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Abstract

The purpose of this study is to investigate hyperspectral microscopic imaging and deep 

learning methods for automatic detection of head and neck squamous cell carcinoma (SCC) 

on histologic slides. Hyperspectral imaging (HSI) cubes were acquired from pathologic slides 

of 18 patients with SCC of the larynx, hypopharynx, and buccal mucosa. An Inception-based 

two-dimensional convolutional neural network (CNN) was trained and validated for the HSI data. 

The automatic deep learning method was tested with independent data of human patients. This 

study demonstrated the feasibility of using hyperspectral microscopic imaging and deep learning 

classification to aid pathologists in detecting SCC on histologic slides.
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1. PURPOSE

Head and neck cancer is the sixth most common cancer worldwide [1-3]. Squamous cell 

carcinoma (SCC) takes more than 90% of the cancers of the upper aerodigestive tract of the 
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head and neck region [2]. Surgical resection has long been the major and standard treatment 

approach for head and neck SCC [4, 5]. During tumor resection surgery, surgeons rely 

on intraoperative pathologist consultation (IPC) using frozen section microscopic analysis 

to determine the surgical margin . However, IPC is a time-consuming task, as it requires 

skilled pathologists to manually examine the morphological features of the specimens, 

and it is subject to error of pathologists’ histological interpretation [6-11]. A fast and 

automatics method for cancer detection in the histological slides can facilitate this process 

and potentially improve the surgical outcome.

Computer-aided pathology (CAP) has been an emerging trend, which aims to improve the 

reproducibility and objectivity of pathological diagnosis as well as to save time in the 

routine examination [12]. Machine learning techniques, particularly deep learning models, 

have been playing an important role in CAP [13]. Many studies of deep learning-based 

cancer detection in whole-slide digitalized histological images have been investigated, and 

most of them were carried out in RGB images. Halicek et al. [14, 15] used a patch-based 

Inception-v4 convolutional neural network (CNN) for head and neck cancer detection 

and localization in digitalized whole slide image (WSI) of hematoxylin and eosin (H&E) 

stained histological slides. The network achieved an AUC of 0.916 for SCC and 0.954 

for thyroid cancer. Wang et al. [16] proposed using a transfer learning CNN and patch 

aggregation strategy for colorectal cancer diagnosis in weakly labeled pathological images, 

with a resulted average AUC of 0.981. Sitnik et al. [17] employed UNet++ architecture 

for pixel-level detection of colon cancer metastasis in the liver and achieved 0.81 balanced 

accuracy. Mavuduru et al [18] used U-Net architecture for head and neck SCC detection in 

digitalized WSI and achieved an average AUC of 0.89.

Hyperspectral imaging is an optical imaging technique that has been increasingly used 

in biomedical applications. It captures the spatial and spectral information of the imaged 

tissue, revealing the chemical composition and morphological features in a single image 

modality. Therefore, it is a promising technology to aid the histopathological analysis of 

tissue samples. Hyperspectral microscopic imaging (HSMI) has been investigated in some 

recent studies. Ortega et al. [19] implemented automatic breast cancer cell detection in 

hyperspectral histologic images with an average testing AUC of 0.90. The comparison 

between the classification results using HSI and RGB suggested that HSI outperforms 

RGB. Nakaya et al. [20] used a support vector machine classifier and the average spectra 

of nuclei extracted from hyperspectral images for colon cancer detection. Xu et al. (Xu 

2020, microalgae) used principal components analysis (PCA) and peak ratio algorithms 

for dimensionality reduction and feature extraction, followed by a support vector machine 

model for the detection of microalgae. Ishikawa et al.[21] proposed a pattern recognition 

method named hyperspectral analysis of pathological slides based on stain spectrum 

(HAPSS) to process the spectra of the histologic hyperspectral images and used an SVM 

classifier for pancreatic tumor nuclei detection, which obtained a maximal accuracy of 0.94. 

However, many of these studies were based on a nucleus level, and they were usually 

coupled with feature-based machine learning approaches for image analysis.

