Table 2.
Hyperparameters used to train the CNNs used in our experiments.
Hyperparameter | Value |
---|---|
Input dimension | 100 × 100 |
Number of convolution layers | 2 |
Number of fully connected layers | 1 |
Number of filters for each convolution layer | 32, 64 |
Size of convolutional kernels | 3 × 3 |
Strides size | 2 |
Activation function for hidden layers | ReLU |
Loss function | Hinge |
L2 regularization coefficient | 0.001 |
Number of neurons of fully connected layers | 128 |
Batch size | 256 |