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Abstract

Research on segmentation of the hippocampus in magnetic resonance images

through deep learning convolutional neural networks (CNNs) shows promising

results, suggesting that these methods can identify small structural abnormalities of

the hippocampus, which are among the earliest and most frequent brain changes

associated with Alzheimer disease (AD). However, CNNs typically achieve the highest

accuracy on datasets acquired from the same domain as the training dataset. Transfer

learning allows domain adaptation through further training on a limited dataset. In

this study, we applied transfer learning on a network called spatial warping network

segmentation (SWANS), developed and trained in a previous study. We used MR

images of patients with clinical diagnoses of mild cognitive impairment (MCI) and AD,

segmented by two different raters. By using transfer learning techniques, we devel-

oped four new models, using different training methods. Testing was performed

using 26% of the original dataset, which was excluded from training as a hold-out test

set. In addition, 10% of the overall training dataset was used as a hold-out validation

set. Results showed that all the new models achieved better hippocampal segmenta-

tion quality than the baseline SWANS model (ps < .001), with high similarity to the

manual segmentations (mean dice [best model] = 0.878 ± 0.003). The best model

was chosen based on visual assessment and volume percentage error (VPE). The

increased precision in estimating hippocampal volumes allows the detection of small

hippocampal abnormalities already present in the MCI phase (SD = [3.9 ± 0.6]%),

which may be crucial for early diagnosis.
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1 | INTRODUCTION

Many neurodegenerative diseases cause volume loss in the brain

region of the hippocampus (Albert et al., 2011; Minkova et al., 2017;

Persson et al., 2017; Ten Kate et al., 2017), usually due to cellular

death and synaptic loss (Adriano, Caltagirone, & Spalletta, 2012;

Courchesne et al., 2000; Moodley et al., 2015).

Among them, Alzheimer disease (AD) is a neurodegenerative dis-

ease clinically characterized by progressive decline of cognitive func-

tion, which in most cases starts with the isolated impairment of

memory (a phase indicated as mild cognitive impairment [MCI]) and

eventually evolves to overt dementia, defined by the loss of social and

occupational function due to cognitive impairment (McKhann

et al., 2011). One of the major questions in dementia research is

which MCI subjects are more likely to progress to dementia (Fischer

et al., 2007; Petersen et al., 2005; Ravaglia et al., 2006). With this pur-

pose, several studies found that lower hippocampal volume in the

MCI phase is related to progression to AD dementia (Jack Jr.

et al., 2010). Indeed, hippocampal atrophy has been included among

the imaging biomarkers suggestive of neurodegeneration in the

criteria for “MCI due to AD” (Albert et al., 2011). Thus, assessing hip-

pocampal atrophy is crucial for a timely diagnosis of syndromes char-

acterized by cognitive impairment, especially in their early phases

(Winblad et al., 2004).

Segmentation of magnetic resonance (MR) images allows in vivo

volumetric assessments to be made of structures of interest and has

been widely used for measurement of the hippocampus (Minkova

et al., 2017; Tondelli et al., 2012; Yushkevich et al., 2015). Segmenta-

tion maps can be produced manually or automatically. Manual

segmentations of the hippocampus are time consuming and rater-

dependent, and therefore there is increasing need for reliable auto-

matic segmentation tools to be used in clinical practice, which can be

used flexibly, independently of protocol and scanner.

Convolutional neural networks (CNNs) are a deep learning

(DL) strategy for image processing, that has proved to be an effective

technique for medical image segmentation (Novosad, Fonov, Collins, &

Alzheimer's Disease Neuroimaging, 2020; Sarvamangala &

Kulkarni, 2021; Zavaliangos-Petropulu et al., 2020). In CNNs, there

are many processing blocks that implement convolution operations

followed by nonlinear (activation) functions and downsampling

(pooling) operations, along with other potential elements such as ways

of rescaling output values (i.e., batch normalization). Each convolution

kernel consists of a set of numbers, and these are the main parame-

ters in the network, which are adjusted during training (along with

other parameters associated with some of the other operations, for

example, batch normalization). In each block there is a set of convolu-

tion kernels, and each produces a separate image, which are stacked

together (often referred to as different channels) and typically the

number of channels (or depth) in the block outputs increases as we go

further into the network. It is also common for the pooling operations

to continually decrease the spatial size of the images in the outputs,

while at the same time the number of these channels is increasing. An

exception to this is in the U-Net where initially (in the encoder) the

spatial size is decreased until a certain point and then (in the decoder)

the spatial size is increased (upsampling, often via specialized steps

such as a transpose convolutional layer) to bring the information back

to the size of the original image (e.g., to do segmentation). In addition,

the U-Net also directly transfers information across from earlier

stages, in the encoder, to the decoder (these are called skip connec-

tions) which provides precise spatial localization to the network, while

the images being upsampled provide contextual information. As

opposed to fully connected neural networks, CNNs maintain local

spatial information and translational invariance, making them the most

suitable networks for computer vision problems (Kayhan &

Gemert, 2020).

