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Abstract

The theory of statistical learning has been influential in providing a framework for how humans 

learn to segment patterns of regularities from continuous sensory inputs, such as speech and 

music. This form of learning is based on statistical cues and is thought to underlie the ability to 

learn to segment patterns of regularities from continuous sensory inputs, such as the transition 

probabilities in speech and music. However, the connection between statistical learning and brain 

measurements is not well understood. Here we focus on ERPs in the context of tone sequences 

that contain statistically cohesive melodic patterns. We hypothesized that implicit learning of 

statistical regularities would influence what was held in auditory working memory. We predicted 

that a wrong note occurring within a cohesive pat tern (within-pattern deviant) would lead to a 

significantly larger brain signal than a wrong note occurring between cohesive patterns (between-

pattern deviant), even though both deviant types were equally likely to occur with respect to the 

global tone sequence. We discuss this prediction within a simple Markov model framework that 

learns the transition probability regularities within the tone sequence. Results show that signal 

strength was stronger when cohesive patterns were violated and demonstrate that the transitional 

probability of the sequence influences the memory basis for melodic patterns. Our results thus 

characterize how informational units are stored in auditory memory trace for deviance detection 

and provide new evidence about how the brain organizes sequential sound input that is useful for 

perception.

INTRODUCTION

Humans are remarkable pattern learners. Yet it is still a puzzle how we extract meaning 

from sound. One example is that passive exposure to the spoken speech stream, starting in 

utero, has been shown to influence language acquisition skills (Gervain & Werker, 2013; 

Moon, Lagercrantz, & Kuhl, 2013; Vouloumanos & Werker, 2004; DeCasper & Spence, 

1986), aiding the segmentation of a continuous speech stream into discrete words (Teinonen, 

Fellman, Näätänen, Alku, & Huotilainen, 2009; Mattys & Jusczyk, 2001; Saffran, Johnson, 

Aslin, & Newport, 1999; Saffran, Aslin, & Newport, 1996; Friederici & Wessels, 1993). 

Reprint requests should be sent to Elyse S. Sussman, Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris 
Park Ave, Bronx, NY 10461, or via elyse.sussman@einstein.yu.edu. 

HHS Public Access
Author manuscript
J Cogn Neurosci. Author manuscript; available in PMC 2022 July 01.

Published in final edited form as:
J Cogn Neurosci. 2017 December ; 29(12): 2114–2122. doi:10.1162/jocn_a_01181.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An influential theory suggests that segmentation of the speech signal, which is needed to 

identify word boundaries, is facilitated by implicit calculations of stimulus statistics (i.e., by 

passive exposure to the stimulus input; Saffran et al., 1999). This has been demonstrated 

by a higher transitional probability of within-word phoneme sequences playing a facilitative 

role in the learning of word boundaries in infants and adults (Aslin & Newport, 2012; 

Mattys & Jusczyk, 2001; Mattys, Jusczyk, Luce, & Morgan, 1999; Saffran et al., 1996, 

1999; Myers et al., 1996; Friederici & Wessels, 1993; Jusczyk, Cutler, & Redanz, 1993).

It is still not clear, however, how pattern learning through passive exposure to stimulus 

statistics are instantiated in memory representations and used to perceive events in the 

environment. Despite the wealth of behavioral experiments pertaining to statistics-based 

pattern recognition, brain measurements that index statistical learning are not fully 

understood.

The current study investigated statistical learning of unfamiliar musical phrases. The goal 

was to assess how sequentially presented sounds would be stored as informational units 

(melodic sound patterns) in auditory memory. Previous studies investigating transitional 

probabilities have focused on the response to the deviant—the strength of the response to 

the deviant depends on the degree of violation of the prediction (Koelsch, Busch, Jentschke, 

& Rohrmeier, 2016; Daltrozzo & Conway, 2014; Paraskevopoulos, Kuchenbuch, Herholz, & 

Pantev, 2012; Furl et al., 2011; Mill, Coath, Wennekers, & Denham, 2011; Garrido, Kilner, 

Stephan, & Friston, 2009). In the current study, we did not manipulate the probability of the 

deviant but rather used equiprobable deviants. That is, deviants equally violated predictions 

from the overall sequence. This allowed us to assess the strength of the representation of 

the melodic phrases in auditory memory based on the response to the deviant. We presented 

listeners with a tone sequence containing two different musical patterns while brain wave 

activity was recorded. We used unfamiliar tone patterns so that listeners could not rely on 

prior knowledge of songs or musical advertisements, and participants were not told anything 

about the patterns in the tone sequence. Thus, participants could only be able to identify the 

patterns by making use of the stimulus statistics of the tone sequence. Every so often, the 

regularity of a sequence was violated by one of two kinds of “wrong”notes (or “deviants”). 