Our previous study investigated the feasibility and usefulness of HSI for head and neck 

SCC nuclei detection in histologic slides [22]. We compared the classification performance 
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of a CNN trained with HSI and pseudo-RGB patches of the nuclei, respectively. The CNN 

trained with HSI got an average AUC of 0.94 and an average accuracy of 0.82, which 

were slightly higher than the AUC and accuracy using RGB. The results demonstrate that 

the morphological features of nuclei play a dominant role in classification and the extra 

spectral information in hyperspectral images is able to improve the diagnostic outcome. The 

study proved the advantage of utilizing HSI as an automated tool in pathology since it can 

potentially save time and provide an accurate diagnosis with both the spatial and spectral 

information in the image. However, this method mainly works in the regions where a large 

number of nuclei exist, such as the cancer nest. It becomes less efficient when applied to the 

whole slide.

In this study, we investigate the feasibility of using patch-based CNN for the detection of 

head and neck SCC in the whole hyperspectral images of H&E stained histologic slides. 

Different from the previous study that merely extracted patches of nuclei, this work uses 

patches generated from the whole image, thus the morphological and spectral information 

of the whole imaged area is utilized. We also compared the classification performance using 

HSI and RGB images.

2. METHODS

2.1 Histologic Slides from Head and Neck SCC Patients

The histologic slides used in this study are a subset of our head and neck cancer dataset, 

which has been reported in our previous studies [15]. Eighteen histologic slides of larynx, 

hypopharynx, and buccal mucosa from 18 different head and neck cancer (SCC, HPV-

negative) patients were utilized. The tissue of each slide was resected at the tumor-normal 

margin, containing both cancerous and normal tissue. The slides were digitalized at 40× 

magnification, and the cancerous regions in the digitalized histology images were manually 

annotated by a board-certificated pathologist, which were used as the ground truth.

Within the annotated cancerous region of each slide, we carefully selected several regions 

of interest (ROIs) to scan. Considering the possible inter-pathologist variation of histologic 

diagnosis, we imaged the tissue that is away from the edge of the annotation to avoid any 

interface area. As nuclei carry important cancer-related information, the imaged regions 

should contain adequate nuclei. Therefore, all selected cancerous ROIs were at or close to 

the cancer nest, where a mass of cells extends to the surrounding area of cancerous growth. 

For the normal ROIs, we selected from the 2nd to 4th layer of healthy stratified squamous 

epithelium, because that is where the SCC mostly origin from. For each slide, we chose at 

least 3 regions of interest for cancerous tissue and 3 ROIs for normal tissue. For the two 

slides that did not contain any healthy epithelium, we only selected and imaged cancerous 

ROIs for them. In total, we collected 121 hyperspectral images, where 70 are cancerous and 

51 are normal. Each image corresponds to one selected ROI. Figure 1 shows an example of 

a histologic slide of tumor-normal margin tissue as well as the normal and cancerous ROIs 

selected from the slide. The image of the whole slide on the left is the digitalized histology 

image, the green annotation indicates the cancerous region in the slide; the two pseudo-RGB 

images of the selected ROIs were synthesized from the acquired hyperspectral images using 

a customized transformation function, which will be described in Section 2.2.
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2.2 Hyperspectral images and data preparation

The H&E stained histologic slides were imaged using a customized hyperspectral 

microscopic imaging system with an objective lens of 40× magnification. The system 

contained an optical microscope, a customized compact hyperspectral camera, and a high-

precision motorized stage, as presented in our previous paper [22]. The camera could 

scan the field of view (FO V) through the translation of the imaging sensor inside of 

the camera, thus no relative motion between the camera and the slide was needed. The 

motorized stage in our system, different from the one that is usually employed in a line-

scanning hyperspectral microscopic system, was used to carefully select the ROI in the slide. 

