Skip to main content
. 2022 Jul 1;12:11178. doi: 10.1038/s41598-022-15374-5

Table 2.

Hyperparameters used to train the CNNs used in our experiments.

Hyperparameter Value
Input dimension 100 × 100
Number of convolution layers 2
Number of fully connected layers 1
Number of filters for each convolution layer 32, 64
Size of convolutional kernels 3 × 3
Strides size 2
Activation function for hidden layers ReLU
Loss function Hinge
L2 regularization coefficient 0.001
Number of neurons of fully connected layers 128
Batch size 256