Skip to main content
. 2022 Jul 1;12:11178. doi: 10.1038/s41598-022-15374-5

Table 3.

Performance comparison between a stand-alone classifier (CNN) and the proposed method.

Optimizer Methods Accuracy (%) PPV (%) Recall (%) Specificity (%) F1-score (%) AUC Loss Total training time (s)
Adagrad CNN 92.45 93.91 87.02 94.91 90.89 0.91 0.52 464.75

Proposed

method

98.78 100 98.16 99.42 99.00 0.99 464.75
RMSProp CNN 93.48 94.56 89.99 95.13 91.03 0.93 0.48 471.22

Proposed

method

98.99 100 98.65 99.49 99.50 0.99 471.22
Adam CNN 93.92 95.01 90.09 95.89 92.22 0.95 0.41 476.85

Proposed

method

99.18 100 98.88 99.66 99.70 0.99 476.85