Although we did not focus on acquiring hyperspectral WSIs of the slides, the developed 

system was able to fulfill that by capturing images of different regions and stitching them 

to make a WSI. The light source was a 100-Watt halogen lamp that was installed with the 

microscope. The HSI camera acquired hyperspectral images in the visible wavelength range 

from 467 nm to 900 nm. The image size was 3600 pixel × 2048 pixel × 146 bands with 

a spatial resolution of approximately 139 nm/pixel. The spatial size of the field of view 

was about 500 × 284 μm. However, we found that the NIR wavelength bands in the images 

carried some noise and the spectral difference between cancerous tissue and normal tissue 

was less distinctive compared to the visible wavelength bands, so we only used the 78 bands 

from 467 nm to 720 nm.

Because of the slight variance of thickness in the histological slide, the microscope needed 

to be focused for each ROI. After the image acquisition of each ROI, a white reference 

image of a blank area on the slide was captured immediately with the same illumination 

setting and focus. The dark reference image was acquired automatically by the camera 

along with the acquisition of each hyperspectral image. All hyperspectral images were 

calibrated with the corresponding white and dark reference images to obtain the normalized 

transmittance of the slide, as Equation (1) shows.

Transmittance(λ) = IRaw(λ) − IDark(λ)
IW ℎite(λ) − IDark(λ) (1)

where Transmittance (λ) is the normalized transmittance for wavelength λ, Iraw (λ) is the 

intensity value in the raw hyperspectral image, Iwhite(λ) and Idark(λ) are the intensity values 

in the white and dark reference images, respectively.

After calibration, we synthesized pseudo-RGB images from hyperspectral images for better 

visualization and data selection. We utilized a series of cosine functions to make up the 

HSI-to-RGB transformation function, which had a similar shape with the spectral response 

of human eye perception to colors [23], as Figure 2 shows. Due to the limited wavelength 

range of our hyperspectral camera, the spectral information of the slide from 380 to 470 nm 

was unavailable. In order to balance the three channels, we increased the channel weight 

of red (R) within 380-500 nm, and the channel weight of blue (B) within 380-550 nm. 

The colors that we see through our eyes are influenced by both the color perception of the 

human eye and the spectral signature of the light source. However, the image calibration 

shown by equation (1) removed the influence of light source from the hyperspectral images. 

Therefore, in order to have the synthesized RGB images as real as possible, we took the 
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light source into consideration and slightly increased the channel weight of red within 

500-720 nm, because the irradiance of the halogen light source is higher in the red-color 

wavelength range. After applying tins customized transformation, the image was multiplied 

with a constant of 2 to adjust the brightness.

Then, we generated patches from all hyperspectral images using a sliding window of 101 

pixels. To ensure that the patches contain enough histologic features for classification, we set 

the patch size to 404×404×78. Each pair of adjacent patches shared ¾ overlapped regions. 

Then, all patches were 4 times down-sampled in the spatial dimensions to 101×101×78, 

corresponding to a 10× magnification. It is worth noting that we also tried using a smaller 

patch size of 51×51 pixels (after down-sampling) in order to have more patches for training, 

but the results turned out to be less satisfying. The same sliding window was applied to the 

pseudo-RGB images to generate RGB patches.

Because the spatial dimension of the hyperspectral images was 3600×2048, each image 

should be cut into 544 patches in total. However, patches from the edge of tissue contained 

much blank background pixels, and including them in the dataset would reduce the 

efficiency of classification. Therefore, these patches were removed. Since the background 

pixels in our synthesized-RGB images were saturated, and the images were in double-

precision format, the sum of three color channels (R, G, and B) of these pixels should be no 

smaller than 3. Thus, we calculated the number of the background pixels in each patch by 

setting a threshold of 3 to the sum of three color channels of the RGB patch. If the number 

of background pixels was more than 50% of the total pixels (10201 pixels) in an RGB patch, 

both the HSI patch and the RGB patch were removed.

Figure 3 shows some of the extracted cancerous and normal patches in pseudo-RGB. Some 

typical histological features of SCC could be observed in the cancerous patches, including 

enlarged nuclei, keratinizing SCC, basaloid SCC, and regions with chronic inflammation. 

