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Introduction

Pulmonary neuroendocrine tumors (NETs) have a wide
spectrum of clinical behaviors, ranging from indolent
well-differentiated (WD) NETs (typical carcinoids) to
aggressive, poorly differentiated neuroendocrine car-
cinomas (NECs) including large cell NEC and small-
cell lung cancer (SCLC).1 Atypical carcinoids are
an uncommon type of WD NET with an intermediate
grade and prognosis. Compared with typical carci-
noids, these tumors are more commonly nonfunctional
and somatostatin receptor–negative and have worse
prognosis.2

Therapy for advanced pulmonary carcinoids remains ill-
defined, extrapolated from WD gastroenteropancreatic
NETs and poorly differentiated lung NECs. Few pro-
spective studies have included these neoplasms, and
even the role of somatostatin analogs is uncertain.
Everolimus was approved on the basis of a phase III trial
not powered for the lung subgroup; practically, its use is
restricted to patients with relatively indolent disease.3,4

The angiogenesis inhibitor surufatinib has activity in
nonpancreatic NETs; however, lung NETs accounted for
only 11.6% of patients in the pivotal trial.5 Although
approved in SCLC, the role of immunotherapy in unse-
lected WD lung NETs remains ill-defined.6-11 Data
from small retrospective series suggest that platinum-
etoposide, temozolomide (TMZ) monotherapy, and
TMZ/capecitabine regimens have clinical activity in
advanced pulmonary carcinoids.12-14

TMZ is an oral alkylating prodrug that methylates DNA at
O6 guanine residues (O6-meG), causingmismatch pairing
during DNA replication, leading to genomic instability,
apoptosis, and cell death. TMZcytotoxicity depends on an
intact DNA mismatch repair (MMR) pathway and low
levels of O6-methylguanine DNA methyltransferase
(MGMT).15-17 MGMT-mediated repair is stoichiometrically
limited, and in malignant gliomas andmelanoma, MGMT
deficiency is associated with TMZ response.18-23 This
relationship is less clear in NETs.24-26 The absence of
MGMT-mediated repair coupled with defective MMR
(dMMR) leads to enrichment of C:G.A:T transitions

throughout the genome, a marked increase in tumor
mutational burden (TMB), and loss of TMZ-induced
cytotoxicity, a resistance mechanism termed TMZ-
associated hypermutation.27-33

TMZ-associated hypermutation is well-demonstrated
in malignant glioma and is frequently associated with
inactivating alterations in DNA MMR genes.34 The use
of immunotherapy for TMZ-associated hypermuta-
tion falls under tumor-agnostic approvals of pem-
brolizumab for high TMB, microsatellite instability
(MSI)-high, or dMMR solid tumors. There are few re-
ports of TMZ-associated hypermutation in NETs, and
none to our knowledge in atypical lung carcinoids.35

Here, we describe a patient with treatment-refractory
atypical carcinoid tumor of the lung who developed
TMZ-associated hypermutation that responded to
checkpoint inhibitor immunotherapy.

Patient Consent Statement

Approval for the release of health information was
obtained from the patient referenced in this report as
requested by JCO Precision Oncology editorial.

Case Presentation

A 66-year-old man presented with right-sided chest pain.
Computed tomography (CT) scan demonstrated a 3.8-
cm right lung mass, mediastinal and hilar lymphade-
nopathy, andmultiple hepaticmasses up to 4.5 cm. Liver
biopsy showed WD NET with immunohistochemistry
(IHC) positive for synaptophysin, chromogranin, and
thyroid transcription factor-1 (3mitoses per 2mm2, Ki-67
14.4%; Fig 1, biopsy 1), consistent with metastatic
atypical carcinoid tumor. Next-generation sequencing
(NGS) of the liver metastasis (UCSF 500 Cancer Gene
Panel [UCSF500], done retrospectively for research
analysis) showed no pathogenic variants, a single
variant of uncertain significance in EED, TMB
5.5 mutations/megabase (Mb), and no unstable
microsatellites by MSIsensor (Table 1, t = 0).42 68Ga-
DOTATATE scan revealed uptake in the lung mass but
not the hepatic lesions, which demonstrated relatively
high fluorodeoxyglucose avidity on 18F-labeled
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fluorodeoxyglucose positron emission tomography (stan-
dardized uptake value 13.2).