We tested the hypothesis that implicit learning of statistical regularities in the sound signal 

would influence what was held in working memory. We predicted that the stimulus statistics 

would influence the melodic units maintained in transient memory. The regularities would 

thus be “learned” online and would set up the basis for deviance detection. In turn, deviance 

detection would be indexed using a component of ERPs called the MMN.

The MMN component is elicited on the basis of regularity learning: maintaining a neural 

memory trace of repeating sound patterns (“standards”) from which the deviant status 

of an incoming stimulus is determined (Sussman, Chen, Sussman-Fort, & Dinces, 2014; 

Näätänen, Astikainen, Ruusuvirta, & Huotilainen, 2010; Sussman, 2007; Sussman, Winkler, 

Huotilainen, Ritter, & Näätänen, 2002; Näätänen, Tervaniemi, Sussman, Paavilainen, & 

Winkler, 2001; Sussman, Ritter, & Vaughan, 1999). MMN does not require an overt 

behavioral response to be elicited. Previous work has suggested that implicitly learned 

tone pattern regularities are strongly represented in memory (Näätänen et al., 2010; 

Sussman, 2007; van Zuijen, Simoens, Paavilainen, Näätänen, & Tervaniemi, 2006; van 
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Zuijen, Sussman, Winkler, Näätänen, & Tervaniemi, 2004; Tervaniemi, Rytkonen, Schroger, 

Ilmoniemi, & Näätänen, 2001; Saarinen, Paavilainen, Schoger, Tervaniemi, & Näätänen, 

1992; Schroger, Näätänen, & Paavilainen, 1992) and that deviance detection leading to 

elicitation of MMN is predicated on the learned memory of detected sound regularities 

(Sussman et al., 2014; Teinonen & Huotilainen, 2012; Sussman, 2007; Näätänen et al., 

2001). This indicates that MMN elicitation is highly context dependent (Sussman, 2007). 

Thus, MMN is a good tool to use to study melodic sound pattern learning. We therefore 

combined the theory of statistical learning and the experimental paradigm of the MMN 

to gain understanding of how cohesive sound patterns are transiently represented in brain 

signals.

We substantiated pattern recognition and violations through a modeling framework trained 

to learn transitional probabilities of the input sequences. The two kinds of wrong notes 

violated local (within-pattern) and global (between-pattern) melodic structures and were 

equally improbable within the overall sequence. We predicted that a wrong note (deviant) 

that violates the structure of learned melodic phrases (within-pattern deviant) would elicit a 

stronger brain response than a wrong note that does not violate the structure of any of the 

learned melodic phrases (between-pattern deviant). Thus, evidence for implicit learning of 

the statistical structure of the sequence and instantiation of the melodic patterns in working 

memory would be expected by an amplitude difference of the MMN component. A larger 

amplitude MMN is expected for violations of the melodic sound patterns because MMN is 

based on the standard repeating regularity (Sussman, 2007).

This prediction is quite different from an alternative hypothesis, more common to MMN 

paradigms, which is that the probability of the deviant determines the amplitude of its 

MMN, irrespective of the transitional probability being violated (Sculthorpe & Campbell, 

2011). If this hypothesis is correct, it predicts that there will be no difference in MMN 

amplitude between the within-pattern and between-pattern deviants because the probability 

of both types of deviants is equal. Thus, the MMN will distinguish factors that influence 

how sequential sound information is stored in memory.

METHODS

Participants

Ten normal hearing adults (five women, eight right-handed) ranging in age between 23 and 

34 years (M = 28, SD = 3) participated in the study. Participants passed a hearing screening 

(20 dB HL or better at 500, 1000, 2000, and 4000 Hz) bilaterally and had no reported 

history of neurological disorders. The internal review board of the Albert Einstein College 

of Medicine, where the study was conducted, approved the procedures. All participants gave 

written informed consent before participating and were paid for their participation.