Because the normal ROIs were selected from the stratified epithelium, most normal patches 

only show the features of different layers in the epithelium and the region under the 

epithelium with inflammation. The number of images and patches generated from each 

patient are summarized in Table 1.

2.3 Convolutional neural network classification

The generated patches from hyperspectral images were used to train, validate and test 

an Inception-based two-dimensional CNN. The CNN architecture was modified from the 

original Inceptio-v4 network [24] to be adapted to our patch size. Each convolutional layer 

in the network was followed by a BatchNormalization layer [25] with a momentum of 0.997 

as well as ReLU activation. A 40% dropout was applied for each convolutional layer. The 

CNN architecture and the output size of each layer/block are shown in Table 2.

The CNN was implemented using Keras [26] with a Tensorflow backend on a Titan XP 

NVIDIA GPU. The optimizer was Adadelta [27] with an initial learning rate of 1. The 

network was trained with a batch size of 16. The activation function of the output layer was 

sigmoid, and the loss function was binary cross-entropy. During network training, we used 

the callback function to monitor the validation accuracy and saved every checkpoint with 

Ma et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improved validation accuracy. After training, we used the checkpoint that had the highest 

validation accuracy to validate and test on the whole image.

2.4 Data partition

In this work, all image patches were split into training, validation, and testing groups to 

evaluate the network. To evaluate the proposed method for real clinical application, it is 

optimal to test the network on as many independent patients as possible. However, due to the 

small size of our dataset, leaving many patients out for testing might cause the inadequacy 

of training data. Finally, we decided to carried out 6-fold cross-validation and then test the 

network on an independent group of 3 different patients.

Except for the three testing patients, all other patients have been used for training in different 

folds. Because the validation data should have both classes of labels (tumor and normal), 12 

patients were divided into 6 groups and took turns to be used for validation in 6 different 

folds. Patient #110 and #149 were excluded from being used as validation data because of 

the absence of normal images, while #146 was not used due to the extremely unbalanced 

label classes. We randomly included 2 patients for validation in each fold to avoid bias to 

one specific patient, but for patient #120 who has the most images, we manually selected 

patient #137 with a relatively small number of image patches to be included in the same 

fold. The three testing patients (#74, #154, #172) were also randomly selected. The data of 

one patient has never been used in the training, validation, or testing group at the same time.

2.5 Post-processing

During the training process, we used the image patches as described in section 2.2 for 

network training and validation accuracy monitoring. After the training was done and 

the checkpoint was selected, we generated new validation patches and testing patches of 

404×404×78 from the whole images in the validation group and testing group using a sliding 

window of 204 pixels. The new patches were also reshaped to 101×101×78. Each image 

could generate 144 patches in total. All patches were used for classification regardless of 

how much blank area was included, in order to evaluate the classification performance in 

whole images. After classification, we reconstructed the probability map of each image. For 

the overlapped area between adjacent patches, we calculated the average probability. The 

optimal threshold was determined according to the receiver operating characteristic (ROC) 

curve and applied to the probability maps to generate binary classification masks. Then, 

we calculated the evaluation metrics using the reconstructed binary masks. We used the 

same method as stated in section 2.2 to exclude the background pixels in the reconstructed 

binary masks, so that the classification labels of the large blank areas in the reconstructed 

binary masks were not used for metrics calculation. In other words, we only calculated the 

evaluation metrics using the tissue pixels.

2.6 Evaluation metrics

In this study, we use overall accuracy, sensitivity, and specificity to evaluate the 

classification performance, as shown in Equation (2-4). Overall accuracy is defined as the 

ratio of the number of all the correctly labeled patches to the total number of patches in the 

testing group. Sensitivity and specificity are calculated from true positive (TP), true negative 
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(TN), false positive (FP), and false negative (FN), where positive corresponds to tumor and 

negative to normal. Sensitivity is the ratio of TP to the sum of TP and FN, and it measures 

the portion of cancerous tissue that is correctly labeled; specificity is the ratio of TN to the 

sum of TN and FP, and it represents the ability of the classifier to identify true normal tissue.

