Skip to main content
. 2022 Jun 24;2022:8141530. doi: 10.1155/2022/8141530

Table 2.

Training parameters of the proposed AlexNet-GRU model.

Layers K_Size Input (shape) Act_Func Output (shape)
Con_Layer_1 3 × 3 (60, 60, 3) ReLU_Func (58, 58, 128)
B-Norm_1 (58, 58, 128) (58, 58, 128)
Max_pooling_1 2 × 2 (58, 58, 128) (57, 57, 128)
Drop_out = 0.9 (57, 57, 128) (57, 57, 128)
Con_Layer_2 2 × 3 (57, 57, 128) ReLU_Func (55, 55, 256)
B-Norm_2 (57, 57, 128) (55, 55, 256)
Max_pooling_2 2 × 2 (55, 55, 256) (54, 54, 256)
Drop_out = 0.9 (54, 54, 256) (54, 54, 256)
Con_Layer_3 2 × 3 (54, 54, 256) ReLU_Func (52, 52, 256)
B-Norm_3 (52, 52, 256) (52, 52, 256)
Max_pooling_3 2 × 2 (52, 52, 256) (51, 51, 256)
Dropout = 0.5 (51, 51, 256) (51, 51, 256)
Con_Layer_4 2 × 3 (51, 51, 256) ReLU_Func (49, 49, 256)
B-Norm_4 (49, 49, 256) (49, 49, 256)
Dropout = 0.9 (49, 49, 256) (49, 49, 256)
Con_Layer_5 2 × 3 (49, 49, 256) ReLU_Func (47, 47, 256)
B-Norm_5 (47, 47,256) (47, 47, 256)
Dropout = 0.9 (47, 47, 256) (47, 47, 256)
Con_Layer_6 2 × 3 (47, 47, 256) ReLU_Func (45, 45, 256)
B-Norm_6 (45, 45, 256) (45, 45, 256)
Dropout = 0.9 (45, 45, 256) (45, 45, 256)
Con_Layer_7 2 × 3 (45, 45, 256) ReLU_Func (45, 45, 512)
B-Norm_7 (43, 43, 512) (43, 43, 512)
Max_pooling_4 3 × 2 (43, 43, 512) (42, 42, 512)
Dropout = 0.5 (42, 42, 512) (42, 42, 512)
Flatten (42, 42, 512) (903,168)
Dense1 (903,168) (1,024)
B-Norm_8 (1,024) (1,024)
Drop_out = 0.3 (1,024) (1,024)
Dense2 (1,024) (2,000)
B-Norm_9 (2,000) (2,000)
GRU (1,024)
Dense3 (2,000) (2,000)