The patient received 14 cycles of TMZ/capecitabine with
partial response in the lung and stable disease in the liver
and retroperitoneal lymph nodes. The lung mass and
thoracic lymphadenopathy were stable throughout the
remaining clinical course. When a later CT scan showed a new
0.8 cm hepatic hypodensity, he underwent a second liver
biopsy that revealed a WD NET (2 mitoses per 2 mm2, Ki-67
not available), with NGS (UCSF500, done retrospectively for
research analysis) demonstrating the same variant of uncertain
significance, , 10 somatic mutations, and a frameshift mu-
tation in MLH1. TMB was 13.1 mutations/Mb, with 15%
unstable microsatellites (Fig 1, biopsy 2; Table 1, t = 21.0
months). He subsequently developed rapidly progressive liver
metastases and retroperitoneal lymphadenopathy, for which
he received three additional cycles of TMZ/capecitabine
without benefit. A third liver biopsy again demonstrated thy-
roid transcription factor-1(+) WD NET (7 mitoses per 2 mm2),
and the patient received three cycles of carboplatin/etoposide
without benefit (Fig 2B). NGS (UCSF500) revealed . 80
somatic mutations, including two splice site mutations in
MLH1 not present in the germline sample, consistent with a
hypermutator phenotype from acquired dMMR (Table 1,
t = 31.1 months; Appendix Table A1). Notably, nearly all the
somatic mutations were C:G.T:A mutations. TMB had in-
creased to 89.6 mutations/Mb with 14% unstable sites. Pa-
thology review confirmed WD NET (Ki-67 33.6%), with the

absence of MLH1 and PMS2 protein expression by IHC (Fig 1,
biopsy 3).

The patient was treated with pembrolizumab (200 mg in-
travenously once every 3 weeks) for 9 months, with a
marked interval decrease in the hepatic metastases and
retroperitoneal lymphadenopathy after cycles 4 and 7
(Fig 2C). Magnetic resonance imaging after cycle 12
showed worsening hepatic and new osseous metastases
(Fig 2D), for which nab-paclitaxel was added (three cycles).
Faced with ongoing multifocal progression, the patient was
switched to ipilimumab/nivolumab for 2 months without
success.11 He was then treated with modified infusional
fluorouracil, leucovorin, and oxaliplatin-6 plus bev-
acizumab for 6 months. After progressing on an irinotecan-
based regimen, the patient succumbed to his disease al-
most five years after initial diagnosis.

Discussion

Emerging data support the use of TMZ-based therapy in
NETs, with TMZ/capecitabine demonstrating superiority to
single-agent TMZ in pancreatic tumors.43-45 There are few
reports of TMZ-associated hypermutation beyond malig-
nant glioma: two in pancreatic NETs, one in high-grade
cervical NET, and one in pituitary carcinoma.35,46,47 For this
patient, NGS identified two MLH1 splice site mutations
absent in the treatment-naı̈ve liver metastasis. IHC con-
firmed MLH1 loss in the hypermutated liver metastasis and
loss of PMS2, the latter likely because of degradation of the
undimerized partner of MLH1.48 There were no findings on
germline analysis to explain the pattern of somatic
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FIG 1. Chronological timeline of diagnostic liver biopsies (red circles), plasma ctDNA assessments (orange triangles), and treatment course of
an atypical carcinoid tumor of the lung with TMZ-associated hypermutation treated with checkpoint inhibitor immunotherapy. Included is
hematoxylin and eosin staining of histopathologic liver biopsy specimens at 60× magnification. ctDNA, circulating tumor DNA; FOLFIRI,
fluorouracil, leucovorin, and irinotecan; FOLFOX, infusional fluorouracil, leucovorin, and oxaliplatin; NA, not available; NET, neuroendocrine
tumor; TMZ, temozolomide; WD, well-differentiated.
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TABLE 1. Summary of Serial Molecular Profiling Performed on Both Tissue and Plasma Specimens Throughout the Clinical Course, Specifically Pathogenic or Likely Pathogenic Alterations, as Defined by
Each Proprietary Testing Platform

