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Abstract

Purpose of review: To discuss how nutritional management could be optimized to promote 

protective metabolism in sepsis and associated acute kidney injury.

Recent findings: Recent evidence suggests that sepsis is a metabolically distinct critical illness 

and that certain metabolic alterations, such as activation of fasting metabolism, may be protective 

in bacterial sepsis. These findings may explain the lack of survival benefit in recent randomized 

controlled trials of nutrition therapy for critical illness. These trials are limited by cohort 

heterogeneity, combining both septic and non-septic critical illness, and the use of inaccurate 

caloric estimates to determine energy requirements. These energy estimates are also unable to 

provide information on specific substrate preferences or the capacity for substrate utilization. 

As a result, high protein feeding beyond the capacity for protein synthesis could cause harm in 

septic patients. Excess glucose and insulin exposures suppress fatty acid oxidation, ketogenesis 

and autophagy, of which emerging evidence suggest are protective against sepsis associated organ 

damage such as acute kidney injury.

Summary: Distinguishing pathogenic and protective sepsis-related metabolic changes are critical 

to enhancing and individualizing nutrition management for critically ill patients.
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Introduction

The most recent clinical consensus defines sepsis as life-threatening organ dysfunction 

owing to dysregulated host response to infection [1]. Sepsis remains a global health problem 

with over 31 million sepsis cases and 5 million deaths worldwide annually [2]. In the 

United States, sepsis accounts for 50% of in-hospital deaths even though it accounts for only 
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10% of hospitalizations [3]. Moreover, it remains the most expensive hospital diagnosis [4]. 

Despite broad-spectrum antibiotics and life-supporting technologies, therapeutics to improve 

sepsis outcomes remain limited. We have long appreciated the hallmark characteristics of 

metabolic derangements in sepsis, including hyperglycemia resulting from gluconeogenesis 

and insulin resistance, hyperlipidemia from lipolysis, and enhanced protein catabolism [5]. 

While many of these metabolic derangements have traditionally been viewed as entirely 

pathologic, emerging evidence suggests a complex relationship between host defense and 

metabolism. Host defense consists of both disease resistance, which involves pathogen 

clearance, and disease tolerance, in which physiologic responses are activated to limit 

tissue damage [6-8]. Some metabolic alterations resulting from the immune response to 

an infection may reflect protective defense mechanisms involved in disease tolerance. 

Thus, current attempts to reverse metabolic derangements associated with sepsis may be 

counterproductive. For example, the loss of muscle mass from increased protein catabolism 

is associated with poor outcomes in sepsis [9]. However, the proteolytic response in sepsis 

could be an essential adaptive response to fuel the liver’s synthesis of acute phase proteins 

[10], many of which are important in host defense. Similarly, changes in glucose metabolism 

are considered pathologic given the association of hyperglycemia with increased mortality 

in critical illness [11]. However, it has been proposed that the purpose of this change in 

glucose metabolism is to redirect glucose utilization, including fueling the immune system 

for the initial antimicrobial response [12]. While lipolysis and the resulting hyperlipidemia 

could be considered maladaptive [13-16], there is evidence that lipoproteins are capable of 

binding and neutralizing endotoxin [17]. Moreover, the mobilized lipid substrates could be 

used as fuel for fatty acid oxidation (FAO) [5]. Many of our current approaches to minimize 

the consequences of these metabolic changes are indirect rather than targeting the root cause. 

Moreover, correction of abnormal clinical metabolic metrics by any means possible, without 

full consideration of the potential adverse consequences, could lead to harm. With a better 

understanding of metabolic disease tolerance pathways, we may need to revise our current 

management of septic patients to limit organ damage such as acute kidney injury (AKI) and 

optimize survival.

Clinical trials for nutritional therapy in critical illness: Interpretations and limitations

The provision of nutrition is a major factor contributing to the metabolic state of a 

septic patient. Many recent clinical trials have addressed timing, route, and caloric content 

of nutritional therapy in critically ill patients without any significant effect on survival 

(Table). The EDEN and PermiT trials showed that low calorie, trophic feeds are safe, 

but do not improve survival [18, 19]. Alternatively, the TARGET trial suggests feeding 

more also does not improve outcomes [20]. The CALORIES and NUTRIREA-2 trials 

showed that the route of early feeding, enteral versus parenteral, did not alter survival 

[21, 22]. However, the occurrence of severe gastrointestinal adverse effects observed in 