Stimuli

Eight pure tones were created in MATLAB (Mathworks, Inc., Natick, MA). Tones were 

250 msec in duration (5 msec rise/fall time). Tones were calibrated to 58 dB(A) (2209 

Sound Level Meter, Brüel & Kjær, Nærum, Denmark). Tones were the frequency equivalent 
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of a musical note within the western musical system, occurring within a single octave 

(G#4: 415.30, A4: 440.00, B4: 493.89, C5: 523.25, D5: 587.33, D#5: 622.25, F5: 698.46, 

and F#5: 739.99 Hz). We hereforth denote tones using the letters A through H, but this 

representation is not related to the musical pitches. Tones were presented in two different 

four-tone patterns (Figure 1A). Pattern 1 (Pat1) was C5-F#5-F5-D#5 (ABCD) and Pattern 

2 (Pat2) was D5-G#4-A4-B4 (EFGH). A 20-msec silence occurred from the offset to onset 

of each tone. We used unfamiliar tone patterns so that listeners could not rely on prior 

knowledge of songs or musical advertisements. The two patterns each occurred with 50% 

probability in the sequence and were randomly concatenated (Figure 1A) with the constraint 

that consecutive deviant patterns had to be separated by at least two standard patterns. Tones 

were presented isochronously. Thus, there was no demarcation when one pattern terminated 

and the next one began. Tone sequences began with presentation of at least 15 standard 

patterns before any deviants occurred.

The transitional probability (excluding the deviant tones) for tones within each pattern was 

1.0 (e.g., A → B, B → C, C → D), and the transitional probability between patterns 

(switching from one pattern to the next) was .5 (e.g., D → A or D → E). The high 

probability of transitioning from one tone to the next within each pattern and the relatively 

low probability of transitioning from one pattern to the next permit the segmentation of the 

patterns into two distinct, statistically cohesive units.

Every so often, the regularity of the sequence was violated by one of two kinds of “wrong” 

notes (or “deviants”). Within-pattern deviants (WD1 and WD2) were the occurrence of the 

wrong tone replacing the fourth tone of the pattern (Figure 1B). Within-pattern deviants 

thus violated the expected structure of the melodic units (e.g., ABCB occurred when ABCD 

was expected; Figure 1B). Between-pattern deviants (BD1 and BD2) were the occurrence 

of the wrong tone after the conclusion of one of the patterns and before the onset of the 

next (Figure 1C). Between-pattern deviants thus did not alter the structure of the melodic 

units (e.g., ABCDC occurred when ABCDA or ABCDE was expected; Figure 1C). Deviants 

occurred with a 1:5 probability ratio relative to the standards, meaning that deviant patterns 

comprised 16.66% of the total number of patterns in the sequence. Both types of deviants 

occurred equiprobably within the stimulus blocks such that each of the four deviant pattern 

types occurred approximately 4% of the time. However, the presence of the deviants in the 

sequence modified the overall transitional probabilities between tones (Figure 2).

There were four criteria for wrong notes. One of the criteria was that wrong notes were not 

new tones within the sequences. For the within-pattern deviants, the wrong note was the 

second tone of the pattern occurring in place of the fourth tone (W1: C5-F#5-F5-F#5; W2: 

D5-G#4-A4-G#4), and for the between-pattern deviants, the wrong note was the third tone 

of the preceding pattern (BD1: C5-F#5-F5-D#5-F5; BD2: D5-G#4-A4-B4-A4). Thus, wrong 

notes were tones already used within the sequence and therefore would only be detected 

if the order of the tones in melodic units were maintained in working memory. A second 

criterion was that there was not a set trajectory for the deviants. That is, we used two sets 

of patterns and deviants so that one deviant violated the pattern by ascending instead of 

descending to the fourth tone and the other by descending instead of ascending to the fourth 

tone. In this way, the direction to the wrong note could not, on its own, be used to cue 
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a deviation. The third criterion was that the frequency distance between the expected note 

and the wrong note was three semitones for all deviants, and the final criterion was that the 

intervallic violation of the between-pattern deviants was as large as the intervallic violation 

of the within-pattern deviants. A backtracking constraint satisfaction algorithm was used to 

select the standard patterns and deviants according to the above criteria.