Same Tissue Specimen Same Tissue Specimen

Time t = –0.2 Months t = 0 (tissue diagnosis) t = 20.3 Months t = 21.0 Months t =31.1 Months t = 43.2 Months t = 46.0 Months

Source Plasma Tissue (liver) Tissue
(liver)

Plasma Tissue (liver) Tissue (liver) Tissue (liver) Plasma Plasma

Specific test Guardant36036 UCSF50037,a STAMP38 FoundationACT39 UCSF50037,a GPS Cancer
(NantHealth)40

UCSF50037 Guardant36036 Guardant36036

No. of genes assessed 70 529 130 62 529 Whole-genome
DNA sequencing

479 74 74

Normal tissue for comparison No Yes No No Yes Yes Yes No No

MSI status NR MSS NR NA MSS MSS MSS MSI-H MSI-H

TMB (mutations/Mb) 5.5 13.1 7.3 89.6

Unstable microsatellites (%) 0 15.29 8.02 14.05

No. of somatic alterations 1 5 — 86

Pathogenic or likely
pathogenic alterationsb

(allele frequency or copy
number; OncoKB
therapeutic level41,c)

None None None AKT1 p.E17K (0.16%;
level 3A—breast,
endometrial, and
ovarian cancer)

KRAS p.G12D (0.16%;
level 4—all solid
tumors)

NF1 p.P1222fs*2
(0.52%; level 4—all
solid tumors)

ALK p.T1102I (0.17%)
TP53 p.G244D (0.38%)
TP53 p.R273H (0.23%)
TP53 p.K382fs*40
(0.17%)

TP53 p.L130F (0.15%)

MLH1
p.M342fs
(52%)

None MLH1 p.M342fs
(44%)

MLH1 c.208-
1G>A (59%)

TP53 p.G244D
(34%)

STK11 splice site
SNV (0.4%, level
4—all solid
tumors)

CCND2 amplification
(plasma copy
number 2.8)

EGFR p.G796D
(0.6%)

EGFR p.R1052K
(0.3%)

MYC p.P75S (0.3%)
TP53 p.G244D

(33.6%)
TP53 p.A138V

(0.3%)
TP53 splice site SNV

(0.3%)
TP53 p.G108D

(0.2%)
TP53 p.T253A

(0.1%)

EGFR p.G796D
(0.3%)

TP53 p.G244D
(42.1%)

TP53 p.R273C
(0.2%)

TP53 p.P151S
(0.1%)

NOTE. Bold entries are tissue specimens analyzed across the same sequencing platform, UCSF500, demonstrating acquisition of two splice site mutations in MLH1 and a significant increase in TMB.
Abbreviations: Mb, megabase; MSI, microsatellite instability; MSI-H, microsatellite instability-high; MSS, microsatellite stable; NA, not available in abbreviated report; NR, not reported by testing platform;