NUTRIREA-2 led to concerns about excessive enteral feeding in mechanically ventilated 

patients on vasopressors. Finally, if patients cannot tolerate enteral feeds, the EPaniC trial 

suggests the addition of parenteral feeds could cause harm if given too early [23]. Overall, 

the lack of mortality benefit in all these trials has left significant equipoise on how best to 

deliver nutritional therapy to critically ill patients.
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There are several limitations of these trials precluding applicability to critically ill septic 

patients. First, energy expenditure (EE) and therefore presumed energy requirements were 

estimated, not measured. It is well established that equations using static anthropometric 

measurements such as height and weight to estimate EE are inaccurate in critically ill 

patients, including those with AKI [24-27]. EE is also known to be dynamic, classically 

described by Cuthbertson in 1942 as the Ebb and Flow energy phases of hemorrhagic 

shock [28], and variable depending on the presence and severity of sepsis [29]. Thus, 

multiple guidelines recommend the use of indirect calorimetry, the gold standard, to 

measure EE in critically ill patients, including those with AKI, to guide nutritional 

therapy [30-32]. However, current commercially available indirect calorimeters can be 

inaccurate and are expensive, limiting routine clinical use. Fortunately, a new generation 

of indirect calorimeters that are more accurate and cost effective are in development [33]. 

As nonprotein calories are rarely differentiated, another layer of complexity is the calorie 

source, which is not fully addressed in these trials. Moreover, we do not know whether 

substrate preferences differ among various critical illnesses and across distinct phases of 

disease. Thus, differential metabolic downstream consequences of delivered carbohydrates 

and fat calories are not clear. Second, as is common in most intensive care unit (ICU) 

clinical trials, cohort heterogeneity is significant (Table, Figure 1A). These trials include 

a mix of medical, surgical, and neurological ICU patients. Another important clinical 

parameter with significant metabolic implications is the presence of sepsis. In fact, the 

composition of septic patients varied across these trials (Figure 1B). The causative pathogen 

was also not reported. The type of sepsis may be significant as preclinical studies suggest 

metabolic determinants of survival differ between bacterial and viral septicemia [34]. 

Thus, the imprecision of EE estimates without differentiating specific calories and the 

heterogeneity of critically ill patients included in these trials limit the clinical applicability to 

septic patients.

Protein catabolism: How to limit negative protein balance?

Critical illness is often associated with increased protein catabolism, leading to net negative 

nitrogen balance and loss of muscle mass, which are associated with increased mortality 

[9]. Pharmacologic and nutritional approaches have attempted to minimize negative nitrogen 

balance in critically ill patients with minimal benefit. For example, growth hormone is 

effective in improving nitrogen balance in critically ill patients, but at the cost of increasing 

mortality, incident sepsis, hyperglycemia and insulin use [35]. Nutritional approaches 

with high protein feeds which minimize negative nitrogen balance and improve outcomes 

have been supported by several observational studies [36]. However, in meta-analyses of 

randomized controlled trials (RCTs), high protein feeding in critically ill patients has not 

shown benefit [37, 38]. The association of higher protein intake with better outcomes seen 

in observational studies are limited by potential confounders. Patients who have a better 

prognosis will survive long enough to achieve nutritional targets and may receive more 

attention to optimize their nutritional support, introducing potential immortal time and 

indication bias. As some RCTs were confounded by differences in calorie intake, ongoing 

RCTs are addressing this to test the efficacy of higher protein nutrition in the critically ill at 

a fixed caloric intake [39, 40]. While these studies are ongoing, there remains the possibility 

that excess dietary protein could be harmful in critically ill patients.
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In the example of continuous renal replacement therapy (CRRT), amino acid losses are 

known to occur [41, 42]. While iatrogenic losses should be replaced, the overall benefit 

of high protein feeds to minimize negative protein balance in AKI patients on CRRT is 

unclear. One RCT examined the use of indirect calorimetry to guide nutritional therapy and 

escalating dietary protein in AKI patients on CRRT [43]. While patients with increased 

nitrogen balance had improved survival and higher protein intake associated with increased 

nitrogen balance, higher protein intake itself was not associated with improved survival. 

