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Abstract

Cardiorenal syndrome type 1 (CRS-1) is acute kidney injury (AKI) due to acute worsening of 

cardiac function. More than 20% of patients with acute heart failure develop AKI, and AKI 

predicts poor outcome. Although a number of potential pathways have been suggested as heart-

kidney connectors which might drive the syndrome, there are significant barriers to investigation, 

such as a paucity of animal models, a lack of specific biomarkers, and an inconsistent temporal 

and causal relationship between changes in cardiac flow and development of renal dysfunction. 

Thus, mechanisms of heart-kidney interaction are still unclear, and there is no specific or 

effective therapy for CRS-1. This review therefore focuses on mitigating these challenges in 

the investigation of CRS-1. We review the available in vitro and in vivo models and focus 

on mechanistic insights gained from those models. In particular, we focus on non-flow and 

endocrine mediators of CRS-1 such as heart-derived messengers which alter renal function and 

which may represent targetable pathways in this syndrome. As precise connectors of heart-kidney 

interaction remain unclear, the establishment of animal and relevant cell-culture models and 

further investigation are required.
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Introduction

Acute cardiorenal syndrome (CRS-1) is a common and morbid complication of acute 

cardiovascular disease. It is characterized as acute kidney injury (AKI) following rapid 

worsening of cardiac function, such as acute myocardial infarction, acute decompensated 

heart failure, and cardiac surgery [1] (Fig. 1A). Frequency of CRS-1 in cardiovascular 
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diseases is well reported. For example, 43% of patients recovered from cardiac arrest 

suffer from CRS-1 [2]. Heart failure patients with AKI suffer much greater mortality 

than those without AKI, and CRS-1 also associates with longer hospital stay and higher 

risk of readmission. Thus, CRS-1 is a driver of mortality and morbidity in patients with 

cardiovascular disease. Furthermore, AKI patients, including those with CRS-1, suffer 

elevated risk of chronic kidney disease (CKD). Therefore, understanding CRS-1 is critically 

important.

Relationship of cardiac flow to development of AKI in CRS-1

Autoregulation of renal filtration pressure and rate were first described nearly a century ago; 

below the autoregulatory threshold, reduced cardiac output leads to reduced renal filtration. 

However, the relationship between decreased flow and renal cellular injury is less clear. 

Preserving/improving renal blood flow seems likely to prevent AKI, and hemodynamic goal-

directed therapy is recommended. However, evidence for those strategies is poor and some 

trials suggest no benefit. For example, in patients with septic shock, maintaining high mean 

atrial pressure (MAP) (80–85mmHg) did not reduce the incidence of AKI, need for renal 

replacement therapy, or mortality compared to lower MAP (65–70mmHg) [3]. Similarly, 

intraoperative hypotension is widely recognized as a harbinger of AKI. However, the timing 

of postoperative AKI is heterogenous, and other etiologies, such as nephrotoxin exposure, 

sepsis, and surgical intervention also contribute. These findings indicate that reduced renal 

blood flow may only partly explain CRS-1 pathophysiology. Therefore, it is necessary to 

understand the role of non-flow cardiorenal connectors.

CRS-1 Experimental Models

One major challenge in CRS-1 investigation is establishment of models which mimic 

the pathophysiology of the syndrome. Experimental models of kidney and heart disease 

are reductive to single systems (for example, coronary artery occlusion used to study 

heart disease, and renal vascular occlusion to study renal ischemia/reperfusion). While 

considerable knowledge is afforded by these models, only very limited studies have studied 

the effects of cardiac injury on renal physiology. Such investigations are most likely to 

explain clinical findings. A critical step is characterization of cardiac injury models with 

respect to their effects on kidney function in both the short- and long-term, followed by 

investigation of possible connecting mechanisms.

To investigate deeply the pathophysiology of heart-kidney interaction in CRS-1, several in 
vivo models have been used. For example, renal interstitial fibrosis and elevation of urinary 

and plasma neutrophil gelatinase-associated lipocalin (NGAL) level have been observed 

in a coronary artery ligation model [4], and podocyte injury was detected in an aortic 

regurgitation (AR) model [4]. It is also reported that 60% of spontaneous hypertensive 

rats (SHR) develop heart failure. Since these animals also develop proteinurea and renal 

dysfunction, acute changes in the heart function of SHR rats may offer another candidate 

CRS-1 model.[5].

We and others have modeled acute, reversible cardiac dysfunction using cardiac arrest 

and cardiopulmonary resuscitation in mice (CA/CPR, Fig. 1B–C). CA is induced by 
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potassium chloride injection. Eight minutes later, the animal is resuscitated with chest 

compressions and epinephrine. After recovery, severe AKI is observed. This model seems 

to mimic clinical CRS-1 well because CA/CPR-induced AKI is due to systemic ischemia 

and transient cardiogenic shock. CA/CPR reliably causes renal dysfunction in young and old 

mice of both sexes, with female protection which corresponds to clinical observations [6]. In 

the first 24h after resuscitation, reduced urine output and glomerular filtration are observed. 

Histologically at this time point, tubular epithelial vacuolization, proximal tubular brush 

border effacement, cell casts, and necrosis, concentrated at the corticomedullary junction, 

are observed. In addition, 7 weeks after CA/CPR, tubulointerstitial fibrosis, reduced renal 

function, and proteinuria are seen [7]. Interestingly, glomerular filtration rate temporarily 

recovers to normal after CA/CPR induced AKI, then gradually decreases. This time course 

is similar to cases of patients recovered from AKI, known as AKI to subclinical CKD. 