However, one of the main limitations of CNN-based models is

that they often perform poorly when applied to images belonging to a

domain (defined by the type of scanner, MRI sequences, and patient

variety) that is different from the training dataset (Cheplygina, de

Bruijne, & Pluim, 2019; Dinsdale, Jenkinson, & Namburete, 2021). In

order to be able to transfer the ability of the CNN to work accurately

in another domain with only a small labeling effort, it is possible to use

the transfer learning technique. This partially maintains the knowledge

from the original training dataset, but also adds new information from

a limited number of examples from the new domain (Cheplygina

et al., 2019; Pan & Yang, 2010).

Here, we test the efficacy of using transfer learning with SWANS

(spatial warping network for segmentation), a fully supervised CNN

method recently developed (Dinsdale, Jenkinson, & Namburete, 2019),

for hippocampal segmentation of T1-weighted images. The original

training dataset used for the development of the SWANS network con-

sisted of images from patients with AD, MCI, and cognitively healthy

elderly controls from the Alzheimer Disease Neuroimaging Initiative

(ADNI) project that were labeled according to the EADC-ADNI Harmo-

nized Hippocampal Protocol (HarP) (Boccardi et al., 2015; Dinsdale

et al., 2019; Frisoni & Jack, 2015).

In the present study, we tested the performance of transfer

learning on three image datasets of patients with MCI and AD, that

were different to the ADNI dataset in terms of scanners and acqui-

sition protocols. The aim of this study was to fine-tune the SWANS

network to automatically perform accurate hippocampal volume

assessments in domains different from the training one, so that it

will be possible to observe small changes in a wide range of patient

scans.
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2 | MATERIALS AND METHODS

First, we tested the performance of SWANS directly, only trained with the

original HarP/ADNI data, on three new imaging datasets. The code is pub-

licly available (https://github.com/ericabalboni/SWANS), as well as the

used image datasets (https://identifiers.org/neurovault.collection:12227).

Second, we performed transfer learning and assessed if it intro-

duced significant and meaningful changes. Evaluations were done by

comparing SWANS' segmentations to raters' segmentations: hippo-

campi in all the datasets were manually segmented using FSLeyes

(from FSL) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012)

twice, by two different raters, who had been trained to perform hip-

pocampal segmentation according to the harmonized hippocampal

protocol (HarP) (Frisoni & Jack, 2015).

The subset of the ADNI dataset, on which SWANS had been origi-

nally trained, consisted of 100 T1-weighted images, segmented

according to the HarP protocol in MNI 1 mm resolution space (Boccardi

et al., 2015; Frisoni & Jack, 2015). This dataset had been used to train

the DL CNN, consisting of an initial 3D encoder-decoder U-Net architec-

ture (Ronneberger, Fischer, & Brox, 2015), from which the network

learns a warping transformation map to be applied to an initial ellipsoidal

mask, which ultimately becomes the segmentation map of the hippo-

campus (Figure 1) (Dinsdale et al., 2019). The last CNN section is a spa-

tial transformer network (Jaderberg, Simonyan, Zisserman, &

Kavukcuoglu, 2015) adapted to perform local transformations.

3 | DATASETS

The three new datasets used in the present study differ in population

demographics, scanner, and image protocol. Each dataset had been

acquired as part of a study approved by the local ethical committee,

for which participants had given written consent.

3.1 | Dataset 1

The first dataset included 31 T1-weighted brain images from

31 patients with MCI. They had been acquired with the sequence

detailed in Table 1, on the 3 T General Electric (GE) Signa Architect

scanner of the University Hospital of Modena, Italy. Participants had

undergone extended clinical and biomarker assessment as detailed in

a previous study (Chiari et al., 2021).

