model output, such 

as MOLIERE [6] or BioLDA [5], lack this criteria, but present promising results through 

expert analysis. Therefore, we additionally developed a number of novel metrics for topic-

driven HG systems that quantify the plausibility of potential connections. These metrics 

leverage word embeddings [14] to understand how the elements of a hypothesis relate to its 

resulting LDA topic model [15]. Through our experiments, described below, we identify that 

a polynomial combination of five different metrics allows for the highest-scoring ranking 

(0.834). This result is especially significant given that the main validation methods available, 

to both MOLIERE and other similar systems (see survey in [6]), were expert analysis and 

replicating the results of others [10]. Still, while the systems mentioned above focus on 

the medical domain, we note that neither our metrics, nor our validation methodology, are 

domain specific.

To demonstrate that our proposed validation process and new metrics apply to real-world 

applications, we present a case study wherein our techniques validate an open-source HG 

system as well as identify a novel gene-disease connection. We modify MOLIERE to 

support our new metrics, and we perform our validation process. This system is trained 

on MEDLINE [16], a database containing over 27 million papers (titles and abstracts) 

maintained by the National Library of Health. We use SemMedDB [17], a database of 

predicates extracted from MEDLINE, in order to identify the set of “published” (plausible) 

and “noise” (implausible) hypotheses. This database represents its connections in terms of 

codified entities provided by the Unified Medical Language System (UMLS), which enables 

our experimental procedure to be both reproducible and directly applicable to many other 

medical HG systems. This evaluation results in an ROC AUC of 0.834, and when limiting 

the published set to only predicates occurring in papers that received over 100 citations, this 

rises to 0.874. Then, we generate hypotheses, using up-to-date training data, which attempt 

to connect HIV-associated neurodegenerative disease (HAND) to over 30,000 human genes. 

From there, we select the top 1,000 genes based on our ranking metrics as a large and 

rudimentary “candidate set.” By performing laboratory experiments on select genes within 

our automatically generated set, we discover a new relation between HAND and Dead 

Box RNA Helicasee 3 (DDX3). Thus, demonstrating the practical utility of our proposed 

validation and ranking method.
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II. Technical Background

Extracting Information from Hypothesis Generation Systems

Swanson and Smalheiser created the first HG system Arrowsmith [18], and in doing so 

outlined the ABC model for discovery [19]. Although this approach has limitations [20], its 

conventions and intuitions remain in modern approaches [9].

In the ABC model, users run queries by specifying two keywords a and c. From there, the 

goal of a HG system is to discover some entity b such that there are known relationships 

“a → b” and “b → c,” which allow us to infer the relationship between a and c. Because 

many connections may require more than one element b to describe, researchers apply other 

techniques, such as topic models in our case, to describe these connections.

We center this work around the MOLIERE HG system [6]. Once a user queries a and c, 

the system identifies a relevant region within its multi-layered knowledge network, which 

consists of papers, terms, phrases, and various types of links. The system then extracts 

abstracts and titles from this region and creates a sub-corpus upon which we generate a 

topic model (Note that in [21] we address trade-offs of using full text). This topic model 

describes groups of related terms, which we study to understand the quality of the a-to-c 
connection. Previously, these results were compared biased on those words that cooccur 

with high probability in prominent topics. Without clear metrics, or a validation framework, 

experts could only help evaluate a select handful of a, c pairs.

Word and Phrase Embedding

The method of finding dense vector representations of words is often referred to 

as “word2vec.” In reality, this umbrella term references two different algorithms, the 

Continuous BOW (CBOW) method and the Skip-Gram method [14]. Both rely on shallow 

neural networks in order to learn vectors through word-usage patterns.

MOLIERE uses FastText [22], a similar tool under the word2vec umbrella, to find high-

quality embeddings of medical entities. By preprocessing MEDLINE text with the automatic 

phrase mining technique ToPMine [23], we improve these embeddings while finding multi-

word medical terms such as “lung cancer” or “benign tumor.” We see in Figure 1 that 

FastText clusters similar biological terms, an observation we later leverage to derive a 

number of metrics.

Topic Models

Latent Dirichlet Allocation (LDA) [15], the classical topic modeling method, groups 

keywords based on their document co-occurrence rates in order to describe the set of 

trends that are expressed across a corpus. A topic is simply a probability distribution over a 

vocabulary, and each document from the input corpus is assumed to be a mixture of these 

topics. For instance, a topic model derived from New York Times articles would likely find 

one topic containing words such as “computer,” “website,” and “Internet,” while another 

topic may contain words such as “money,” “market,” and “stock.”
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In the medical domain, some use topic models to understand trends across scientific 

literature. We look for groupings of entities such as genes, drugs, and diseases, which we 

then analyze to find novel connections. While LDA is the classical algorithm, MOLIERE 

uses a parallel technique, PLDA+ [24] to quickly find topics from documents related to a 
and c. Additionally, because MOLIERE preprocess’s MEDLINE articles with ToPMine, 

its resulting topic models include both words and phrases. This often leads to more 

interpretable results, as a topic containing an n-gram, such as “smoking induced asthma,” 

is typically easier to understand than a topic containing each unigram listed separately with 

different probabilities.