Overall accuracy = TP + TN
TP + FP + TN + FN (2)

Sensitivity = TP
TP + FN (3)

Specificity = TN
TN + FP (4)

3. RESULTS

3.1 Validation results

Because we did not use all patients for testing, the validation results of 12 patients served 

as an important evaluation of the network. Therefore, we report the validation performance 

of each patient as Table 3 shows. The patch-based 2D-CNN achieved an average validation 

accuracy of 0.73, as well as 0.78 sensitivity and 0.62 specificity. Generally, the networks had 

a better ability to detect cancer than normal tissue in the hyperspectral histologic images.

Because most patients had more tumor images than normal images, the two classes of 

data in the training group were unbalanced, especially when some patients with balanced 

data were left out for validation or testing and the two patients with only tumor data were 

used for training. This could be one possible reason for higher sensitivity than specificity 

in the validation results. On the other hand, in some slides, the epithelium was very thin, 

and inflamed tissue under the epithelium with full of lymphocytes and barely any nuclei 

were included in the images. Because tissue inflammation happens in both the normal and 

cancerous tissue, our networks classified a portion of the inflamed tissue in the normal 

images as tumor, which caused the low specificity of a few patients especially #134, #137. 

In the future, we hope to solve it by using a larger training dataset with more patient data 

and more images of normal tissue. In addition, images of patient #161 and #166, which were 

validated in the same fold, were all classified as one type. If exclude these two patients, the 

average validation accuracy, sensitivity, and specificity are 0.77, 0.84, and 0.65.

In order to compare the classification performance of HSI and RGB and investigate the 

usefulness of the extra spectral information in HSI, we used synthesized-RGB patches to 

train the same network as HSI. The hyperparameters and data partition for the CNN of 

synthesized-RGB were exactly the same as that of HSI. However, the validation results 

using synthesized-RGB patches were much worse than HSI. For 9 validation patients except 

#62, #68, and #120, almost all images of each patient were classified as one class, while 

the validation performance of the 3 patients was also worse than HSI. Therefore, we did not 

report the results of synthesized-RGB here. It is worth noting that one of our previous work 
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[14] implemented an inception-based CNN with a very large dataset (102 SCC patients) of 

digitalized whole-slide histologic images and got an average area under the curve (AUC) of 

0.916. The unsatisfying performance of synthesized-RGB in this study is probably due to the 

small size of the dataset. Nevertheless, the comparison between HSI and synthesized-RGB 

proved that the spectral information in HSI could improve the distinction ability.

3.2 Testing results

The testing results of 3 patients using HSI are shown in Table 4. The network was able to 

discriminate between cancerous and normal tissue in the testing data. The average testing 

accuracy, sensitivity, and specificity were 0.73, 0.77, and 0.69, respectively. For patient #74, 

the misclassified normal tissue were mainly from the first layer of epithelium with sparse 

nuclei, as well as the basement membrane with dense nuclei. For both patient #154 and 

#172, the misclassified regions were mainly around the keratinizing pearl in the slides where 

very few nuclei existed.

In general, tumor images with obvious histologic features such as enlarged nuclei and 

keratinizing SCC were mostly well classified. Normal images that were acquired at the 

second and third layers of the stratified epithelium, where normal-sized nuclei were evenly 

distributed, also got good results. We looked into the images that had less satisfying results, 

and the main reasons include the small number of nuclei in the ROI, image out of focus 

in some regions, and the overexposure in some regions where the slide became very thin. 

In addition, images of normal tissues with very thin epithelium, dense nuclei, and many 

lymphocytes tended to be classified as cancer. Figure 4 shows some images and heat maps 

of true positive, true negative, false positive, and false negative.