This would suggest that the true relationship between nitrogen balance and survival involves 

another factor that minimizes negative nitrogen balance, such as resolution of the underlying 

critical illness. Similarly in a post-hoc analysis of the RENAL study, higher dietary protein 

intake was associated with higher rates of mortality [44, 45]. While the total dietary protein 

intake in both groups were relatively low, it is important to note that the higher protein 

intake group had significantly more septic patients. In other studies, the relative proportion 

of septic patients in a cohort appears to correlate with worse outcomes associated with 

higher dietary protein intake. For example, in small RCTs examining the effect of high 

protein intake on limiting muscle loss, studies with few (less than 10%) or unreported septic 

patients showed improved outcomes [46, 47], while one RCT with a high percentage (80%) 

of septic patients showed no effect [48]. Similarly, in an observational study in which half 

the cohort was septic, higher protein delivery was associated with increased muscle wasting 

[49]. In burn patients, sepsis is a primary determinant of protein catabolism [50]. Similarly, 

in amino acid balance studies, only patients who recovered from sepsis could achieve net 

protein synthesis with the provision of high protein nutrition [51, 52]. While critically ill 

non-septic and septic patients both have increased protein catabolism, the presence of sepsis 

appears to be a primary driver of outcomes and not nitrogen balance per se. Therefore, 

negative nitrogen balance is more likely to be reflective of the inflammatory state, similar 

to decreased serum visceral proteins such as albumin and pre-albumin, which are no longer 

recommended to guide nutritional therapy [53]. Thus, there is a critical need for methods 

to accurately measure protein utilization to guide nutritional delivery rather than targeting 

nitrogen balance.

Unfortunately, the inability to accurately measure the capacity for protein utilization is 

a major limitation in the clinical management of protein catabolism. Dietary protein 

requirements are derived from nitrogen balance estimates which compare urinary and other 

bodily losses against dietary intake. As nitrogen balance estimates have many limitations 

even for healthy individuals at equilibrium [54], use of these balance estimates to calculate 

dietary protein needs in critically ill septic patients is highly problematic. As there is 

no ability to store protein, dietary protein not utilized for synthesis must be catabolized 

and excreted primarily as urea. In sepsis, high, insuppressible rates of protein catabolism 

will result in increased urea production. As a result, calculation of estimated protein 

requirements with ongoing catabolism will continually increase with rising urinary urea 

excretion in the absence of appropriate protein utilization (Figure 2). In a pre-specified 

analysis of the EPaNIC trial, timing of parenteral nutrition did not change the incidence 

of AKI [55]. However, early parenteral nutrition slowed renal recovery potentially due 

to increased ureagenesis, which prolonged RRT. It was also estimated that 63% of extra 

nitrogen intake was net wasted in ureagenesis. Excess dietary protein, beyond the capacity 
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of utilization, is not only wasteful, it may also be deleterious. In fact, an unpublished 

subgroup analysis of an observational study suggesting a benefit of high protein intake in 

critically ill patients, the survival benefit was only observed in non-septic patients, while 

there was a trend toward increased mortality in septic patients [56, 57]. Osmotic urea 

diuresis, of which high dietary protein intake is a major cause, is a common cause of 

hypernatremia, which increases mortality in critically ill patients [58, 59]. High protein 

intake can also suppress autophagy [60], a regulated cellular mechanism that removes 

unfolded or misfolded proteins and damaged organelles, resulting in recycling of nutrients 

and cell survival. In preclinical sepsis models, autophagy has been shown to be protective, 

improving survival and organ function [61, 62]. This is particularly relevant in septic AKI, 

where inhibition of autophagy will increase septic AKI, while augmenting autophagy will 

limit septic kidney damage [63-67]. As a result, focusing on nitrogen balance alone to 

guide dietary protein interventions without considering capacity for utilization and potential 

adverse effects may inadvertently delay kidney recovery in critically ill patients.

Glucose versus fatty acid oxidation

It is well-appreciated that hyperglycemia associates with poor outcomes in critically ill 

patients [68]. However, glycemic control with insulin in the ICU remains controversial. 

Much of the controversy stems from the inability to reproduce the landmark Leuven I trial 

[69]. Subsequently, intensive glycemic control in the NICE-SUGAR multi-center RCT [70] 

led to increased mortality. While hypoglycemia has been cited to be the most likely cause 

of increased mortality, patients in the intensive control group also received more of both 

insulin and glucose. While hypoglycemic events are detrimental and are likely contributing 

to mortality, the exposure of excess insulin and glucose could also cause harm in sepsis.