We additionally can use the probabilities of each word to represent a topic within an 

embedding space created with word2vec. For instance, we can take a weighted average 

over the embeddings for each topic to describe each topics’s “center.” Additionally, we 

can simply treat each topic as a weighted point cloud for the purposes of typical similarity 

metrics. We leverage both representations later in our metrics.

III. Validation Methodology

In order to unyoke automatic HG from expert analysis, we propose a method that any system 

can leverage, provided it can rank its proposed connections. A successful system ought to 

rank published connections higher than those we randomly created. We train a system given 

historical information, and create the “published,” “highly-cited,” and “noise” query sets. 

We pose these connections to an HG system, and rank its outputs in order to plot ROC 

curves, which determine whether published predicates are preferred to noise. Through the 

area under these ROC curves, a HG system demonstrates its quality at a large scale without 

expert analysis.

Our challenge starts with the Semantic Medical Database (SemMedDB) [17] that contains 

predicates extracted from MEDLINE defined on the set of UMLS terms [16]. For instance, 

predicate “C1619966 TREATS C0041296” represents a discovered fact “abatacept treats 

tuberculosis.” Because MOLIERE does not account for word order or verb, we look for 

distinct unordered word-pairs a–c instead. In Section VIII, we discuss how we may improve 

MOLIERE to include this unused information.

From there, we select a “cut year.” Using the metadata associated with each predicate, 

we note the date each unordered pair was first published. For this challenge, we train 

MOLIERE using only information published before the cut year. We then identify the set 

of SemMedDB unordered pairs a–c first published after the cut year provided a and c both 

occur in that year’s UMLS release. This “published set” of pairs represent new connections 

between existing entities, from the perspective of the HG system. We select 2010 as the cut 

year for our study in order to create a published set of over 1 million pairs. (Due to practical 

limitations, our evaluation consists of a randomly chosen subset of 4,319 pairs.)

Additionally, we create a set of “highly-cited” pairs by filtering the published set by citation 

count. We use data from SemMedDB, MEDLINE, and Semantic Scholar to identify 1,448 

pairs from the published set that first occur in a paper cited over 100 times. We note that 
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this set is closer to the number of landmark discoveries since the cut-date, given that the 

published set is large and likely contains incidental or incorrect connections.

To provide negative examples, we generate a “noise set” of pairs by sampling the cut-year’s 

UMLS release, storing the pair only if it does not occur in SemMedDB. These pairs 

represent nonsensical connections between UMLS elements. Although it is possible that 

we may stumble across novel findings within the noise set, we assume this will occur 

infrequently enough to not affect our results. We generate two noise pair sets of equal size to 

both the published and highly-cited sets.

We run a–c queries from each set through MOLIERE and create two ranked lists: published 

vs. noise (PvN) (8,638 total pairs) and highly-cited vs. noise (HCvN) (2,896 total pairs). 

After ranking each set, we generate ROC curves [25], which allow us to judge the quality of 

an HG system. If more published predicates occur earlier in the ranking than noise, the ROC 

area will be close to 1; otherwise it will be closer to 0.5.

IV. New Ranking Methods for Topic Model Driven Hypotheses

Because many HG systems do not currently produce a ranking criteria, such as those 

systems that instead return topic models [6], [5], we propose here a number of metrics to 

numerically evaluate the plausibility of potential connections. We implement these metrics 

within MOLIERE [6]. This system is open source, and already leverages word embeddings 

in order to produce topic model output for potential connections — all of which are 

properties our metrics exploit. Put simply, MOLIERE takes as input two keywords (a and c), 

and produces a topic model (T) that describes the structure of relevant documents.

While these metrics are proposed in the context of validation, another extremely important 

use case is that of the one-to-many query. Often during candidate selection, scientists may 

have a large list of initial potential targets — such as 30,000 genes in the human genome 

— that they wish to consider. For this, one may run a large set of queries between some 

disease a, and each target ci. However, without a ranking criteria, the analysis of each a–ci 

connection is left to experts, which is untenable for most practical purposes.

To begin, we note a key intuition underpinning the following metrics, depicted in Figure 

2. Not only are related objects grouped in a word embedding space, but the distances 

between words are also meaningful. For this reason we hypothesize, and later show 

through validation experiments, that one can estimate the strength of an a–c connection 

by comparing the distance of topics to the embeddings of each a, c, and their midpoint. 

