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Abstract

Background Hepatocellular carcinoma with neuroendocrine differentiation (HCC-NED) is a

very rare subtype of primary liver cancer. Treatment allocation in these patients therefore

remains a challenge.

Methods We report the case of a 74-year-old man with a HCC-NED. The tumor was sur-

gically removed in curative intent. Histopathological work-up revealed poorly differentiated

hepatocellular carcinoma (Edmondson-Steiner grade IV) with diffuse expression of neu-

roendocrine markers synaptophysin and chromogranin. Three months after resection, mul-

tifocal recurrence of the HCC-NED was observed. In the meantime, tumor organoids have

been generated from the resected HCC-NED and extensively characterized. Sensitivity to a

number of drugs approved for the treatment of HCC or neuroendocrine carcinomas was

tested in vitro.

Results Based on the results of the in vitro drug screening, etoposide and carboplatin are

used as first line palliative combination treatment. With genomic analysis revealing a NTRK1-

mutation of unknown significance (kinase domain) and tumor organoids found to be sensitive

to entrectinib, a pan-TRK inhibitor, the patient was treated with entrectinib as second line

therapy. After only two weeks, treatment is discontinued due to deterioration of the patient’s

general condition.

Conclusion The rapid establishment of patient-derived tumor organoids allows in vitro drug

testing and thereby personalized treatment choices, however clinical translation remains a

challenge. To the best of our knowledge, this report provides a first proof-of-principle for

using organoids for personalized medicine in this rare subtype of primary liver cancer.
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Plain language summary
Tumors that simultaneously display

features of liver, nerve and hormone-

producing cells are very rare. In such

cases, the most appropriate treat-

ment choice is not well defined. Here,

we describe the generation of three-

dimensional miniature tumors, called

organoids, from the patient’s tumor

tissue, that can be grown and studied

in a culture dish. These organoids

closely mimic the patient’s tumor and

allowed us to test different drugs to

identify the most effective therapy for

informed treatment choice. What we

describe in this study is an emerging

approach for a practice known as

personalized medicine, that aims to

provide a more tailored treatment to

patients. In summary, we demon-

strate that this approach can be

useful in a rare cancer type and that it

holds significant potential to guide

treatment decision in other patients

with aggressive cancers.
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Primary liver carcinomas with concurrent hepatocellular and
neuroendocrine tumor components in the same liver lesion
are very rare1. They consist of two morphologically distinct

cell populations that express hepatocellular or neuroendocrine
markers and are classified as Hepatocellular Carcinoma-
Neuroendocrine Carcinoma (HCC-NEC)2 or liver mixed neu-
roendocrine non-neuroendocrine neoplasms (MiNEN)3. The
published case reports describe an aggressive tumor phenotype
and poor overall prognosis3,4. Even rarer are HCCs with neu-
roendocrine differentiation (HCC-NED)5. HCC-NEDs are com-
prised of morphologically uniform cells that stain positively for
both hepatocellular and neuroendocrine markers. Patients are
usually treated by means of surgical resection, transarterial che-
moembolization or systemic (chemo)therapy for liver cancer or
neuroendocrine malignancies. Because HCC with neuroendo-
crine differentiation is a very rare tumor entity, therapy in these
patients remains ill-defined4,6,7. Here, we report a case history of
a 74-year-old man with HCC-NED. We provide a comprehensive
histopathological characterization and a genomic analysis of this
rare tumor. Furthermore, we describe the generation of tumor
organoids that retain the key characteristics of the originating
tumor. The organoids were used in drug screens to identify the
most promising treatment options.

Methods
Patient information and biological material. Human biopsy and
resection tissue was collected from patients undergoing diagnostic
liver biopsy or liver surgery at the University Hospital of Basel.
Written informed consent was obtained from all patients. The
study was approved by the local ethics committee (protocol
numbers EKNZ 2014-099 as well as BASEC 2019-02118). For the
HCC-NED patient described in this study, written informed
consent to publish the case details was obtained from the family.

Liver cancer organoid culture. Tumor organoid lines were gen-
erated from liver biopsy or resection tissue according to published
protocols8,9. Briefly, tumor tissues were dissociated to small-cell
clusters and seeded in domes of basement membrane extract
type 2 (BME2, R&Dsystems, Cat. No. 3533-005-02). Polymerized
BME2 domes were overlaid with expansion medium (EM):
advanced DMEM/F-12 (Gibco, Cat. No. 12634010) supplemented
with 1× B-27 (Gibco, Cat. No. 17504001), 1× N-2 (Gibco, Cat. No.
17502001), 10mM Nicotinamide (Sigma, Cat. No. N0636),
1.25 mM N-Acetyl-L-cysteine (Sigma, Cat. No. A9165), 10 nM
[Leu15]-Gastrin (Sigma, Cat. No. G9145), 10 μM Forskolin
(Tocris, Cat. No. 1099), 5 μM A83-01 (Tocris, Cat. No. 2939),
50 ng/ml EGF (Peprotech, Cat. No. AF-100-15), 100 ng/ml FGF10
(Peprotech, Cat. No. 100-26), 25 ng/ml HGF (Peprotech, Cat. No.
100-39), 10% RSpo1-conditioned medium (v/v, homemade).
Cultures were kept at 37 °C in a humidified 5% CO2 incubator.
Organoids were passaged weekly at 1:4–1:6 split ratios using 0.25%
Trypsin-EDTA (Gibco, Cat. No. 25200056). Frozen stocks were
prepared at regular intervals. All organoid cultures were regularly
tested for Mycoplasma contamination using the MycoAlert™
Mycoplasma detection kit (Lonza, Cat. No. LT07-118).