3.2 | Dataset 2

This dataset consisted of 30 T1-weighted brain images from patients

with MCI. Images were acquired on the 3 T Philips Achieva scanner of

the OCSAE Hospital of Modena (see Table 1 for acquisition parame-

ters). Participants had undergone extended clinical and biomarker

assessment as detailed in a previous study (Tondelli et al., 2018).

3.3 | Dataset 3

The dataset included 12 T1-weighted brain images from patients with

AD. They were acquired on the 3 T Siemens Magnetom scanner of

the Oxford Centre for Magnetic Resonance (OCMR) at the John Rad-

cliffe Hospital in Oxford, UK (Table 1). Participants had undergone

extended clinical and neurological assessment as detailed in a previous

study (Zamboni et al., 2013).

3.4 | Preprocessing

Brain extraction was performed with BET (Smith, 2002), part of

FMRIB Software Library (FSL) (Jenkinson et al., 2012). SWANS takes

F IGURE 1 Structure of the u-net: black layers were kept fixed for the transfer learning, while red layers were trained. Each layer uses a ReLu
activation function (Nicola K. Dinsdale et al., 2019). The final section of the network, the spatial transformer, is not shown but only has fixed
parameters
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as input images in standard MNI152 1 mm space (Grabner

et al., 2006), therefore all the brain volumes and the manually seg-

mented hippocampal maps were registered to it, using the FLIRT and

FNIRT tools from FSL (Greve & Fischl, 2009; Jenkinson, Bannister,

Brady, & Smith, 2002; Jenkinson & Smith, 2001). Manual segmenta-

tion maps were thresholded at 0.5 and binarized after applying the

same spatial transformation obtained from the registration of the

T1-weighted image.

SWANS also needs inputs to be cropped images of a single hippo-

campus with size 32 � 64 � 64. Image cropping was included in the

algorithm. Moreover, intensity values were scaled to be largely

between 0 and 1: the automated algorithm divided the registered

image by the 99th percentile and cropped the volume around each

hippocampus.

3.5 | Training

Transfer learning was performed by keeping the weights of the

encoder fixed, consisting of the first five layers, and fine-tuning

the subsequent weights, associated with the decoder, consisting of

the remaining four layers (Figure 1).

We split the original datasets into training, validation, and testing

using the proportions 64%, 10%, and 26%, respectively. Testing and

validation images were never used during training. The validation

images were used to prevent the model overfitting to the training data

during the tuning process and the testing images were used to inde-

pendently evaluate the network's performance on new images after

training and tuning. Training, testing, and validation datasets con-

tained images from all the three different original datasets in almost

equal proportions.

In particular, 19 subjects (with a total of 38 hippocampi)

including 8 subjects with MCI from Dataset 1, 8 subjects with MCI

from Dataset 2, and 3 subjects with AD from Dataset 3 were sep-

arated from the training dataset and kept as a hold-out test

dataset.

We used four methods of training, combining different training

datasets, and learning approaches. For each method we performed

data augmentation by flipping the images left–right, exploiting brain

symmetry. The dataset was then further doubled, because we used,

as a gold standard, both of the two manual segmentations.

The loss function to be used was the same as in a previous

study (Dinsdale et al., 2019). It was a combination of binary cross-

entropy and Dice coefficient loss, with a relative weighting factor α

of 0.6:
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We used Python version 3.6.9, with Keras (version 2.3.1) and

Tensorflow (version 1.15.0). Training was optimized with the Adam

optimizer. Adam is a generalization of the stochastic gradient descent

optimization method, using a different learning rate for each parame-

ter and updating the rates based on the statistics (moments) of recent

gradients. This is useful in CNNs as different layers show highly

diverse loss function gradients (Kingma & Ba, 2015). The learning rate

was chosen to be 10 times smaller than the default (1 �10�4), as the

default behavior was fast but unstable, while other hyperparameters

were left at their default values. The mini-batch method was chosen

for training, using a batch size of 2 during the training.

It took 50 epochs with an Intel Xeon CPU E5 2620 version 2. The

training time varied with the size of the dataset: with a training

dataset of 54 images the time per epoch was of 1 hr, while with

22 and 23 images the time was of half an hour. In contrast, prediction

time was only a few seconds. Outputs of SWANS were thresholded

at 0.5, and changes to this threshold had little influence as all the out-

put values were either higher than 0.9 or lower than 0.1, meaning that

voxels had a probability of belonging to the hippocampus that was

either higher than 90% or smaller than 10%.