TMB, tumor mutational burden.
aIndicates results that were collected as part of research analysis, which were not available at the time of clinical decision making.
bDefined individually by each proprietary sequencing platform.
cIf no level is indicated in parentheses, no therapeutic level is annotated by OncoKB for the specific alteration listed.
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hypermutation. Although MSI is a clinical biomarker for
dMMR, it is defined on the basis of data from colorectal and
endometrial carcinomas, and it remains unclear
whether these traditional cutoffs apply to other tumor
types. Technically, this dMMR lung NET was micro-
satellite stable. However, it has been shown that dMMR
gliomas deemed microsatellite stable might actually
have a MSI phenotype better characterized by single-
cell whole-genome sequencing than standard NGS
panels.49,50 This case demonstrated an increase from
0% unstable microsatellites in the first biopsy to 15%
and 14% unstable microsatellites in the second and
third biopsies, respectively. Taken together, these data
suggest that TMZ-associated hypermutation occurs in
NETs as a mechanism of resistance, and some, but not
all, of the increased TMB is a result of increased MSI.

Few immunotherapy trials have enrolled pulmonary
NETs other than SCLC, and none has explored immu-
notherapy for hypermutated tumors.11,51-54 Although
results have generally been disappointing, a 17% overall
response rate was observed for spartalizumab in
bronchial NETs.6-8 Limited data suggest that combina-
tion therapy (eg, ipilimumab/nivolumab) may be more
active, but additional information about the relationship
between response and molecular markers (eg, TMB and
MSI status) is needed. In gliomas, response to immu-
notherapy has been observed in a subset of dMMR
gliomas, but overall response rate to programmed
death-1 blockade was low in a series of 11 patients.50,55

At least two potential mechanisms underlie this obser-
vation. In contrast to colorectal cancer, dMMR
gliomas lack significant T-cell infiltrates, despite a
similar nonsynonymous mutational burden.50 Further-
more, hypermutation in gliomas with acquired dMMR
tends to be subclonal and does not generate optimal
antitumor T-cell responses. The use of immunotherapy
for NETs with TMZ-associated hypermutation has only
been reported in one other case (high-grade cervical

NET).46 There, a subclonal MSH6 nonsense mutation
was identified, but MMR deficiency was not confirmed
with MSH6 loss by IHC or MSI testing.

In this case, serial tissue biopsy with concomitant NGS
identified increasingly aggressive features (mitotic rate and
proliferation index) and genomic evolution after treatment,
most evident when analyzed retrospectively with a single
platform (UCSF500) and akin to previous studies of pan-
creatic NETs.35 This patient had additional tissue and
plasma NGS ordered in real time at various time points by
different providers (Table 1), but the clinical utility of such
testing was limited given significant heterogeneity between
testing platforms (eg, limits of detection, number of genes
assessed, and use of normal control) and lack of disease-
specific guidance in this area.

In this case, the identification of a hypermutated phenotype
with dMMR and high TMB prompted subsequent treatment
with immunotherapy, which led to partial response and
disease control for 9 months. Although the role of repeat
tissue biopsy and molecular profiling in atypical bronchial
carcinoid remains ill-defined, this case suggests that it is
worth considering in patients treated with TMZ given the
potential for identifying mutational signatures that could
guide therapy. Additional studies are required to delineate
the optimal strategy for molecular profiling, in both tissue
and plasma. Furthermore, the association between the
hypermutated phenotype and response to immunotherapy
is not definitive in this case. Such a link could be further
explored in a prospective study or at least a larger retro-
spective cohort (recognizing the response rate in
biomarker-unselected bronchial NETs is low).6,7,9-11 Al-
though the incidence of TMZ-associated hypermutation in
NETs is unknown, its presence should alert clinicians to the
potential value of immunotherapy, recognizing that the
precise relationship between TMZ-associated hyper-
mutation, dMMR, immune microenvironment, and re-
sponse to immunotherapy requires further study.