Procedures

Participants were seated in a comfortable chair in an electrically shielded, sound attenuated 

booth (IAC, Bronx, NY). Sounds were presented bilaterally through insert earphones (E-A-

RTONE 3A, Indianapolis, IN). Participants were instructed to ignore the sounds and watch 

a closed-captioned silent movie of their choice. Stimuli were presented in six blocks of 

stimuli. In total, 1140 of each standard pattern type and 114 of each deviant pattern type 

were presented. The presentation order of the six blocks was randomized across participants. 

Participants took a break at the midpoint to be disconnected from the EEG recording 

system and have a snack. The total session time was less than 2 hr, including electrode cap 

placement, instructions, and breaks.

EEG Recording and Data Reduction

EEG was recorded using a 32-channel electrode cap (Electro-Cap International, Inc., 

Eaton, OH), in the International modified 10–20 system, including electrodes placed on 

the left mastoid (LM) and right mastoid. The tip of the nose was used for the reference 

electrode and P09 for the ground electrode. A bipolar configuration was used to monitor 

the horizontal EOG between electrodes F7 and F8 and to monitor the vertical EOG with 

electrodes between FP1 and an external electrode placed below the left eye. Impedances 

were maintained below 5 kΩ. EEG and EOG were digitized at a sampling rate of 500 

Hz with a bandpass of 0.05–100 Hz. The EEG was then filtered offline with a high-pass 

cutoff of 0.1 Hz and a low-pass cutoff of 30 Hz using a finite impulse response filter 

with zero phase shift and a roll-off slope of 24 dB/octave. Filtered EEG was segmented 

into 1500 msec epochs, including a 200-msec prestimulus period. The response to the first 

tone of the standard pattern was used to create the “standard” waveform, and the response 

to the first tone of the deviant pattern was used to create the “deviant” waveform. Thus, 

the epochs included all of the tones in the patterned units. Epochs were baseline-corrected 

before artifact rejection was applied with a criterion set at ±75 V on all electrodes (EOG and 

EEG). On average, 15% of the overall epochs were rejected due to artifact. The remaining 

EEG epochs were averaged separately by stimulus type and then baseline-corrected to the 

prestimulus period.

The MMN was delineated in the grand mean difference waveforms (deviant minus 

standard). The peak of the MMN was first visually identified in the grand mean difference 

waveform at the Fz electrode where the signal-to-noise ratio is greatest. To statistically 

evaluate the presence of the MMN component, the data were re-referenced to the LM. A 50-

msec window centered on the peak latency of the MMN was then used to obtain the mean 

amplitudes for the standard and deviant ERPs, in each individual, separately for each pattern 

and deviant type (944 msec was the peak latency for WD and 1216 msec peak latency 

for BD, as calculated from the first stimulus of the pattern). The within-pattern deviant 
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coincided with the final tone of the pattern, and the between-pattern deviants occurred 270 

msec after the end of a standard pattern (1216 − 944 = 272 msec).

A three-way omnibus repeated-measures ANOVA was calculated on the difference 

waveforms (deviant minus standard) to statistically verify the presence and scalp distribution 

of the MMN component (factors of Deviant type [within/between], Pattern type [1/2], 

and Electrode [Fz, Cz, Pz]). Where data violated the assumption of sphericity, degrees of 

freedom were corrected using Greenhouse–Geisser estimates of sphericity, and corrected 

degrees of freedom and p values were reported. For post hoc analyses, when the omnibus 

ANOVA was significant, Tukey’s honestly significant difference for repeated measures was 

conducted on pairwise contrasts. Contrasts were reported as significantly different at p < 

.05. All statistical analyses were performed using Statistica 12 software (Statsoft, Inc., Tulsa, 

OK).

Modeling Methods

The modeling framework contains two stages. The first stage of the model is an algorithm 

that generates a probabilistic model of a stimulus sequence that enables the formation of 

strongly predictable, cohesive patterns by learning transition probabilities. The second stage 

of the model matches incoming stimuli to the patterns that have been learned through the 

statistical learning process and detects violations of pattern regularities. To represent the 

probabilistic relationships between stimuli in a temporal sequence, we used a Markov chain 

model to learn transition probabilities.

Chains of strongly connected (high transition probability) states in the Markov chain are 

analogous to patterns or melodies stored in a memory trace “dictionary” in the brain. 

Because we are using a first-order model, the memory trace would consist of pairs of 

strongly connected stimuli (A → B, B → C, and so on [the arrow indicates “is followed 

by”]).

