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We studied the secretion of recombinant human insulin-like growth factor 1 (rhIGF-1) from transformed
yeast cells. The hIGF-1 gene was fused to the mating factor a prepro- leader sequence under the control of the
constitutive ACT1 promoter. We found that the inactivation of the GAS1 gene in the host strain led to a
supersecretory phenotype yielding a considerable increase, from 8 to 55 mg/liter, in rhIGF-1 production.

Human insulin-like growth factor 1 (hIGF-1, or somatome-
din C) is a protein of 70 amino acids purified from human
serum (21). hIGF-1 is a hormone of vast pharmaceutical in-
terest, since it is responsible for the regulation of growth and
differentiation of various cell types (10). Native recombinant
hIGF-1 (rhIGF-1) has been expressed mainly in Escherichia
coli (14, 22), mammalian tissue cultures (2), and budding yeast
(3, 8), with productions ranging between 2 and 8 mg/liter. In
yeast cells, different homologous leader sequences have been
tested to promote secretion of rhIGF-1 (24); however, secre-
tion can be achieved only using the prepro-a-factor sequence,
or, even if in smaller quantities, by fusion between the SUC2 or
PHO5 signal peptide and the pro-a-factor (paFL) (5). Proba-
bly only paFL confers on the hIGF-1 molecule an optimal
conformation that is crucial for translocation (5). Nevertheless,
native rhIGF-1 represents only 10 to 20% of the total rhIGF-1
production; most of the rhIGF-1 is inactive, essentially com-
posed of dimers or multimers. Such forms are due to the
formation of incorrect intra- and intermolecular disulfide
bonds (4, 7, 23). In this report we describe an integrated ap-
proach to increasing the secretion and/or production in Sac-
charomyces cerevisiae of monomeric correctly folded rhIGF-1
using an expression system based on the prepro-a-factor leader
sequence. A single change in the genetic background of the
host strain allowed us to considerably increase the total se-
creted rhIGF-1.

Production of native rhIGF-1 from recombinant yeast cells.
For the production of rhIGF-1 from transformed budding
yeast cells, we used the expression vector p539/12 (13) and the
yeast strain GcP3 (MATa pep4-3 prb1-1122 ura3-52 leu2 gal2
cir°) as the host. On the plasmid p539/12, which bears the
entire 2mm sequence, the hIGF-1 gene is fused with the pre-
pro-a-factor sequence under the control of the constitutive
ACT1 yeast promoter. The GcP3 host is [cir°]. This combina-
tion—GcP3[p539/12]—allows a stable amplification of the
plasmid at a very high copy number per cell (100 to 200) during
growth on both mineral-selective and rich complex media (ref-
erences 1, 6, 11, and 28 and data not shown). To obtain high
productions of the recombinant biomass, we cultured the re-
combinant host in a fed-batch stirred tank bioreactor, follow-
ing a simple protocol where the addition of a solution of fresh

glucose and other nutrients was controlled based on the etha-
nol concentration (20). We ran many different fed-batch tests,
changing the composition of the feed medium. We obtained
productions of monomeric native rhIGF-1 from about 2 to 3
mg/liter (glucose [50%, wt/vol] used as feed) to 8.6 mg/liter
(glucose [50%, wt/vol], hydrolyzed casein [1.3%, wt/vol], and
other mineral elements [20] used as feed). Figure 1 plots the
production of monomeric native rhIGF-1 against the cell con-
centration during the time course of different fed-batch tests.
Cell concentration was determined with a Coulter Counter
(27). Monomeric and total rhIGF-1 were measured by high-
pressure liquid chromatography as described by Gellerfors et
al. (13); the total concentration of secreted proteins was de-
termined using the Bio-Rad DC protein assay kit. Interest-
ingly, for all the tests the native rhIGF-1 represented 1.2% of
the total secreted proteins and 10% of the total rhIGF-1 pro-
duced. Therefore, these data seem to indicate that the produc-
tion of rhIGF-1 is simply related to the amount of biomass of
the recombinant strain. Western analysis of total protein ex-
tracts did not reveal any intracellular rhIGF-1 accumulation
(data not shown).

Finally, neither the use of a stronger promoter (the inducible
UASGAL1–10) nor an attempt to lower the local product con-
centration in the endoplasmic reticulum (by using a single-copy
centromeric vector) gave interesting results (data not shown).