4. DISCUSSION & CONCLUSION

In this preliminary study, we used a modified Inception-based CNN for head and neck 

cancer detection in the whole hyperspectral images of histologic slides. H&E stained 

histological slides of larynx, hypopharynx, and buccal mucosa from 18 different patients 

were included in this study. Patches generated from the whole hyperspectral image of 

the slides were used to train, validate, and test the CNN. Synthesized-RGB patches were 

used to train and validate the same networks but received a worse performance than 

HSI. The comparison between HSI and synthesized-RGB has proven the usefulness of the 

extra spectral information in HSI for this application. Because the automated hyperspectral 

whole-slide imaging system was not available, we manually selected and scanned ROIs 

in the slides, which resulted in a relatively small dataset in this study. The normal 

ROIs were mainly selected from the healthy stratified epithelium, which had a limited 

representation of histological features in normal tissue. Despite this study had certain 

limitations, it demonstrates the potential of hyperspectral microscopic imaging to provide 

a fast pathological diagnosis. In the future, we will refine the hyperspectral microscopic 

imaging system and develop automated scanning and stitching, so that we can conduct 

cancer detection in larger regions or even the whole slide. We also plan to include a larger 

dataset of histologic slides for the study of deep learning methods. With the automated 
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system, the proposed method could potentially aid intraoperative pathologist consultation for 

whole-slide cancer detection and improve surgical outcomes.

ACKNOWLEDGEMENTS

This research was supported in part by the U.S. National Institutes of Health (NIH) grants (R01CA156775, 
R01CA204254, R01HL140325, and R21CA231911) and by the Cancer Prevention and Research Institute of Texas 
(CPRIT) grant RP190588.

REFERENCES

[1]. Vigneswaran N, and Williams MD, “Epidemiologic trends in head and neck cancer and aids in 
diagnosis,” Oral and Maxillofacial Surgery Clinics, 26(2), 123–141 (2014).

[2]. Leemans CR, Braakhuis BJ, and Brakenhoff RH, “The molecular biology of head and neck 
cancer,” Nature reviews cancer, 11(1), 9–22 (2011). [PubMed: 21160525] 

[3]. Wissinger E, Griebsch I, Lungershausen J, Foster T, and Pashos CL, “The economic burden 
of head and neck cancer: a systematic literature review,” Pharmacoeconomics, 32(9), 865–882 
(2014). [PubMed: 24842794] 

[4]. Haddad RI, and Shin DM, “Recent advances in head and neck cancer,” New England Journal of 
Medicine, 359(11), 1143–1154 (2008). [PubMed: 18784104] 

[5]. Argiris A, Karamouzis MV, Raben D, and Ferris RL, “Head and neck cancer,” The Lancet, 
371(9625), 1695–1709 (2008).

[6]. Hinni ML, Ferlito A, Brandwein-Gensler MS, Takes RP, Silver CE, Westra WH, Seethala 
RR, Rodrigo JP, Corry J, and Bradford CR, “Surgical margins in head and neck cancer: a 
contemporary review,” Head & neck, 35(9), 1362–1370 (2013). [PubMed: 22941934] 

[7]. Meier JD, Oliver DA, and Varvares MA, “Surgical margin determination in head and neck 
oncology: current clinical practice. The results of an International American Head and Neck 
Society Member Survey,” Head & Neck: Journal for the Sciences and Specialties of the Head and 
Neck, 27(11), 952–958 (2005).

[8]. Sutton D, Brown J, Rogers SN, Vaughan E, and Woolgar J, “The prognostic implications of the 
surgical margin in oral squamous cell carcinoma,” International journal of oral and maxillofacial 
surgery, 32(1), 30–34 (2003). [PubMed: 12653229] 

[9]. Kerker FA, Adler W, Brunner K, Moest T, Wurm MC, Nkenke E, Neukam FW, and von 
Wilmowsky C, “Anatomical locations in the oral cavity where surgical resections of oral 
squamous cell carcinomas are associated with a close or positive margin—a retrospective study,” 
Clinical oral investigations, 22(4), 1625–1630 (2018). [PubMed: 29572686] 

[10]. Gandour-Edwards RF, Donald PJ, and Wiese DA, “Accuracy of intraoperative frozen section 
diagnosis in head and neck surgery: experience at a university medical center,” Head & neck, 
15(1), 33–38 (1993). [PubMed: 8416854] 

[11]. Ortega S, Halicek M, Fabelo H, Camacho R, Plaza M. d. I. L., Godtliebsen F, Callicó GM, and 
Fei B, “Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides 
Using Convolutional Neural Networks,” Sensors, 20(7), 1911 (2020).