Note, we use ϵ(x) to map a text object x into this embedding space, as described in [14]. 

But, because not all hypotheses or topic models exhibit the same features, we quantify this 

“closeness” in eleven ways, and then train a polynomial to weight the relevance of each 

proposed metric.

A. Similarity Between Query Words

As a baseline, we first consider two similarity metrics that do not include topic information: 

cosine similarity (CSIM) and Euclidean distance (L2):
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CSim(a, c) = ϵ(a) ⋅ ϵ(c)
ϵ(a) 2 × ϵ(c) 2

, L2(a, c) = ϵ(a) − ϵ(c)
2
,

where a and c are the two objects of interest, and ϵ(x) is an embedding function (see Section 

II). Note that when calculating ROC curves for the L2 metric, we will sort in reverse, 

meaning smaller distances ought to indicate published predicates.

These metrics indicate whether a and c share the same cluster with respect to the embedding 

space. Our observation is that this can be a good indication that a and c are of the same 

kind, or are conceptually related. This cluster intuition is shared by others studying similar 

embedding spaces [26].

B. Topic Model Correlation

The next metric attempts to uncover whether a and c are mutually similar to the generated 

topic model. This metric starts by creating vectors v(a, T) and v(c, T) which express each 

object’s similarity to topic model T = Ti i = 1
k  derived from an a − c query. We do so by 

calculating the weighted cosine similarity TOPICSIM(x, Ti) between each topic Ti and each 

object x ∈ {a, c}, namely,

TopSim x, Ti = ∑
(w, p) ∈ Ti

p ⋅ CSim(x, w),

where a probability distribution over terms in Ti is represented as word-probability pairs (w, 

p). This metric results in a value in the interval [−1, 1] to represent the weighted similarity of 

x with Ti. The final similarity vectors v(a, T) and v(c, T) in ℝk are defined below.

∀x ∈ a, c     v(x, T ) =

TopSim x, T1
TopSim x, T2

⋮
TopSim x, Tk

Finally, we can see how well T correlates with both a and c by taking another cosine 

similarity

TopicCorr(a, c, T ) = v(a, T ) ⋅ v(c, T )
v(a, T ) 2 × v(c, T ) 2

∈ [ − 1, 1] .

If TOPICCORR(a, c, T) is close to 1, then topics that are similar or dissimilar to a are also 

similar or dissimilar to c. Our preliminary results show that if some explanation of the a − c 
connection exists within T, then many Ti ∈ T will likely share these similarity relationships.
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C. Similarity of Best Topic Centroid

While the above metric attempts to find a trend within the entire topic model T, this metric 

attempts to find just a single topic Ti ∈ T that is likely to explain the a − c connection. This 

metric is most similar to that depicted in Figure 2. Each Ti is represented in the embedding 

space by taking a weighted centroid over its word probability distribution. We then rate 

each topic by averaging its similarity with both queried words. The score for the overall 

hypothesis is simply the highest score among the topics.

We define the centroid of Ti as

Centr Ti = ∑
(w, p) ∈ Ti

ϵ(w) ⋅ p,

and then compare it to both a and c through cosine similarity and Euclidean distance. When 

comparing with CSIM, we highly rank Ti’s with centroids located within the arc between 

ϵ(a) and ϵ(c). Because our embedding space identifies dimensions that help distinguish 

different types of objects, and because we trained a 500-dimensional embedding space, 

cosine similarity intuitively finds topics that share similar characteristics to both objects of 

interests. We define the best centroid similarity for CSIM as

BestCentrCSim(a, c, T ) = max
Ti ∈ T

CSim a, Ti + CSim c, Ti
2 .

What we lose in the cosine similarity formulation is that clusters within our embedding 

space may be separate with respect to Euclidean distance but not cosine similarity. In order 

to evaluate the effect of this observation, we also formulate the best centroid metric with L2 

distance. In this formulation we look for topics that occur as close to the midpoint between 

ϵ(a) and ϵ(c) as possible. We express this score as a ratio between that distance and the 

radius of the sphere with diameter from ϵ(a) to ϵ(c). In order to keep this metric in a similar 

range to the others, we limit its range to [0, 1], namely, for the midpoint m = (ϵ(a) + ϵ(c))/2.