Once the regularities in the sequence are learned, the next part of the process is to match 

incoming stimuli to the regularities learned to see if there is a violation of a strong prediction 

and define a transition probability threshold, h, which determines whether a particular 

transition expectation creates a strong predictive rule to which an MMN will be generated. 

For our model, we used a threshold of 0.825, which corresponds to the standard–deviant 

ratio in a typical MMN experiment. Incoming stimuli are compared with the expectations 

represented by the transition probabilities that are learned. If consecutive stimuli match 

the expectations of the statistical learning (e.g., A → B), no MMN will be elicited. If the 

transition from the previous stimulus to the current stimulus does not match the prediction 

represented by the statistical learning, however, a large MMN is generated if and only if 

there is at least one transition in the graph from the previous stimulus that is greater than 

the threshold h. In other words, we predicted that an MMN is generated in response to a 

stimulus if and only if a strong expectation created by the previous stimulus is violated. This 

is in line with the theory that MMN is a response to the violation of a specific memory trace, 

not just a global irregularity.
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RESULTS

Prediction and Modeling Framework

Our main prediction was that the deviants occurring within the statistically cohesive patterns 

(within-pattern deviants) would elicit a strong MMN because the transition probabilities 

for the tones within the unit would be large, whereas the deviants occurring between 

patterns (between-pattern deviants) would elicit a less robust MMN because the deviants 

would violate a weaker probabilistic expectation (Figure 2). To formalize this experimental 

prediction, we designed a simple two-stage model to describe how the brain learns the 

statistical structure of sensory input and responds to violations of expectations.

The first stage of the model consisted of a first-order Markov model that learned transition 

probabilities from the same tone sequence heard by our participants in the experimental 

paradigm (Figure 2). The second stage of the model matched incoming stimuli to the 

regularities that have been learned through the statistical learning process and produced 

a binary surprise response to represent whether a strong expectation was violated. This 

process resulted in strong expectations for cohesive patterns (ABCD and EFGH) due to the 

high transition probabilities.

Although both within- and between-pattern deviants were equally unlikely, the model only 

responded to the violation of a strong expectation, which was not present for the between-

pattern deviants. One of the important implications of this model result is that deviancy 

should be treated differently by the brain when violations are based on strong information 

units (e.g., within-pattern deviants), and this distinction would be apparent in the strength of 

the MMN response.

Experimental Results—We tested the predictions of the above statistical learning-based 

model. Table 1 summarizes the mean amplitudes of the standard and deviant ERP responses 

to all pattern types in the latency of the MMN component. Figure 3 displays the ERPs 

evoked by the standard and deviant waveforms for both deviant types. Figure 4 displays the 

difference waveform potentials (standard ERP subtracted from the deviant ERP) at all 32 

electrodes and the global field power (Lehmann & Skrandies, 1980). Because there was no 

effect due to Pattern type, F(1, 9) < 1, p = .64, data were collapsed across pattern types for 

display only (Figures 3–4).

Within-pattern deviants elicited a significantly larger MMN than between-pattern deviants 

(main effect of Deviant type, F(1, 9) = 9.9, p = .012, ηp2 = .52; Figures 3–4). Overall, the 

scalp distribution of the response was consistent with a frontocentral maximum for MMN 

(main effect of Electrode, F(1.52, 13.64) = 9.9, ε = 0.75, p = .012, ηp2 = .70), with post 

hoc calculations showing a mean amplitude at Pz significantly smaller (less negative) than 

both Fz and Cz (p < .001) and no amplitude difference between Fz and Cz (p = .18). 

There was an interaction of Deviant type with Electrode, F(1.27, 11.42) = 4.83, ε = 0.75, 

p = .043, ηp2 = .35, due to the within-pattern deviants showing the frontocentral distribution 

(Pz smaller than Fz and Cz), but between-pattern deviants having no electrode effect, no 

significant mean amplitude difference among Fz/Cz/Pz. The interaction of Pattern type 
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with Electrode did not reach significance (p = .06), and there was no interaction among 

all factors (Deviant type/Pattern type/Electrode, p = .21). Thus, MMNs were from both 

transitions, but the within-pattern deviants elicited a significantly more robust response than 

the between-pattern deviants.

DISCUSSION

The current results demonstrate implicit learning of stimulus statistics and transitional 

probability leading to detection and storage of musical phrases in auditory memory. 