Development of a supersecretory phenotype. The GAS1
yeast gene codes for a glycoprotein anchored to the plasma
membrane by a glycosylphosphatidylinositol whose function is
necessary for the correct assembly of cell wall polymers in S.
cerevisiae. gas1D mutants show morphogenetic defects due to
changes in the composition and organization of cell wall con-
stituents (see reference 19 for a review). To test the effects (if
any) of such a mutation on rhIGF-1 secretion, the GAS1 gene
was inactivated in the GcP3[p539/12] transformed strain by the
one-step gene replacement procedure (25), yielding the strain
GcP3D12[p539/12]. The inactivation of the GAS1 gene in the
GcP3[p539/12] strain affected the morphology and the growth
rate, as already reported for other strains (18, 26). The main
effect on rhIGF-1 accumulation was particularly evident in
fed-batch fermentations, where the production phase in-
creased from about 50 h to about 115 h of fermentation. Figure
2 compares the time course fed-batch fermentations of the
GcP3[p539/12] and GcP3D12[p539/12] strains carried out at
pH 5.7 using glucose (50%, wt/vol), hydrolyzed casein (1.3%,
wt/vol) and other mineral elements (20) as feed. A much
higher production of total (535 to 540 mg/liter compared to 80
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to 85 mg/liter) and native (55.6 mg/liter compared to 8.6 mg/
liter) rhIGF-1 was obtained. The fraction of native rhIGF-1 on
the total secreted proteins (4% compared to 1.2%) also no-
ticeably increased, while the ratio of native to total rhIGF-1 did
not change. More importantly, GAS1 gene inactivation had a
strong effect on the global secretion. This was particularly
evident during the last stage of fermentation. This effect could
be ascribed to the modification of the genetic background of
the host strain. The absence of cytoplasmic markers (i.e., al-
dolase and triosephosphate isomerase) in the medium rules
out the possibility of a massive cellular lysis during fermenta-
tion (data not shown). To clarify the reason for the different
rhIGF-1 secretion levels, we compared the amounts of rhIGF-1
mRNA expressed in the GcP3[p539/12] and GcP3D12[p539/
12] strains: total RNA, prepared according to the method of
selective precipitation with LiCl (9), was subjected to Northern
analysis. Hybridization was performed as previously described
(17) using a nonradioactive single-strand RNA probe, anti-

hIGF-1, generated by in vitro transcription (Dig RNA labeling
kit; Boehringer Mannheim). Despite the different production
of both total and native rhIGF-1, we did not detect a significant
difference between the rhIGF-1 mRNA of the two strains (Fig. 3),
indicating that the enhanced secretion from the GcP3D12
[p539/12] strain is not the result of upregulated transcription.
Interestingly, also for the GcP3D12[p539/12] transformed cells,
we never observed intracellular accumulation of rhIGF-1.
These two considerations taken together seem to indicate that
the strong improvement obtained from the mutant GcP3D12
host could be determined simply by using a faster rhIGF-1
secretion process. In fact, a higher secretion rate could allow a
better accumulation of the heterologous protein in the me-
dium, outflanking the eventual intracellular degradation of the
protein. Supporting this interpretation, we observed an in-
crease of the total secreted proteins from the mutant GcP3D12
(Fig. 2). These increased secretion levels could be related to a
decreased cell wall binding of proteins, among them rhIGF-1.
In this respect, gas1D mutants showed a changed composition
and organization of cell wall constituents (19), and increased
global secretion levels associated with alterations in the cell
wall architecture already have been observed both in S. cerevi-
siae (12) and in the fungus Trichoderma reesei (16). Finally, a
similar correlation between the secretion rate and the levels of
a secreted heterologous protein have been recently reported by
other authors; Katakura et al. (15) showed that replacement of
Trp19 with Tyr in the bovine b-lactoglobulin yielded an im-
proved secretion level (six times more) from recombinant S.
cerevisiae cells. Similar to the results shown in this study, the
higher secretion levels are related not to upregulation of spe-
cific transcription but to a higher secretion rate.

In conclusion, our results show that a careful choice of the
host strain enables noticeably increased production and yield
of a heterologous protein.
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