A B C D

FIG 2. MRI of the abdomen/pelvis (T2-weighted, postgadolinium, LAVA) demonstrating progression of hepatic metastases on TMZ followed by
partial response to pembrolizumab immunotherapy. Representative images (A) during treatment holiday before the last three cycles of TMZ/
capecitabine (maximum lesion diameter: 7.3 cm); (B) after three cycles of carboplatin/etoposide, before initiation of pembrolizumab (maximum
lesion diameter: 9.0 cm); (C) after eight cycles of pembrolizumab (maximum lesion diameter: 4.4 cm); and (D) after 12 cycles (9 months) of
pembrolizumab (maximum lesion diameter: 7.0 cm). LAVA, liver acquisition volume acceleration; MRI, magnetic resonance imaging; TMZ,
temozolomide.
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APPENDIX

TABLE A1. Summary of Additional VUS Detected Across Serial Molecular Profiling Performed on Tissue and Plasma Specimens Throughout the Clinical Course
Same Tissue Specimen Same Tissue Specimen

Time t = –0.2 Months t = 0 (tissue diagnosis) t = 20.3 Months t = 21.0 Months t = 31.1 Months t = 43.2 Months t = 46.0 Months

Source Plasma Tissue (liver) Tissue (liver) Plasma Tissue (liver) Tissue (liver) Tissue (liver) Plasma Plasma

Specific test Guardant36036 UCSF50037,a STAMP38 FoundationACT39 UCSF50037,a GPS Cancer
(NantHealth)40

UCSF50037 Guardant36036 Guardant36036

VUS BRAF p.G32R
CDKN2A p.L30R
RB1 p.T5P

EED p.T8S APC p.S2242G None EED p.T8S
IGF2R p.A1074T
SOS2 p.S384N
ZMYM3 p.L85fs

None ACVR1B p.G511R
AJUBA c.1422+1G.A
ALK p.S211F
ARID1B p.G1191D
ASH2L p.P450L
AURKB p.A319V
AXL p.V564M
BCOR p.E1477K
BLM c.960-1G.A
C11orf30 p.S388N
CBL p.A519V
CHD4 p.T758I
COL1A1 p.A748V
CTCF p.S360N
CTNNB1 p.T339I
CYLD c.2350+5G.A
CYLD p.L840F
DCC p.R211Q
DUSP6 p.S102N
EBF1 c.1744+6C.T
EPHA5 p.P904L
EPHA7 p.A242T
ERBB2 p.G1189D
ERBB3 p.P502S
ERBB4 p.R426K
ERCC2 p.S458F
ESPL1 p.L363F
EWSR1 c.1693+5G.A
FAT1 p.T1511I
FOXO1 p.A511T
FOXO1 p.G396D
GLI1 p.T1074I
GLI2 p.A387T
GLI2 p.G1311E
GRIN2A p.E530K
IGF2R p.A1074T
IGF2R p.S2147N
IKZF3 c.-43C.T
INPP4B p.V503M
KDR p.L1178F
KDR p.G1015S
KMT2A p.D3595N
KMT2D p.P4281L
KMT2D p.G1119E
KMT2D p.G794E

ALK p.V1004I
ALK p.V1039A
APC p.G877D
APC p.H2526Y
APC p.P1101L
APC p.S26N
AR p.E252K
ARID1A p.G1792D
ARID1A p.G1890R
ARID1A p.P1259S
ARID1A p.P287L
ARID1A p.P490S
ARID1A p.P517L
ARID1A p.Q2207*
ATM p.A2451V
ATM p.E390K
ATM p.G873E
ATM p.L1910F
ATM p.L2005del
ATM p.P1922L
ATM p.T547I
BRAF p.A497T
BRCA1 p.D1546N
BRCA1 p.G928D
BRCA1 p.S681N
BRCA1 p.S945N
BRCA2 p.D364N
BRCA2 p.P3054S
BRCA2 p.P3129S
BRCA2 p.R1131K
CCND2 p.T93A
CCNE1 p.A236T
CDK12 p.E674K
CDK12 p.P1266L
CDK12 p.P326L
CDKN2A p.A39T
ERBB2 p.E744K
FBXW7 p.V424I
FGFR1 p.V740M
FGFR2 p.D602N
GATA3 p.G361S
GNA11 splice site SNV
GNAS p.V202I
HNF1A p.R201K
IDH1 p.G105D