Sepsis is associated with the development of anorexia, which is a highly conserved 

component of sickness behavior. Anorexia associated with sepsis contributes to activation 

of fasting metabolism. Normal fasting and starvation adaptation includes induction of FAO, 

gluconeogenesis, ketogenesis, and autophagy. Fasting metabolism is a primary mechanism 

by which caloric restriction and intermittent fasting promotes longevity and mitigates 

diseases [71-73]. It has been proposed that fasting metabolism is dysfunctional in sepsis 

[14, 74-77], and this abnormal fasting response is a driver of morbidity and mortality. While 

the quality, magnitude, and kinetics of the fasting metabolic pathways may differ in sepsis 

compared to normal fasting, many of these pathways are intact in septic patients and in 

preclinical models of sepsis [34, 78-80]. However, these pathways are suppressed by the 

provision of glucose even at hypocaloric levels [34, 81, 82]. For example, patients with 

sepsis exhibit a significant switch in global metabolism from glucose oxidation to FAO. This 

is evident in a lower respiratory quotient, reflective of increased lipid metabolism, seen in 

critically ill patients with sepsis compared to those without sepsis [83]. Moreover, septic 

patients have low glucose oxidation which cannot be induced with a hyperglycemic glucose 

clamp [81]. Instead, glucose infusion in septic patients will increase insulin levels while 

suppressing FAO [84] and ketogenesis [81, 82]. These data suggest FAO may be an adaptive 

response and the preferred metabolic state in sepsis.
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Growing preclinical evidence supports a role for peroxisomal proliferator-activated 

receptor (PPARα) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(PGC1α) as protective metabolic mediators in sepsis, limiting organ damage including AKI 

and improving survival [79, 85-92]. PPARα and PGC1α promote FAO, while PPARα also 

activates ketogenesis. Glucose and insulin could suppress metabolic pathways activated by 

PPARα and PGC1α. Glucose oxidation inhibits FAO through the metabolic intermediate, 

malonyl-CoA, and insulin promotes lipogenesis while inhibiting FAO and ketogenesis 

(Figure 3) [93]. Insulin will also suppress autophagy through activating mammalian target 

of rapamycin (mTOR), the main inhibitor of autophagy (Figure 3). One RCT of intensive 

glycemic control using insulin observed that increased insulin exposure associated with 

suppression of autophagy in critically ill patients [94]. A recent retrospective analysis 

of type 2 diabetic hospitalized patients with confirmed COVID-19 reported a significant 

relationship of insulin treatment with increased mortality, mechanical ventilation, and AKI 

[95]. Thus, the clinical consequences of suppressing FAO, ketogenesis and autophagy by 

insulin could be significant.

The possibility of glucose and insulin-regulated metabolism interfering with protective 

metabolic pathways in sepsis raises concerns of whether the way we feed and medicate 

septic patients could be counterproductive and potentially harmful. Commercially available 

enteral nutrition formulations are generally high in carbohydrate content. Many intravenous 

medications are delivered in dextrose containing solutions and parenteral nutrition is also 

formulated with significant glucose content. This high carbohydrate load ultimately will lead 

to increased obligate insulin requirements. In studies examining the effect of high versus 

low calorie or protein nutritional delivery on nitrogen balance in AKI patients on CRRT, the 

average glucose administered is close to 400 grams or more per day [96-98]. This amount 

of glucose will not only obligate more insulin, but it is also more than the carbohydrate 

oxidation capacity of AKI patients. One indirect calorimetry study found that AKI patients, 

both septic and non-septic, were not given enough lipid to support measured lipid oxidation 

rates, while carbohydrates were given more than actual glucose oxidation rates [99]. Thus, 

alternative approaches could include limiting the glycemic load or changing the delivery of 

feeds to allow for adequate periods of fasting capable of enhancing FAO, ketogenesis and 

autophagy [100].

Other metabolic considerations in sepsis:

Intermittent feeding.—Prior work has extensively examined the timing of feeding 

initiation in ICU patients, however an organized approach to comparing an intermittent 

versus continuous feeding protocol and by extension the importance of fasting periods in 

critically ill patients has yet to be undertaken. Several small non-inferiority RCTs reported 

favorably on clinical endpoints such as gastrointestinal distress and aspiration pneumonia for 

those receiving intermittent feeds compared to those continuously fed [100, 101]. However, 

the small sample sizes, lack of harder endpoints, inconsistent reporting on metabolic 

variables, and heterogeneity in feed and insulin administration protocols limit our ability to 

make broader conclusions about the effect of fasting duration on optimizing metabolism to 

survive critical illnesses such as sepsis. In contrast to outpatient intermittent fasting regimens 

using at least 16-18 hours of fasting [71], typical intermittent feeding protocols for critical 
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illness have at most 8 hours of fasting [102]. The optimal duration of the fasting state 

to promote the protective effects of autophagy, mitochondrial biogenesis, muscle protein 

synthesis and ketogenesis still lacks consensus, especially in septic patients. Van Dyck et al 

reported that 12 hours of fasting in critically ill patients was insufficient to alter autophagic 

marker expression levels in blood samples [103], suggesting a longer interval of fasting 

may be necessary. However, improved methods of measuring autophagy are needed as static 

blood expression levels may not be sufficient to determine autophagic flux or tissue specific 

autophagy [104]. Moreover, feed composition may still be a critical factor independent of 

fasting duration.