BestCentrL2(a, c, T ) = max
Ti ∈ T

1 −
Centr Ti − m 2

m 2

D. Cosine Similarly of Best Topic Per Word

In a similar effort to the above centroid-based metric, we attempt to find topics which are 

related to a and c, but this time on a per-word (or phrase) basis using TOPICSIM(x, Ti) from 

Section IV-B. Now instead of looking across the entire topic model, we attempt to identify 

a single topic which is similar to both objects of interest. We do so by rating each topic by 

the lower of its two similarities, meaning the best topic overall will be similar to both query 

words.
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BestTopPerWord(a, c, T ) = max
Ti ∈ T

 min
TopSim a, Ti ,
TopSim c, Ti

E. Network of Topic Centroids

A majority of the above metrics rely on a single topic to describe the potential connection 

between a and c, but as Smalheizer points out in [27], a hypothesis may be best described 

as a “story” — a series of topics in our case. To model semantic connections between 

topics, we induce a nearest-neighbors network N from the set of vectors V = ϵ(a) ⋃ ϵ(b) 

⋃ {CENTR(Ti)|Ti ∈ T} which form the set of nodes for N. In this case, we set the number 

of neighbors per node to the smallest value (that may be different for each query) such that 

there exists a path from a to c. Using this topic network, we attempt to model the semantic 

differences between published and noise predicates using network analytic metrics.

We depict two such networks in Figure 3, and observe that the connectivity between a 
and c from a published predicate is substantially stronger and more structured. In order 

to quantify this observed difference, we measure the average betweenness and eigenvector 

centrality [28] of nodes along a shortest path from a to c (denoted by a ~ c) within N to 

reflect possible information flow between Ti ∈ T. This shortest path represents the series 

of links between key concepts present within our dataset that one might use to explain the 

relationship between a and c. We expect the connection linking a and c to be stronger if 

that path is more central to the topic network. Below we define metrics to quantify the 

differences in these topic networks. Such network analytic metrics are widely applied in 

semantic knowledge networks [29].

TOPWALKLENGTH(a, c, T): Length of shortest path a ~ c

TOPWALKBTWN(a, c, T): Avg. a ~ c betweenness centrality

TOPWALKEIGEN(a, c, T): Avg. a ~ c eigenvalue centrality

TOPNETCCOEF(a, c, T): Clustering coefficient of N

TOPNETMOD(a, c, T): Modularity of N

F. Combination of Multiple Metrics

Each of the above methods are based on different assumptions regarding topic model or 

embedding space properties exhibited by published connections. To leverage each metric’s 

strengths, we combined the top performing ones from each category into the following 

POLYMULTIPLE method. We explored polynomial combinations in the form of ∑iαixi
βi for 

ranges of αi ∈ [−1, 1] and βi ∈ [1, 3] after scaling each xi to the [0, 1] interval. Through a 

blackbox optimization technique, we searched over one-million parameter combinations. In 

doing so we maximize for the AUC of our validation curve by sampling each αi and βi from 

their respective domains. We perform this search stochastically, sampling from parameter 
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space and limiting our search space as we find stable local-minima. Our results represent the 

best parameter values determined after one-million parameter samples.

PolyMultiple(a, c, T ) = α1 ⋅ L2
β1 + α2 ⋅ BestCenterL2

β2 + α3 ⋅ BestTopPerWord(a, c, T )β3 + α4
⋅ TopCorr(a, c, T )β4α5 ⋅ TopWalkBtwn(a, c, T )β5 + α6 ⋅ TopNetCCoef(a, c, T )β6

V. Results and Lessons Learned

As described in Section III, our goal is to distinguish publishable connections from noise. 

We run MOLIERE to generate topic models related to published, noise, and highly-cited 

pairs. Using this information, we plot ROC curves in Figures 4 and 5, and summarize the 

results in Table I. These plots represent an analysis of 8,638 published vs. noise (PvN) 

pairs and 2,896 (HCvN) pairs (half of each set are noise). Unfortunately, no alternative 
general-purpose query HG systems that perform in a reasonable time are freely available for 
the comparison with our ranking methods.

Topic Model Correlation

Topic Model Correlation metric (see Section IV-B) is a poorly performing metric with 

an ROC area of 0.609 (PvN) and 0.496 (HCvN). The core issue of this method is its 

sensitivity to the number of topics generated, and given that we generate 100 topics per 

pair, we likely drive down performance through topics which are unrelated to the query. In 

preliminary testing, we observe this intuition for queries with only 20 topics, but also find 

the network-biased metrics are less meaningful. In Section VIII we overview a potential way 

to combine multiple topic models in our analysis.

Surprisingly, this metric is less able to distinguish highly-cited pairs, which we suppose is 

because highly-cited connections often bridge very distant concepts [30] and likely results 

in more noisy topic models. Additionally, we may be able to limit this noise by tuning the 

number of topics returned from a query, as described in Section VIII.

L2-based metrics—L2-based metrics exhibit even more surprising results.BESTCENTRL2 

performs poorly, with an ROC area of 0.578 (PvN) and 0.587 (HCvN), while the much 

simpler L2 metric is exceptional, scoring a 0.783 (PvN) and 0.809 (HCvN). We note that 

if two words are related, they are more likely to be closer together in our vector space. 

