Table 2.
Hyperparameters used to train the CNNs used in our experiments.
| Hyperparameter | Value |
|---|---|
| Input dimension | 100 × 100 |
| Number of convolution layers | 2 |
| Number of fully connected layers | 1 |
| Number of filters for each convolution layer | 32, 64 |
| Size of convolutional kernels | 3 × 3 |
| Strides size | 2 |
| Activation function for hidden layers | ReLU |
| Loss function | Hinge |
| L2 regularization coefficient | 0.001 |
| Number of neurons of fully connected layers | 128 |
| Batch size | 256 |