Another finding of interest is tubular vacuolization, which is rarely seen in renal ischemia/

reperfusion, but commonly observed in sepsis models, suggesting that systemic mediators 

like those which mediate renal injury in sepsis may be involved in CRS-1 due to CA/CPR 

[8]. Fu et al. have reported similar findings in a rat CA/CPR model. They induced cardiac 

arrest by alternating current electric shock. Serum creatinine and tubular injury were 

maximal at 24h, with improvement at later time points [9]. These findings suggest that 

CA/CPR may well mimic clinical CRS-1.

Overall, in vivo models vary in terms of difficulty, severity of injury, and mechanism of 

heart failure (Table 1). For example, CAL and AR cause some permanent heart failure, 

which means these models potentially include both CRS-1 and 2 [4]. SHR is a genetic and 

systemic hypertensive model, so the etiology of kidney injury may not be the direct effect of 

cardiac insult, except in the case of acute worsening of heart failure caused by hypertension 

[5]. Since the syndrome is heterogenous, disparate models may provide important insight to 

CRS-1 pathophysiology.

Candidate Cardiorenal Connectors

Cardiorenal connectors – regulators and mechanisms with interacting actions on heart 

and kidney function – are central to investigation of acute cardiorenal syndrome (Fig. 

1A). Examples of non-flow mediators in CRS-1 are venous pressure, sympathetic outflow, 

endocrine signals from other organs, and inflammatory signaling. Elevated renal venous 

pressure likely alters renal function in heart failure and animal models [10]. However, 

interventions to reduce renal venous pressure may be challenged by low cardiac output in 

CRS-1. Since some features of CRS-1 mimic those in sepsis (see above), and because other 

organs besides the kidney are injured when cardiac function is impaired, kidney injury may 

also be driven by systemic neurological, endocrine, or inflammatory response. Zhang et 

at. reported that toll-like receptor 4 (TLR4) contributes to CA/CPR induced AKI in mice. 

They observed that functional and histological severity of AKI after CA/CPR was attenuated 

in TLR4 knock out mice, in which the expression of TLR4 downstream signals were 

decreased [11]. A report that the plasma of CRS-1 patients induced monocyte apoptosis 

and that plasma caspase-8 activity associated with CRS-1 severity further suggests that 

systemic immune response may be a cardiorenal connector [12]. Similarly, Ramchandra et 

al. reported that neurohumoral interactions contribute to renal vasoconstriction and reduced 
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renal blood flow in a sheep heart failure model [13]. Our lab’s work in CA/CPR has 

revealed the importance of cardiac protein in heart-kidney connections, identifying cardiac 

LIM protein, also known as cysteine-glycine-rich protein-3 (CSRP3), as a putative connector 

[14]. In the heart, CSRP3 (also known as muscle LIM protein) is a critical myocardial 

differentiation factor which upregulates transcription of connective tissue genes (such as 

α-smooth muscle actin) [15]. CSRP3 is dramatically increased in the plasma of human 

cardiac arrest survivors and of mice after CA/CPR. Assessing renally-filtered CSRP3, we 

found significant upregulation after CA/CPR. Administration of recombinant CSRP3 to 

healthy mice led to renal dysfunction, proteinuria, and tubulointerstitial α-smooth muscle 

actin expression [14]. Based on these observations, renally-filtered, cardiac-specific CSRP-3 

seems to be a signaling mechanism in CRS-1. Together, these findings suggest that novel 

humoral connectors may play important roles in CRS-1, and that interrupting such signaling 

may provide a pathway to prevention.

Conclusion

It is widely recognized that CRS-1 worsens outcome in acute cardiovascular disease. In 

addition, recent studies have highlighted the interaction in AKI between the kidney and 

other organs, which may lead to multiple organ dysfunction. In conclusion, careful and 

stepwise elucidation of the complex pathophysiology of heart-kidney interaction is required 

and may be key to discovering novel therapeutic and preventive approaches in CRS-1, 

potentially improving both short- and long-term outcomes.
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Figure 1. 
Critical concepts in modeling cardiorenal syndrome, type 1 (CRS-1). A: Schema of 

cardiorenal syndrome. Acute kidney injury (AKI) following acute cardiovascular disease 

defines CRS-1. CRS-1 is mediated by various cardiorenal connectors, including loss of 

blood flow, immune mediators, and endocrine mediators such as cardiac LIM protein 

(Cysteine-glycine-rich protein-3; CSRP3). CRS-1 may induce or lead to progression of 

chronic kidney disease (CKD). Both AKI and CKD worsen the risk of further cardiovascular 

disease (CRS-3 and −4). B: Cardiac arrest and cardiopulmonary resuscitation (CA/CPR) is 
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a translational model of acute cardiorenal syndrome. Under isoflurane anesthesia, mice are 

carefully monitored by orotracheal ventilation, electrocardiography, and core temperature. 

Cardiac arrest is induced by potassium chloride injection via a jugular vein catheter. After 

the no-flow period, resuscitation is accomplished with chest compressions and intravenous 

epinephrine injection. C: CA/CPR induced AKI-CKD transition. In the early phase of CA/

CPR, severe renal injury is observed in histologically and functionally. After the temporal 

recovery of glomerular filtration, tubulointerstitial fibrosis and renal dysfunction gradually 

progress (AKI-CKD transition).
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