3.6 | Training methods

Below, we describe the characteristics of the four training methods

for transfer learning, which gave rise to the four new models. In addi-

tion, the baseline model is included in the evaluations, alongside these

four new versions:

• “Transfer All” model. This was constructed by varying the parame-

ters (weights and biases) of the four last layers and with the training

dataset consisting of 54 images (23 MCI from dataset 1, 22 MCI

from dataset 2, and 9 AD from dataset 3). Five hippocampi were

excluded from training and used as validation data (2 MCI from

dataset 1, 2 MCI from dataset 2, and 1 AD from dataset 3).

• “Training All” model. In this case, the weights of the “Baseline”
model were used for initialization and all the weights (and biases) in

the network were allowed to vary during training. The training and

validation datasets were the same as for the “Transfer All”model.

• “Transfer DS1” model. This was again obtained through transfer

learning, only varying the parameters in the four last layers (as in

the “Transfer All” model). The training dataset, for this case, only

included images belonging to the first dataset. It consisted of

23 images, among which 1 was excluded from training and used as

validation. It was the same image included in the validation dataset

of the “Transfer All” and “Training All” models.

• “Transfer DS2” model. This was obtained through transfer learning,

only varying the parameters in the four last layers. The training

dataset included 22 images, all belonging to dataset 2. Of these,

one of them was used for validation and excluded from training. It

was the same image included in the validation dataset of the

“Transfer All” and “Training All” models.

• “Baseline” model (Dinsdale et al., 2019).

The “Transfer DS1” and “Transfer DS2” models were constructed to

investigate if it was better to customize SWANS for a specific acquisi-

tion method or to have more variability in the training for transfer

learning. The “Transfer All” model was, instead, introduced to com-

pare the performance of transfer learning on a complete training set.

3.7 | Validation metrics

We evaluated SWANS' voxel-wise segmentation accuracy and its vol-

ume accuracy. Segmentation accuracy was estimated both visually

and numerically, using the Dice coefficient, estimating the overlap

between segmentation maps from SWANS with the manual ones

from the two raters (Zou et al., 2004). Dice coefficients associated

with SWANS were calculated using separately rater 1 and rater 2 as

gold standard, without calculating a mean value for hippocampus.

Visual assessment was performed by the two raters.

Hippocampal volume accuracy was evaluated by the volume per-

centage error (VPE), calculated in the following way:

VPE¼100 �V
exp�Vth

Vth

where Vexp is the hippocampal volume from SWANS and Vth is the mean

of the manually segmented hippocampal volumes (i.e., the gold standard

volume) from the two raters. The mean of the VPE values represents sys-

tematic difference from the gold standard and the SD of the VPE values

represents SWANS' precision in measuring hippocampal volume.

3.8 | Statistical analysis

All the statistical analyses were performed with Matlab 2020b (The

MathWorks, 2020). First, we evaluated the reliability between the

two raters in measuring hippocampal volume by calculating the

intraclass correlation coefficient (ICC), without considering the sys-

tematic difference, that is, as norm-referenced reliability

(Salarian, 2021). We interpreted the outcome ICC > 95% as excellent

reliability, meaning that one rater would have been enough for gold

standard, 75% < ICC < 95% as good reliability, meaning that both

raters were necessary, ICC < 75% as not acceptable expertise of at

least one of the two raters (Koo & Li, 2016). The calculation was per-

formed in subject space to avoid normalization bias.

Second, we tested SWANS “Baseline” segmentation maps and

hippocampal volumes for all the datasets. We compared Dice coeffi-

cients between the two raters to Dice coefficients between SWANS

and the two raters, using a graphical boxplot representation. Hippo-

campal volumes from SWANS were compared to the mean volume

from the two raters, through a Bland Altman Plot (Rik, 2021).

Third, we tested new models, evaluating them using manual seg-

mentations from the hold-out test sets that were not used in the

training phase. We verified that all distributions of Dice coefficients

and VPE values were Gaussian through Kolmogorov Smirnov tests

BALBONI ET AL. 3431



(p < .05). Then, we used a nonparametric Kruskal–Wallis test, evaluating

Dice coefficients associated with segmentations from the new models

and from the “Baseline” model. The null hypothesis was that segmenta-

tions from the new models and the “Baseline”model were all equivalent.