We evaluate topic centroids based on their closeness to the midpoint between a and c, 

normalized by the distance between them, so if that distance is small, the radius from the 

midpoint is small as well. Therefore, it would seem that the distance between a and c is a 

better connection indication, and that the result of the centroid measurement is worse if this 

distance is small.

CSim-based metrics—CSim-based metrics are more straightforward. The simple 

CSIMmetric scores a 0.709 (PvN) and 0.703 (HCvN), which is interestingly consistent given 

that the L2 metric increases in ROC area given highly-cited pairs. The BESTTOPICPERWORD 

metric only scores a 0.686 (PvN), but increases substantially to 0.731 (HCvN). The topic 
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centroid method BESTCENTROIDCSIM is the best cosine-based metric with an ROC area of 

0.719 (PvN) and 0.742 (HCvN). This result is evidence that our initial hypothesis described 

in Figure 2 holds given cosine similarity, but as stated above, does not hold for Euclidean 

distance.

Topic network—Topic network metrics are all outperformed by simple L2, but we see 

interesting properties from their results that help users to interpret generated hypotheses. 

For instance, we see that TOPICWALKBTWN is a negative indicator while TOPICWALKEIGEN 

is positive. Looking at the example in Figure 3 we see that a and c are both far from the 

center of the network, connected to the rest of the topics through a very small number of 

high-betweenness nodes. In contrast, we see that in the network created from a published 

pair, the path from a to c is more central. We also see a denser clustering for the noise 

pair network, which is echoed by the fact that TOPICNETCCOEF and TOPICNETMOD are both 

negative indicators. Lastly, we see that TOPICWALKLENGTH performs the best out of these 

network approaches, likely because it is most similar to the simple L2 or CSIM metrics.

Combination of metrics

Combination of metrics, POLYMULTIPLE, significantly outperforms all others with ROC areas 

of 0.834 (PvN) and 0.874 (HCvN). This is unsurprising because each other metric makes 

a different assumption about what sort of topic or vector configuration best indicates a 

published pair. When each is combined, we see not only better performance, but their 

relative importances. By studying the coefficients of our polynomial we observe that the two 

L2-based metrics are most important, followed by the topic network methods, and finally 

by TOPICWALKCORR and BESTTOPICPERWORD. Unsurprisingly, the coefficient signs correlate 

directly with whether each metric is a positive or negative indication as summarized in Table 

I. Additionally, the ordering of importance roughly follows the same ordering as the ROC 

areas.

VI. Case-Study: HAND and DDX3 Candidate Selection

Our proposed validation method is rooted in the process of candidate selection. To 

demonstrate our method’s applicability to real-world scenarios, we applied the above 

methods to a series of queries surrounding Human Immunodeficiency Virus-associated 

dementia (or HIV-associated neurodegenerative disease, HAND). HAND is one of the most 

common and clinically important complications of HIV infection [31]. The brain-specific 

effects of HIV are of great concern because the HIV-infected population is aging and 

unfortunately revealing new pathologies [32], [33]. About 50% of HIV-infected patients are 

at risk of developing HAND, which might be severely worsened by abusing drugs such as 

cocaine, opioids and amphetamines [34], [35].

We generated over 30,000 queries, each between HAND and a gene from the HUGO Gene 

Nomenclature Committee dataset [36]. The network that generated these results consisted of 

the 2017 MEDLINE dataset, the 2017AB UMLS release, and the 2016 SemMedDB release 

(latest at the time). We trained FastText using all of the available titles and abstracts, about 

27 million in total, and selected a dimensionality of 500 for our word embeddings. Our 

results consist of each diseasegene query ranked by our POLYMULTIPLE metric.
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Based on this ranking we select the first ~1000 genes for further analysis. We observe 

that many of the top genes — such as APOE-4, T-TAU, and BASE1, which occur in our 

top five — are known to be linked to dementia. So to direct our search to yet-unknown 

connections, we select those genes that have no previous connection to HAND, but still 

ranked highly overall. This process limits our search to those proteins that have known 

selective compounds, which were often tested animal models or clinical trials.

From this candidate set we selected Dead Box RNA Helicase 3 (DDX3). We tested the 

activity of a DDX3 inhibitor on the tissue culture model of HAND, which is widely used 

for the analysis combine neurotoxicity of HIV proteins and drugs of abuse. Here we tested 

the effect of the DDX3 inhibition on combined toxicity of most toxic HIV protein, Trans-

Activator of Transcription (Tat). The mouse cortical neurons had been treated with HIV 

Tat followed by the addition of cocaine. The combination of Tat and cocaine kills more 

than 70% of the neurons, while the inhibitor protects the neurons from Tat/cocaine toxicity 

(Figure 6).