Violations of the high (.85) transition probability (wrong notes occurring within the musical 

phrases) elicited a stronger electrophysiological response (larger MMN amplitude) than 

violations of the low (.45) transition probability (wrong notes occurring between musical 

phrases). The discrepancy between MMN amplitudes is unrelated to the probability of 

within-pattern versus between-pattern deviants, because each deviant occurred with equal 

probability within the tone sequence.

In most previous investigations on the effects of transitional probability, the probabilities 

of the deviant tones were manipulated. These previous studies showed violation of the 

prediction through the deviant: lower probability deviants evoked stronger responses than 

higher probability deviants (Koelsch et al., 2016; Paraskevopoulos et al., 2012; Furl et 

al., 2011). These studies were assessing the “surprising” nature of the deviants based on 

detection of the transitional probabilities in the sequence. That is, they were showing that 

the more unexpected the occurrence of a tone is (the lower probability of the deviant), 

the further away it is from what is predicted based on the stimulus statistics, results in a 

larger MMN response. Thus, in these previous studies violations occurred only for within-

pattern deviants. Deviant responses represented a violation of the prediction based on the 

stimulus statistics. In the current study, in contrast, we did not manipulate the probability 

of occurrence for the within- and between-pattern deviances. This factor was held constant: 

The probability of occurrence for within- and between-pattern deviants was equal in the 

block. Instead, we used the transitional probabilities of the melodic tone patterns to assess 

how information is structured in memory. Thus, the strength of the response to the deviant 

was not based on the degree of surprise for the deviant but on the representation of the 

standard providing the basis for deviance detection.

Our results demonstrate that the unitized information (by melodic phrase) is stored in 

auditory memory because we show that MMN amplitude reflects a stronger response to 

a violation of the melodic tone patterns held in memory (within-pattern deviants) than to 

deviants that occur but do not alter the structure of the melodies (between-pattern deviants). 

This indicates that statistical learning may contribute to the storing of temporal patterns as 

cohesive units in auditory memory, as predicted by the first-order Markov chain framework. 

These data thus provide new evidence of how sounds are organized to form informational 

units in memory that are useful for perception. However, not all statistical learning situations 

are first order, and some would require more complex models. For instance, in Symonds 

et al. (2017), there was a single standard pattern sequence that consisted of binary tones 

“XXXO.” The violations were longer and shorter sequences than the standard patterns 
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(“XXXXO” and “XXO,” respectively). In this case, learning the tone pattern would require 

Markov models that go beyond first order.

MMN amplitude is thought to be affected by detectability of deviants (Gomes et al., 2000; 

Schroger, 1995; Tiitinen, May, Reinikainen, & Näätänen, 1994; Näätänen, 1988), and thus, 

the amplitude may have been larger for the within-pattern deviants because they were easier 

to detect. It is possible that the between-pattern deviants may have been detected as being 

deviant by extending the length of the standard pattern from four tones to five tones. If this is 

the case, our results also suggest that changing an element of an established melodic pattern 

(within-pattern deviants) more strongly violates the expectation generated by the repeating 

tone patterns (standards) than extending the length of the deviant. This indicates that the 

melodic patterns were more strongly represented as repeating events in memory than the 

simple identity of the tones in the sequence.

The results are also interesting in light of the longstanding belief that “global” deviants 

elicit MMN. The conventional notion about MMN generation has been that any infrequent 

change occurring within a sequence will elicit MMN because it is different from the global 

sequence. However, more recent work has demonstrated that deviants are detected only 

when they violate a detected standard and not simply because a tone occurs infrequently in 

a stimulus block (Sussman et al., 2002, 2014; Sussman, 2007). The current results extend 

these results, indicating that MMN will be elicited when a specific, strong expectation 

is violated. Overall, our results demonstrate that informational units form the basis for 

processing the auditory scene and detecting novelty within it.

It is not immediately apparent how the brain would go about learning statistically cohesive 

temporal patterns from a biological standpoint. Xu, Jiang, Poo, and Dan (2012) provided 

evidence that suggests a possible mechanism for the storage of Markov chain-like memory 

traces. Rats were shown a visual stimulus that repeatedly moved from an initial starting 

point to a finishing point. During the stimulus presentation, neurons in primary visual cortex 

fired when the stimulus entered each of their respective receptive fields. After training on 

this motion sequence, only the initial stimulus (i.e., the starting point) was presented to the 

rat. Now, neurons from the receptive fields along the path fired in the original temporal 

order that they had been trained on and not only those generated by the initial stimulus, 

demonstrating that the rat had learned the temporal sequence.