Hippocampal volumes obtained from the baseline SWANS model

and from the new models were compared to the gold standard vol-

umes with Bland Altman plots. To test if the new models were more

precise than the “Baseline” model in measuring hippocampal volume,

we performed Bartlett's test for homoscedasticity using VPE values

from the different models (Bartlett, 1937). The null hypothesis was

that VPE values from the new models had a variance that was equal

to that of the “Baseline” model.

4 | RESULTS

The ICC evaluating the agreement between the two raters in measur-

ing the hippocampal volume was 85%. Boxplots comparing Dice coef-

ficients associated with the raters and SWANS (Figure 2) showed that

the compatibility between the two raters was significantly higher

(p < .001) than that between SWANS and the two raters, as can also

be seen from the summary statistical parameters (Table 2). A Bland

Altman plot comparing SWANS and the gold standard (Figure 3)

showed that SWANS systematically estimated smaller hippocampal

volumes and had more difficulty for larger hippocampi. From these

results, we could see that models constructed with transfer learning

had the capacity to perform better.

From the Kruskal–Wallis test results it can be seen that the mean

Dice coefficients from the different models were significantly differ-

ent (p < .001, Figure 4). Following this, paired Wilcoxon rank sum

tests were performed, showing that all the new models had signifi-

cantly higher Dice coefficients than the “Baseline” model (p < .001)

and that the new models did not differ from each other.

The results of Bartlett's test on VPE values from both the

“Baseline” model and the new models showed no significant differ-

ences among models (p = .06), even though all new models had

better precision than the “Baseline” model (i.e., lower SDs, Table 3,

Figure 5).

Bland Altman plots (Figure 6) showed that hippocampal volume

estimates from the new models were slightly larger than the gold

standard. Also, “Transfer DS2” model clearly had the worst perfor-

mance for larger hippocampal volumes.

4.1 | Visual assessment

Figure 7, whose elements are presented separately in Figures S1-S32,

Supporting Information, shows four characteristic examples from the three

datasets, with their corresponding segmentations performed by different

models and by the two raters. It shows that, qualitatively, segmentations

were performed in a satisfactory way by all models, but we categorized

four types of issues associated with the segmentations of the network

from the “Baseline” model that were completely or partially absent in the

new models' segmentations. No additional problems were introduced by

the new models. Each example shown in Figure 7 corresponds to a differ-

ent type of issue that the “Baseline” model had in segmenting the hold-

out test dataset of 38 hippocampi. We comment them on below.

4.1.1 | Isolated voxel allocation

For 22 hippocampi, the “Baseline” model included a few isolated

voxels that were completely outside of the hippocampal region within

its segmentation. In the first row of Figure 7 this can be seen for the

right hippocampus of a subject of the second dataset. All the other

models showed an improvement in hippocampus localization, espe-

cially with regards to the white matter region. However, the “Transfer
DS1” model still included some voxels under the parahippocampal

white matter, and only the “Training All” model eliminated the caudal

part that is close to the temporal horn.

4.1.2 | Incomplete hippocampal head

For 13 hippocampi, the “Baseline” model had difficulties in completely

segmenting the most anterior part of the hippocampus. For the sub-

ject shown in the second row of Figure 7, a considerable portion was

F IGURE 2 Boxplots of Dice coefficients for the SWANS network
with the “Baseline” model (using separately labels from rater 1 and
2 as ground truth) on the left and for the manual raters (comparing
the raters with each other) on the right, using the whole dataset of
146 hippocampi

TABLE 2 Statistical values of the Dice coefficients for SWANS
with the “Baseline” model (comparing SWANS separately to rater 1
and rater 2) and for the two raters

SWANS “Baseline” Raters

Dice coefficient:

Median 0.847 0.880

Interquartile range 0.826–0.862 0.866–0.896

Mean 0.838 0.880

SD 0.04 0.03
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F IGURE 3 Bland Altman plot
comparing hippocampal volumes from the
SWANS network with the “Baseline”
model to the gold standard (the average
of the two manual labels). Positive values
indicate that hippocampal volumes from
SWANS were larger than gold standard
and vice versa

F IGURE 4 Boxplot of Dice
coefficients for the SWANS network with
different transfer learning models
(considering separately labels from rater
1 and 2 as ground truth), using a hold-out
test dataset of 38 hippocampi

TABLE 3 Statistical values of VPEs and Dice coefficients for each SWANS model

Baseline Transfer DS2 Transfer DS1 Transfer all Training all

Dice coefficient

Median 0.852 0.881 0.884 0.884 0.885

25th to 75th percentiles 0.835 to 0.867 0.858 to 0.895 0.859 to 0.898 0.864 to 0.898 0.858 to 0.898