Based on the analysis, we formulate following hypothesis: Exposing neurons with Tat 

protein causes internal stress and results in the formation of Stress-Granules (SGs) — the 

structures in cytoplasm formed by multiple RNAs and proteins. These gel-like structures 

sequester cellular RNA from translation, and the formation of SGs requires enzymatically 

active Dead Box RNA Helicase 3. The formation of SGs also allows the neurons to 

wait out the stress. However, prolonged stress associated with HIV-Tat treatment leads 

to the formation of pathological stress granules, which are denser and have a different 

composition relative to “normal” ones. Additional exposure to cocaine further exaggerates 

the “pathological” SGs and eventually causes neuronal death. The hypothesis, initially 

generated with MOLIERE, led to the following finding: Treatment with a DDX3-specific 
inhibitor blocks the enzymatic activity of the DDX3. This lack of enzymatic activity, in 
turn, blocks Tat-dependent stress granules from formating and protects neurons from the 
combined toxicity of Tat and cocaine. In Figure 6, we demonstrate the hypothesis scheme. 

Thus, the application of the automated HG system pointed to a new avenue for anti-HAND 

therapy and to the prototype of a small molecule for drug development.

VII. Related Work and Proposed Validation

The HG community struggles to validate its systems in a number of ways. Yetisgen-Yildiz 

and Pratt, in their chapter “Evaluation of Literature-Based Discovery Systems,” outline four 

such methods (M1-M4) [10], [37].

M1: Replicate Swanson’s Experiments.

Swanson, during his development of ARROWSMITH [18], worked alongside medical 

researchers to uncover a number of new connections. These connections include the link 

between Raynaud’s Disease and Fish Oil [3], the link between Alzheimer’s Disease and 

Estrogen [38] and the link between Migraine and Magnesium [39]. As discussed in 

[37], a number of projects have centered their validation effort around Swanson’s results 

[40], [41], [42], [43], [44]. These efforts always rediscover a number of findings using 
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information before Swanson’s discovery date, and occasionally apply additional metrics 

such as precision and recall in order to quantify their results [25].

While limiting discussion to Swanson’s discoveries reduces the domain of discovery 

drastically, at its core this method builds confidence in a new system through its ability 

to find known connections. We expand on this idea by validating automatically and on a 

massive scale, freeing our discourse from a single researcher’s findings.

M2: Statistical Evaluation.

Hristovski et al. validate their system by studying a number of relationships and note their 

confidence and support with respect to the MEDLINE document set [45]. Then, they can 

generate potential relationships for the set of new connections added to UMLS [46] or 

OMIM [47]. By limiting their method to association rules, Hristovski et al. note that they 

can validate their system by predicting UMLS connections using data available prior to their 

publications. Therefore, this method is similar to our own, but we notice that restricting 

discussion to only UMLS gene-disease connections results in a much smaller set than the 

predicate information present with SemMedDB.

Pratt et al. provide additional statistical validation for their system LitLinker [44]. This 

method also calculates precision and recall, but this time focusing on their B-set of returned 

results. Their system, like ARROWSMITH [18], returns a set of intermediate terms which 

may connect two queried entities. Pratt et al. run LitLinker for a number of diseases on 

which they establish a set of “gold standard” terms. Their method is validated based on its 

ability to list those gold-standard terms within its resulting B-sets. This approach requires 
careful selection of a (typically small) set of gold-standard terms, and is limited to “ABC” 
systems like ARROWSMITH, which are designed to identify term lists [20].

M3: Incorporating Expert Opinion.

This ranges from comparisons between system output and expert output, such as the analysis 

done on the Manjal system [42], to incorporating expert opinion into gold-standard terms 

for LitLinker [44], to running actual experiments on potential results by Wren et al. [48]. 

Expert opinion is at the heart of many recent systems [5], [6], [7], [8], including the previous 

version of our own. This process is both time consuming and risks introducing significant 

bias into the validation.

Spangler incorporates expert knowledge in a more sophisticated manner through the use 

of visualizations [9], [49]. This approach centers around visual networks and ontologies 

produced automatically, which allows experts to see potential new connections as they 

relate to previously established information. This view is shared by systems such as 

DiseaseConnect [7] which generates sub-networks of ONIM and GWAS related to specific 

queries. Although these visualizations allow users to quickly understand query results, they 

do not lend themselves to a numeric and massive evaluation of system performance.

BioCreative, a set of challenges focused on assessing biomedical text mining, is the largest 

endeavor of its kind, to the best of our knowledge [50]. Each challenge centers around 

a specific task, such as mining chemical-protein interactions, algorithmically identifying 
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medical terms, and constructing causal networks from raw text. Although these challenges 

are both useful and important, their tasks fall under the umbrella of information retrieval 
(and not HG) because their tasks compare expert analysis with software results given the 

same text.