Underlying metabolic disease.—An additional complicating factor is the increasing 

prevalence of obesity, diabetes mellitus, sarcopenia, and cancer among critically ill patients. 

Common to these diseases and disorders is the presence of metabolic dysregulation. 

While the prognostic relationships are evident, the mechanistic effects of these underlying 

metabolic diseases on the acute phase of sepsis are not as clear. Moreover, metabolic 

inflexibility could render septic patients with these co-morbidities less likely to respond to 

metabolic and nutritional interventions [105, 106].

Immune system and the microbiome.—Immunometabolism is an important 

component of host defense [107-109]. Metabolic determinants of successful host response 

are complex with both infection- and immune cell type-specificity. It is unknown whether 

nutritional and metabolic interventions optimal for the immune system could conflict with 

peripheral organ metabolic response under stress conditions [108]. Nutritional exposures and 

medications, especially antibiotics, will also alter the gut microbiota and intestinal integrity, 

of which both impact inflammation and host responses to sepsis [110, 111]. Balance of 

these potentially conflicting metabolic demands needs to be considered when designing 

appropriate nutritional interventions.

Conclusion

Sepsis is a distinct metabolic entity compared to other critical illnesses. As such, the optimal 

metabolic and nutritional management will likely differ between septic and non-septic 

critically ill patients. Thus, it is critical to understand the metabolic determinants of host 

defense and disease tolerance. Growing evidence suggests that a switch towards a metabolic 

state favoring FAO, ketogenesis and autophagy may be protective in bacterial sepsis. In fact, 

several lines of preclinical evidence support FAO and autophagy as mechanisms to limit 

septic AKI. Development of bedside methods to accurately measure substrate preferences 

and capacity for utilization is needed to avoid excess nutrient delivery that could cause harm, 

while optimizing metabolic pathways that promote survival.
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Abbreviations:

AKI acute kidney injury

CRRT continuous renal replacement therapy

EE energy expenditure

FAO fatty acid oxidation

mTOR mammalian target of rapamycin

NR not reported

PGC1α peroxisome proliferator-activated receptor gamma coactivator 1-

alpha

PPARα peroxisomal proliferator-activated receptor

RCTs randomized controlled trials
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Key points:

1. Metabolic alterations associated with sepsis may represent protective defense 

mechanisms.

2. Without fully understanding sepsis pathophysiology, iatrogenic interventions 

meant to correct abnormal clinical parameters such as hyperglycemia and 

negative nitrogen balance could lead to harm.

3. Similar to decreased visceral proteins, negative nitrogen balance likely 

reflects ongoing inflammation and would not serve as an appropriate target 

for nutrition therapy.

4. Excess glucose and insulin exposure could lead to inhibition of fatty acid 

oxidation and autophagy, metabolic pathways that support survival and limit 

AKI in preclinical sepsis models.

5. Development of bedside methods to accurately measure substrate preferences 

and capacity for utilization is critically needed.
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Figure 1. Cohort heterogeneity in intensive care unit nutrition therapy clinical trials
A. Study population by intensive care unit setting by percentage. B. Study population by 

type of critical illness by percentage. NR, not reported.
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Figure 2. Nitrogen balance in health and disease.
In the absence of inflammation, positive nitrogen balance and muscle protein synthesis are 

possible. Excess dietary protein in the presence of ongoing inflammation due to diseases 

such as sepsis, will lead to wasted nitrogen in ureagenesis and could cause harm.
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Figure 3. Metabolic effects of glucose and insulin.
Glucose oxidation promotes lipogenesis and inhibits fatty acid oxidation. In response to 

elevated blood glucose levels, secreted insulin regulates glucose storage while inhibiting 

fatty acid oxidation, ketogenesis, and autophagy through the activation of mTOR, a strong 

inhibitor of autophagy. PPARα and PGC1α promote fatty acid oxidation, while PPARα 
activates both fatty acid oxidation and ketogenesis. Fatty acid oxidation, ketogenesis, and 

autophagy have all been proposed as protective pathways in sepsis. Thus, excess glucose or 

carbohydrate nutritional delivery and the resulting obligate insulin requirements could lead 

to suppression of these protective metabolic pathways.
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