The authors proposed the simplest kind of Hebbian learning, spike-timing-dependent 

plasticity, as the mechanism of this learning (Xu et al., 2012). When the neurons repeatedly 

fired in a particular order due to stimulus presentation, the connection between those 

neurons was strengthened in the order that they were initially activated, effectively creating 

a memory trace. This phenomenon is precisely what is described in our Markov chain model 

for MMN, wherein repeated sequences with high transition probabilities create a cohesive 

temporal memory trace that the brain can then use to make predictions and produce violation 

responses when the predictions are not met. Spike-timing-dependent plasticity is a domain-

general feature of neurons and neural circuits in many parts of the brain. It would thus be 

unsurprising to find statistical learning responses for various types of regularities, such as 

timbre and intensity in the auditory modality, as well as in multiple sensory modalities.
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Figure 1. 
Schematic diagram of the stimulus paradigm. (A) Sequential tone patterns (Pat) are depicted 

with rectangles, labeled ABCD (Pat1) and EFGH (Pat 2). Frequency values of the tones 

are displayed in Hz on the ordinate, with timing between sounds (in milliseconds) shown 

on the abscissa. Patterns are demarcated by a dashed vertical line for display purposes 

only. (B) Within-pattern deviants (WD) are displayed for Pat1 and Pat2. WD1 (blue-filled 

rectangle) violates expected Pat1; WD2 (green-filled rectangle) violates expected Pat2. (C) 

Between-pattern deviants (BD) are displayed, following Pat1 and Pat2. Between-deviant 

violations occur outside the borders of the four-tone patterns, serving as global deviants to 

the overall sequence. Dashed lines demarcate the pattern borders for display purposes only.
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Figure 2. 
Schematic of the Markov model trained on the stimulus sequence shown in Figure 1. 

Circles represent states (tones), and arrows represent transitions, labeled with their first-

order transition probabilities. Arrow thickness depicts strength of the transition probability. 

Transitions with probability exceeding a threshold of .83 are shown with thick solid arrows. 

Lower probability transitions are shown with thick broken arrows. Thin broken lines 

correspond to within- and between-pattern deviants. The slight differences in probability 

between the within- and between-pattern deviants are because the patterns containing 

between-pattern deviants also contribute to the probability of transitioning from the third 

tone of the pattern to the final tone. (Note: Some transitions were omitted due to space 

constraints.)
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Figure 3. 
ERPs. ERPs evoked by the wrong notes occurring within melodic phrases (top row, thin 

blue line) and between melodic phrases (bottom row, thin green line) are displayed along 

with the ERPs evoked by the corresponding standards (thin black line). Color of the deviants 

is consistent with Figure 1 showing the stimulus paradigm. The subtraction (deviant − 

standard) waveforms are displayed by a thick black line. The MMN response is labeled and 

highlighted with a dashed black rectangle, corresponding with the timing of the deviant. 

The stimuli are depicted below the x-axis (shading is consistent with the traces) to show the 

timing of the responses to each of the tones within the patterns, along with the occurrence of 

the deviants.
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Figure 4. 
Difference waveforms. (A) Grand mean difference waveforms (deviant ERP minus standard 

ERP) are displayed showing the MMN component (labeled MMN), with the Fz (solid 

line) and LM (dashed line) electrodes overlain. The vertical dotted rectangle highlights 

the borders of the MMN. Patterns 1 and 2 are collapsed across standards and deviants 

for the within-pattern deviants (left column) and between-pattern deviants (right column). 

Peak latency of the components is indicated above the MMN, along with voltage maps 

showing the scalp distribution around the head (blue represents negative polarity, and red 

represents positive polarity). Waveforms were time-locked to the first tone of the patterns to 

show the timing of deviance detection for both pattern deviants. (B) Thirty-two electrodes. 

Data from all 32 electrodes overlain depict the scalp distribution across the length of the 

epoch and tones of the patterns. MMN is clearly present for the within-pattern deviants. (C) 

Global field power was calculated as the spatial root mean of the squared voltage deviations 

across electrode recordings from the entire scalp to provide a reference-free measure for 

component identification. The peak of power seen in each epoch (within and between 

deviants) corresponds to the MMN component depicted in the ERP waveforms (A and B).
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