[12]. Madabhushi A, and Lee G, “Image analysis and machine learning in digital pathology: 
Challenges and opportunities,” Medical Image Analysis 33:170–175 (2016). [PubMed: 
27423409] 

[13]. Nam S, Chong Y, Jung CK, Kwak T-Y, Lee JY, Park J, Rho MJ, and Go H, “Introduction 
to digital pathology and computer-aided pathology,” Journal of pathology and translational 
medicine, 54(2), 125–134 (2020). [PubMed: 32045965] 

[14]. Halicek M, Shahedi M, Little JV, Chen AY, Myers LL, Sumer BD, Fei B, Tomaszewski JE, and 
Ward AD, "Detection of squamous cell carcinoma in digitized histological images from the head 
and neck using convolutional neural networks", Proc. SPIE 10956, 109560K (2019).

[15]. Halicek M, Shahedi M, Little JV, Chen AY, Myers LL, Sumer BD, and Fei B, “Head and Neck 
Cancer Detection in Digitized Whole-Slide Histology Using Convolutional Neural Networks,” 
Scientific Reports, 9(1), 14043 (2019). [PubMed: 31575946] 

Ma et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[16]. Wang K-S, Yu G, Xu C, Meng X-H, Zhou J, Zheng C, Deng Z, Shang L, Liu R, and Su 
S, “Accurate Diagnosis of Colorectal Cancer Based on Histopathology Images Using Artificial 
Intelligence,” bioRxiv, (2020).

[17]. Sitnik D, Kopriva I, Aralica G, Pačić A, Hadžija MP, and Hadžija M, "Transfer learning approach 
for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from hematoxylin-
eosin stained specimens." Proc. SPIE 11320, 113200A (2020).

[18]. Mavuduru A, Halicek M, Shahedi M, Little J, Chen A, Myers L, and Fei B, "Using a 22-layer U-
Net to perform segmentation of squamous cell carcinoma on digitized head and neck histological 
images" Proc. SPIE 11320, 113200C (2020).

[19]. Ortega S, Halicek M, Fabelo H, Guerra R, Lopez C, Lejeune M, Godtliebsen F, Callico G, 
and Fei B, "Hyperspectral imaging and deep learning for the detection of breast cancer cells in 
digitized histological images." Proc. SPIE 11320, 113200V (2020).

[20]. Nakaya D, Tsutsumiuchi A, Satori S, Saegusa M, Yoshida T, Yokoi A, Kanoh M, Tomaszewski 
JE, and Ward AD, "Digital pathology with hyperspectral imaging for colon and ovarian cancer." 
10956, 109560X.

[21]. Ishikawa M, Okamoto C, Shinoda K, Komagata H, Iwamoto C, Ohuchida K, Hashizume M, 
Shimizu A, and Kobayashi N, “Detection of pancreatic tumor cell nuclei via a hyperspectral 
analysis of pathological slides based on stain spectra,” Biomedical Optics Express, 10(9), (2019).

[22]. Ma L, Halicek M, Zhou X, Dormer J, and Fei B, "Hyperspectral microscopic imaging for 
automatic detection of head and neck squamous cell carcinoma using histologic image and 
machine learning." Proc. SPIE 11320, 113200W (2020).

[23]. Vos JJ, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Research 
& Application, 3(3), 125–128 (1978).

[24]. Szegedy C, Ioffe S, Vanhoucke V, and Alemi AA, "Inception-v4, inception-resnet and the 
impact of residual connections on learning," Proceedings of the AAAI Conference on Artificial 
Intelligence, 31(1), (2017)

[25]. Ioffe S, and Szegedy C, “Batch normalization: Accelerating deep network training by reducing 
internal covariate shift,” arXiv preprint arXiv:1502.03167, (2015).