Mean 0.848 0.874 0.876 0.878 0.878

SD 0.03 0.03 0.03 0.03 0.03

VPE

Median �6.4% 3.1% 1.2% 5.0% 2.4%

25th to 75th percentiles �9.7% to �1.4% 0.46% to 5.4% �1.9% to 4.5% 2.1% to 7.1% 0.48% to 4.8%

Mean �5.7% 2.9% 1.1% 4.1% 2.1%

SD 5.8% 4.9% 4.2% 4.5% 3.9%

Note: The mean and median values of VPE highlight systematic difference with the gold standard, while SDs and quartile ranges (between the 25th and

75th percentiles) show the precision of the algorithm in estimating hippocampal volume.
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ignored. Other models still neglected a tiny area close to cerebrospinal

fluid, but their segmentation was more complete.

4.1.3 | Incomplete lateral side

For 11 hippocampi, the “Baseline” model excluded a large part of the

lateral side. In the third row of Figure 7, the “Baseline” model

segmentation missed a large portion of anterior-right part, while all

the other models covered almost the whole area.

4.1.4 | Additional tract in the caudal region

For three hippocampi, from two subjects, the “Baseline” model seg-

mented a white matter and enthorinal cortex tract in the most caudal

F IGURE 5 Boxplots of VPE values for
the SWANS network with different
transfer learning models, using a hold-out
test dataset of 38 hippocampi. The
median values highlight a systematic
difference with the gold standard, while
the interquartile ranges show the
precision of the algorithm in estimating
hippocampal volumes

F IGURE 6 Bland Altman plot comparing hippocampal volumes from the SWANS network, for the different transfer learning models, to the
gold standard. Positive values indicate that hippocampal volumes from SWANS were larger than gold standard and vice versa
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region. In the fourth row of Figure 7, an AD subject from the third

dataset is shown. The other subject in which this phenomenon

occurred belongs to the first dataset. For the case shown in the figure,

it is possible to notice that additional voxels were partially removed

by the “Transfer DS2” and “Transfer All” models, and completely

removed by the “Training All” model.

5 | DISCUSSION OF RESULTS

In this study, we performed transfer learning on a CNN called

SWANS (Dinsdale et al., 2019), that produces hippocampal segmen-

tations, to improve the accuracy of hippocampal volume estimates,

with the ultimate aim of being able to detect, in clinical settings,

very small volume abnormalities in the hippocampi of patients

with MCI.

Through intraclass correlation coefficient values, we determined

that the agreement between the two raters was good, but not perfect,

meaning that one rater alone would not have been sufficient to build

a reliable gold standard. We used three types of validation: quantita-

tive evaluation of segmentation maps using Dice coefficients, quanti-

tative hippocampal volume evaluation using VPE, and visual

assessments of segmentation maps.

Dice coefficient values reflected how much the segmentation

maps from the algorithms overlapped with the average of the

raters' gold standard maps. We demonstrated that all of the new

models obtained through transfer learning had higher Dice coeffi-

cient values than the ones from the “Baseline” model. This was

expected, as the loss function of the network included a Dice coef-

ficient score. The new models did not show a significant difference

in their mean Dice coefficient, and therefore, they were deemed

statistically equivalent.

VPE values showed differences in hippocampal volumes calcu-

lated from a segmentation map of a model and the average of the

ones from the two raters. Its SD represents the precision associated

with the volume estimates, while its mean represents any systematic

difference. Although the systematic difference was reduced by the

new models, precision was not significantly improved after the train-

ing. However, all new models did present smaller SDs in VPE com-

pared to the “Baseline” model, though this difference, and the

differences in mean Dice coefficient, might not have been detected in

this instance because of the limited size of the hold-out test dataset.

From visual assessment, the problems associated with the “Base-
line” model were completely or partially corrected by the new models.

The model that had best visual performance was “Training All,” which

also had the highest mean Dice coefficient and the smallest variance

F IGURE 7 Hippocampal segmentation maps produced by different models, compared to ones from the two raters. In the first row the red
arrows highlight the presence of isolated voxel labels, in the second row they show incomplete portions of the hippocampal head, in third row
they indicate incomplete portions in the lateral side, and in the fourth row they highlight an additional tract in the caudal region. Dice coefficient
and VPE scores of each segmentation are showed below the corresponding image. Subjects in rows 1 and 2 come from dataset 2, subject in row
3 from dataset 1 and subject in row 4 from dataset 3; all views are sagittal and all views except row 4 are from the right hippocampus; rows 1 and
2 show medial slices and rows 3 and 4 show lateral slices
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in VPE. Therefore, the “Training All” model was chosen as the best of

all the models tested.