M4: Publishing in the Medical Domain.

This method is exceptionally rare and expensive. The idea is to take prevalent potential 

findings and pose them to the medical research community for another group to attempt. 

Swanson and Smalheiser rely on this technique to solidify many of their early results, such 

as that between magnesium deficiency and neurologic disease [51].

Bakkar et al. take a similar approach in order to demonstrate the efficacy of Watson 

for Drug Discovery [4], [49] To do so, this work begins by identifying 11 RNA-binding 

proteins (RBPs) known to be connected to Amyotrophic Lateral Aclerosis (ALS). Then, the 

automated system uses a recommender system to select RPBs that exhibit similar connection 

patterns within a large document co-occurrence network. Domain scientists then explore 

a set of candidates selected by the computer system, and uncover five RPBs that were 

previously unrelated to ALS.

An alternative to the domain-scientist approach is taken by Soldatova and Rzhetsky wherein 

a “robot scientist” automatically runs experiments posed by their HG system [52], [53]. This 

system uses logical statements to represent their hypotheses, so new ideas can be posed 

through a series of implications. Going further, their system even identifies statements that 

would be the most valuable if proven true [30]. However, the scope of experiments that a 
robot scientist can undertake is limited; in their initial paper, the robot researcher is limited 
to small-scale yeast experiments. Additionally, many groups cannot afford the space and 
expense that an automated lab requires.

VIII. Deployment Challenges and Open Problems

Validation Size.

Our proposed validation challenge involves ranking millions of published and noise query 

pairs. However, in Section V we show our results on a randomly sampled subset of our 

overall challenge set. This was necessary due to performance limitations of MOLIERE, a 

system which initially required a substantial amount of time and memory to process even 

a single hypothesis. To compute these results, we ran 100 instances of MOLIERE, each 

on a 16 core, 64 GB RAM machine connected to a ZFS storage system. Unfortunately, 

performance limitations within ZFS created a bottleneck that both limited our results 

and drastically reduced cluster performance overall. Thus, our results represent a set of 

predicates that we evaluated in a limited time period.

System Optimizations.

While performing a keyword search, most network-centered systems are either I/O or 

memory bound simply because they must load and traverse large networks. In the case 

of MOLIERE, we initially spent hours trying to find shortest paths or nearby abstracts. 
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But, we found a way to leverage our embedding space and our parallel file system in order 

to drastically improve query performance. In brief, one can discover a relevant knowledge-

network region by inducing a subnetwork on a and c and expanding that selection by 

adding ith order neighbors until a and c are connected. From our experiments, i rarely 

exceeds 4. This increases performance because, given a parallel file system and p processors, 

identifying the subnetwork from an edge list file is in order O(ni/p). The overall effect 

reduced the wall-clock runtime of a single query from about 12 hours to about 5–7 minutes. 

Additionally, we reduced the memory requirement for a single query from over 400GB to 

under 16GB.

Highly-Cited Predicates.

Identifying highly-cited predicates requires that we synthesize information across multiple 

data sources. Although SemMedDB contains MEDLINE references for each predicate, 

neither contains citation information. For this, we turn to Semantic Scholar because not only 

do they track citations of medical papers, but they allow a free bulk download of metadata 

information (many other potential sources either provide a very limited API or none at 

all). In order to match Semantic Scholar data to MEDLINE citation, it is enough to match 

titles. This process allows us to get citation information for many MEDLINE documents, 

which in turn allow us to select predicates whose first occurrence was in highly-cited papers. 

We explored a number of thresholds for what constitutes “highly cited” and selected 100 

because it was a round number and selected a sizable predicate set. Because paper citations 

follow a power-law distribution, any change drastically effects the size of this set. We note 

that the set of selected predicates was also limited by the quality of data in Semantic Scholar, 

and that the number of citations identified this was appeared to be substantially lower than 

that reported by other methods.

Quality of Predicates.

Through our above methods we learned that careful ranking methods can distinguish 

between published and noise predicates, but there is a potential inadequacy in this 

method. Potentially, some predicates that occur within our published say may be untrue. 

Additionally, it is possible that a noise predicate may be discovered to be true in the future. 

If MOLIERE ranks the published predicate which is untrue below the noise predicate which 

is, the result would be a lower ROC area. This same phenomena is addressed by Yetisgen-

Yildiz and Pratt when they discuss the challenges present in validating literature-based 

discovery systems [37] — if a HG systems goal is to identify novel findings, then it should 
find different connections than human researchers.

We show through our results that despite an uncertain validation set, there are clearly core 

differences between publishable results and noise, which are evident at scale. Although there 

may be some false positives or negatives, we see through our meaningful ROC curves that 

they are far outnumbered by more standard predicates.

Comparison with ABC Systems.