APC p.E2719K
AR p.E252K
ARID1A p.A2167T
ARID1A p.P287L
ARID1A p.P517L
ARID1A p.Q2209*
ATM p.G873E
ATM p.P1922L
BRCA1 p.E1214K
BRCA1 p.S681N
BRCA2 p.P3129S
BRCA2 p.S1538P
BRCA2 p.T2783I
CCND2 p.T93A
CDK12 p.E674K
CDK12 p.P326L
CDK4 p.S36N
CDK6 p.P74S
CDKN2A p.A39T
ERBB2 splice site SNV
ESR1 p.P336S
FGFR1 p.T509I
FGFR1 p.V740M
FGFR2 p.D136N
FGFR3 p.S781N
IDH1 p.G105D
JAK2 p.G614E
KIT p.T389I
KRAS splice site SNV
MAPK3 p.H197N
MPL p.G509S
MTOR p.G95R
MTOR p.Q973*
MYC p.G289D
NOTCH1 p.R1622C
NTRK1 p.C345R
PDGFRA splice site SNV
ROS1 p.G212D
ROS1 p.S1765N
STK11 p.A417T
TERT promoter SNV
TERT splice site SNV
TP53 p.G199R
TP53 p.R209K

(Continued on following page)
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TABLE A1. Summary of Additional VUS Detected Across Serial Molecular Profiling Performed on Tissue and Plasma Specimens Throughout the Clinical Course (Continued)
Same Tissue Specimen Same Tissue Specimen

Time t = –0.2 Months t = 0 (tissue diagnosis) t = 20.3 Months t = 21.0 Months t = 31.1 Months t = 43.2 Months t = 46.0 Months

LRP1B p.L764P
LZTR1 c.1449+1G.A
MAP3K9 p.E833K
NCOA2 p.A971V
NCOA3 p.P656S
NCOR1 p.E1987K
NF1 p.A761T
NIPBL c.771+4T.C
NOTCH3 p.G172D
NUTM1 c.-195C.T
PALB2 p.G257S
PAX8 p.S193N
PAX8 p.L142F
PBRM1 c.1541+1G.A
PDGFRA p.S947N
POLQ p.T966I
PRDM1 p.Y410C
PTCH1 p.S900N
PTPRB p.R2185K
PTPRB p.D976N
SF3B1 p.S956F
SMARCA2 p.V1426I
SMARCA4 p.D1670N
SOS2 p.E968K
SOS2 p.S384N
SPEN p.A205T
SPTA1 p.E1983K
SPTA1 p.A1523V
SPTA1 p.S1296N
SYNE1 c.22495-6T.A
SYNE1 p.A5712V
TET2 p.A457T
TET2 p.S972F
TLR4 p.A118T
TOP2A p.R450*
WRN p.G1207D
ZFHX4 p.P2469S
ZNF217 p.P259S

KIT p.D851N
KIT p.S959F
KIT p.V950fs
KRAS splice site SNV
MAP2K1 p.S140N
MAPK3 p.H197N
MET p.P239L
MPL p.G509S
MPL p.P518S
MTOR p.A699T
MTOR p.G95R
MTOR p.Q973*
MTOR p.V936I
MYC p.G289D
MYC p.V7M
NOTCH1 p.G2299D
NOTCH1 p.T194I
NOTCH1 p.V1648M
NTRK1 p.C345R
PDGFRA splice site SNV
PTEN p.E299K
RAF1 p.L570F
ROS1 p.G2121D
ROS1 p.L1937F
STK11 p.G171D
TERT p.A689V
TERT splice site SNV
TP53 p.A353V
TP53 p.A78T
TP53 p.R209K

Abbreviation: VUS, variants of uncertain significance.
aIndicates results that were collected as part of research analysis, which were not available at the time of clinical decision making.
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