The VPE associated with the chosen model has a SD of (3.9

± 0.6)%, meaning that for approximately 68% of the time the error

committed by the algorithm is less than 3.9%. This precision can be

useful for assessments in hippocampal volume changes in the MCI

stage, as AD hippocampi show reductions of the order of 25% and

MCI of roughly 11% compared to matched healthy controls

(Thompson et al., 2003, 2007).

The chosen model (“Training All”) required the longest time to

train, due to the large number of images to be labeled. Its better per-

formance is probably related to the size of its training dataset, which

is comparable in size to that of the Baseline model, so it was sufficient

to also optimize the parameters belonging to the first layers. More

specifically, the effort to create manual segmentation labels for the

“Training All” model involved two raters, with 2 weeks of initial train-

ing, and nearly another 1.5 months to segment the images in datasets

1, 2, and 3, while the computational training time was only 2 days.

The computational time needed to perform all the preprocessing and

processing steps to obtain the two segmentation maps of the hippo-

campi, from the all the datasets, was about 20 min per subject for all

the models, which is a lot less than the time needed to generate man-

ual segmentations per subject.

Although the “Training All” model showed the best segmentation

quality, it also required a major effort. If possible, performing transfer

learning by using previous parameters (weights and biases) only as an

initialization and using as many images as possible (almost 50 subjects

in our case) for training is the best strategy. However, there is a sub-

stantial cost in time for manually segmenting the images, so that it

might not be feasible to reach such numbers. In the case where fewer

manual segmentations are available, it would still be recommended to

use the transfer learning technique, as clear benefits were seen even

with the smaller subsets of data. Finally, it is important to evaluate the

benefits in a visual way, since the simpler quantitative measures were

not as useful in showing the important changes.

In fact, the quantitative assessment of the segmentation maps

was not particularly helpful in establishing whether there had been an

improvement in the segmentation that could be potentially clinically

useful. In particular, Dice coefficients were too sensitive to systematic

changes, while VPE values wrongly improved when the segmentation

was overall smaller and included areas outside the hippocampus.

Instead, visual assessment clearly showed the superiority of the new

models and, in particular, of “Training All.” The most important

improvement in terms of clinical implication given by transfer learning

techniques consisted of eliminating the cases where the “Baseline”
model had produced segmentations with several critical inaccuracies.

These cases were not found in the majority of subjects but could have

been sufficient to bias a clinical study that used, as an example, the

value of hippocampal volume in predicting conversion to dementia.

Indeed, in clinical settings the outliers frequently make a big differ-

ence. In this sense, we can conclude that the “Training All” strategy

delivered a clinically useful level of performance, with segmentations

that otherwise would have not been considered of sufficient quality

for clinical purposes. To test if this improvement could have been

already detected at a clinical level, we used Spearman rank-order test

to evaluate a possible correlation between hippocampal volume and

mini mental state examination (MMSE). Hippocampal volumes from

both models had a significant positive correlation with MMSE score

(p < .05) with no evident difference between models, suggesting that

further analyses are needed to fully demonstrate the clinical benefits

of transfer learning.

The main limitation of this study was the relatively small number

of subjects used to test the new models, which constrains the statisti-

cal power of the results. The main strengths were having two expert

raters perform the segmentations of each hippocampus, as we could

more reliably construct the gold standard and perform key visual

assessments over the varying datasets.

6 | CONCLUSION

Transfer learning has been successfully deployed on a DL CNN in this

work, demonstrating that we could improve the performance of the

network, in a clinically meaningful way, on new datasets with different

domains than the one used for the original training. This has important

implications for the utility of DL methods across a wide range of clini-

cal settings, since pre-trained models often underperform in data col-

lected in different hospitals and on different machines. An estimate

for the possible improvement that can be obtained from an extra set

of manually labeled images is indicated by this work, but highlights

that expert visual assessments are more valuable than simple statisti-

cal measures. Future work should examine the limits regarding size of

the additional datasets, and how this impacts the possible improve-

ments, as well as ways of quantifying performance that are more clini-

cally relevant.
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