Additionally, we would like to explore how our ranking methods apply to traditional ABC 

systems. Although there are clear limitations to these systems [20], many of the original 
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systems such as ARROWSMITH follow the ABC pattern. These systems typically output a 

list of target terms and linking terms, which could be thought of as a topic. If we were to 

take a pre-trained embedding space, and treated a set of target terms like a topic, we could 

likely use our methods from Section IV to validate any ABC system.

Verb Prediction.

We noticed, while processing SemMedDB predicates, that we can improve MOLIERE if we 

utilize verbs. SemMedDB provides a handful of verb types, such as “TREATS,” “CAUSES,” 

or “INTERACTS_WITH,” that suggest a concrete relationship between the subject and 

object of a sentence. MOLIERE currently outputs a topic model that can be interpreted using 

our new metrics, but does not directly state what sort of connection may exist between a 
and c. Thus we would like to explore accurately predicting these verb types given only topic 

model information.

Interpretability of Hypotheses—Interpretability of Hypotheses remains one of the 

major problems in HG systems. Although topic-driven HG partially resolve this issue by 

producing readable output, we still observe many topic models T (i.e., hypotheses) whose Ti 

∈ T are not intuitively connected with each other. While the proposed ranking is definitely 

helpful for understanding T, it still does not fully resolve the interpretability problem. One of 

our current research directions is to tackle it using text summarization techniques.

Scope.

While we focus on biomedical science, any field that is accurately described by entities 
that act on one another benefits from our network and text mining methods. For instance, 

economic entities, such as governments or the upper/lower class, interact via actions such as 

regulation or boycott. Similarly, patent law consists of inventions and the components that 

comprise them. Mathematics, in contrast, is not served by this representation — the algebra 

does not act on other math entities. Here automatic theorem proving is better equipped to 

generate hypotheses. We are presently unsure if the same is true for computer science.
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Fig. 1. 
The above diagram shows a 2-D representation of the embeddings for over 8 thousand 

UMLS keywords within MOLIERE. We used singular value decomposition to reduce the 

dimensionality of these vectors from 500 to 2.
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Fig. 2. 
The above depicts two queries, a–c1 and a–c2, where a–c1 is a published connection and 

a–c2 is a noise connection. We see topics for each query represented as diamonds via 

CENTR(Ti). Although both queries lead to topics which are similar to a, c1, or c2, we find 

that the the presence of some topic which is similar to both objects of interest may indicate 

the published connection.
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Fig. 3. 
Above depicts two topic networks as described in Section IV-E. In this visualization, longer 

edges correspond to dissimilar neighbors. In red are objects a and c, which we queried 

to create these topic models. We observe that the connectivity between a and c from the 

published predicate is much higher than in the noisy example.
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Fig. 4. 
The above ROC curves show the ability for each of our proposed methods to distinguish the 

MOLIERE results of published pairs from noise. We use our system to generate hypotheses 

regarding 8,638 pairs, half from each set, on publicly available data released prior to 2,015. 

We only show the best performing metrics from Section IV-E for clarity.
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Fig. 5. 
The above ROC curves show the ability for each of our proposed methods to distinguish the 

MOLIERE results of highly-cited pairs from noise. We identify 1,448 pairs who first occur 

in papers with over 100 citations published after our cut date. To plot the above ROC curve, 

we also select an random subset of equal size from the noise pairs.
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Fig. 6. 
Scheme of the hypothesis of Stress-Granule dependent mechanism of neuroprotection 

by DDX3 inhibitor. Neurons are curved figures. Treatment with HIV-Tat leads to DDX3-

dependent formation of SGs (A), which transform from “normal” to “pathological” (B). 

The addition of cocaine further enlarges the SGs and leads to the death of the neurons (C). 

Treatment with DDX3 specific inhibitor blocks DDX3 enzymatic activity and Tat-dependent 

SG formation (D) and protects the neurons from cocaine-induced death (E).
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TABLE I

The above summarizes all ROC area results for all considered metrics on the set of published vs. Noise pairs 

(PvN) and highly-cited vs. noise pairs (HCvN).

Metric Name PvN ROC HCvN ROC

POLYMULTIPLE 0.834 0.874

L 2 * 0.783 0.809

CSIM 0.709 0.703

BESTCENTERL2 0.578 0.587

BESTCENTERCSIM 0.719 0.742

BESTTOPICPERWORD 0.686 0.731

TOPICCORR 0.609 0.496

TOPICWALKLENGTH* 0.740 0.778

TOPICWALKBTWN* 0.659 0.658

TOPICWALKEIGEN 0.585 0.582

TOPICNETCCOEF* 0.651 0.638

TOPICNETMOD* 0.659 0.628

Metrics marked with a (*) have been sorted in reverse order for the ROC calculations.
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