[26]. Ketkar N, "Introduction to Keras", Deep Learning with Python, Springer (2017), pp. 97–111.

[27]. Zeiler MD, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 
(2012).

Ma et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Selection of the regions of interest in the histologic slide for quantitative testing: digitalized 

histology image of the whole slide as well as synthesized-RGB images of the selected 

normal and cancerous ROIs (Imaged at 40×).
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Figure 2. 
Customized transformation to synthesize a pseudo-RGB image from a hyperspectral image, 

modified from the human eye spectral response for red (R), green (G), and blue (B). The 

grey area shows the unavailable wavelength range of our hyperspectral camera.
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Figure 3. 
Pseudo-RGB histological patches (101 × 101 pixels) showing anatomical diversity. First 

row: Patches extracted from cancerous ROIs with various histological features. Second row: 

Patches generated from images of normal ROIs, showing features at different layers of the 

stratified epithelium as well as the region under epithelium with inflammation.
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Figure 4. 
Synthesized-RGB images and heat maps of true positive, true negative, false positive, 

and false negative. First row: a correctly classified whole image of cancerous tissue with 

keratinizing SCC and enlarged nuclei. Second row: a correctly classified whole image of 

normal epithelium, note that the small region on the top right comer was out of focus, which 

influenced the classification probability. Third row: normal epithelium with false positives 

due to fewer nuclei (top right) and dense nuclei (bottom left). Fourth row: tumor tissue with 

false negatives, probably due to the less distinct histologic features in the field of view.
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Table 1.

Summary of the hyperspectral histologic dataset.

Patient
# Organ

Number of images Number of patches

Cancerous Normal Cancerous Normal Total

62 Larynx 3 3 1632 968 2600

68 Hypopharynx 4 4 2021 1939 3960

74 Larynx 3 3 1632 1618 3250

110 Larynx 5 0 2720 0 2720

120 Buccal mucosa 6 5 3104 2696 5800

127 Larynx 4 3 2157 1443 3600

134 Larynx 3 3 1088 712 1800

137 Larynx 3 3 1632 788 2420

146 Buccal mucosa 7 3 3808 1432 5240

149 Buccal mucosa 3 0 1080 0 1080

154 Larynx 3 3 1080 1602 2682

161 Larynx 4 3 2176 1024 3200

166 Larynx 4 3 2136 1624 3760

172 Larynx 5 3 2718 1442 4160

174 Larynx 4 3 2176 1564 3740

184 Larynx 3 3 1605 1625 3230

187 Larynx 3 3 1632 1308 2940

188 larynx 3 3 1632 948 2580

Total 70 51 36029 22733 58762
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Table 2.

CNN architecture.

Layer/Block Output size

Input 101×101×78

Conv2D, ‘valid’ 50×50×80

Conv2D, ‘valid’ 48×48×86

Conv2D, ‘valid’ 23×23×92

Inception A block ×4 23×23×384

Reduction A block 11×11×1024

Inception B block ×7 11×11×1024

Reduction B block 5×5×1536

Inception C block ×3 5×5×1536

Average Pool 1×1×1536

Flatten 1536

Dense (‘sigmoid’) 1
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Table 3.

Validation results per patient.

Patient # Accuracy Sensitivity Specificity

62 0.66 0.51 0.92

68 0.90 0.96 0.80

120 0.82 0.70 0.95

127 0.86 0.97 0.71

134 0.72 0.99 0.33

137 0.88 0.99 0.63

161 0.52 1.00 0

166 0.57 0 1.00

174 0.75 0.93 0.42

184 0.59 0.47 0.67

187 0.68 0.90 0.33

188 0.84 0.96 0.71

Average 0.73 0.78 0.62
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Table 4.

Testing results per patient.

Patient # Accuracy Sensitivity Specificity

74 0.59 0.99 0.18

154 0.79 0.58 0.94

172 0.82 0.75 0.96

Average 0.73 0.77 0.69
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