Histology and immunohistochemistry. Tumor and liver tissues
were fixed in 4% phosphate-buffered formalin and embedded in
paraffin using standard procedures. Tumor organoids were
released from BME2 by incubation in Dispase II (Sigma-Aldrich,
Cat. No. D4693). Organoids were fixed in 4% phosphate-buffered
formalin in PBS for 30 min at room temperature following
encapsulation in HistoGel (Thermo Fisher Scientific, Cat. No.
HG-4000-012) and subsequent dehydration and paraffin
embedding.

Histopathological evaluation was assessed by three board-
certified pathologists (MSM, JV and LMT). Tumors were classified
based on architecture and cytological features, and graded
according to the Edmondson grading system10,11. The following
primary antibodies were used for automated diagnostic immuno-
histochemical staining on a Benchmark XT device (Ventana
Medical Systems) at the Institute of Pathology of the University of
Basel: AFP (Ventana, Ref-Nr. 760-2603), ARG1 (Ventana, Ref-Nr.
760-4801), CD10 (Ventana, Ref-Nr. 790-4506), CD56 (Ventana,
Ref-Nr. 790-4465), CHGA (Ventana, Ref-Nr. 760-2519), GPC3
(Ventana, Ref-Nr. 790-4564), HLA-ABC (Abcam, Cat. No.
ab70328), Hep Par-1 (Ventana, Ref-Nr. 760-4350), KRT19
(Ventana, Ref-Nr. 760-4281), Ki-67 (Dako, Cat. No. IR626),
Pan-TRK (Abcam, Cat. No. ab181560), PD-L1 (Ventana, Ref-Nr.
740-4907), SYP (Ventana, Ref-Nr. 790-4407), and SSTR2 (Abcam,
Cat. No. ab134152).

Xenograft mouse model. Experiments involving animals were
performed in strict accordance with Swiss law and were pre-
viously approved by the Animal Care Committee of the Canton
Basel-Stadt, Switzerland. Tumor organoids, corresponding to
2 × 106 cells, were released from BME2, resuspended in 100 μl
50:50 (v/v) BME2:expansion medium, and injected sub-
cutaneously into the flank of one male NSG (Non-obese diabetic,
Severe combined immunodeficiency, Gamma) mouse (The
Jackson Laboratory) at 8 weeks of age. The mouse was housed in
an individually ventilated cage (Tecniplast Green Line) at 22 °C,
55% humidity and a light cycle of 12:12 h. Tumor growth was
assessed weekly by caliper measurement. The tumor was har-
vested when it reached 1000 mm3 in size, fixed in 4% phosphate-
buffered formalin and processed for paraffin embedding and
immunohistochemistry as described above.

Drug screenings. All compounds were dissolved in DMSO at
10 mM (except for cisplatin and carboplatin) and aliquots were
stored at −20 °C, 4 °C or room temperature according to the
manufacturer’s recommendations. Sorafenib tosylate, lenvatinib
mesylate, cabozantinib mesylate, regorafenib, octreotide acetate,
lanreotide acetate, etoposide, sunitinib malate, everolimus,
entrectinib, larotrectinib: all from Selleckchem; pasireotide ditri-
fuloroacetate (MedChem Express); cisplatin (Sandoz); carboplatin
(Labatec). For drug screenings, organoids were dissociated with
0.25% Trypsin-EDTA (Gibco) and seeded at 1000 cells/well in
384-well plates in organoid expansion medium supplemented
with 10% BME2. Two days later, compounds were added in a
2-fold dilution series ranging from 0.02 nM to 10 μM. After
6 days of treatment, cell viability was measured using CellTiter-
Glo 3D (Promega). Luminescence was measured on a Synergy H1
Multi-Mode Reader (BioTek Instruments). Results were nor-
malized to vehicle control (100% DMSO or 100% water). All
experiments were performed twice. Dose-response curves were
calculated using Prism 9.3.1 (GraphPad), nonlinear regression
algorithm was used with a constrain of 0 for the bottom and 100
for the top.

DNA extraction and whole-exome sequencing. DNA from the
tumor, adjacent non-tumoral liver tissue and organoid was
extracted using the Qiagen DNeasy Blood & Tissue kit (Qiagen,
Cat. No. 69504) following the manufacturer’s instructions.
Extracted DNA was subjected to whole-exome sequencing. The
Twist Human Core Exome kit was used for whole exome capture
according to the manufacturer’s guidelines. Sequencing was
performed on Illumina NovaSeq 6000 using paired-end 100-bp
(mean sequencing depth 135× for HCC, 153× for the organoid
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and 129× for germline (adjacent non-tumoral liver tissue)).
Sequencing was performed by CeGaT (Tübingen, Germany).

Reads obtained were aligned to the reference human genome
GRCh38 using Burrows-Wheeler Aligner (BWA, v0.7.12)12. Local
realignment, duplicate removal, and base quality adjustment were
performed using the Genome Analysis Toolkit (GATK, v4.1 and
Picard (http://broadinstitute.github.io/picard/)). Somatic single
nucleotide variants (SNVs) and small insertions and deletions
(indels) were detected using MuTect2 (GATK 4.1.4.1)13 and
Strelka (v.2.9.10)14. Only variants detected by both callers were
kept. We filtered out SNVs and indels outside of the target
regions (i.e., exons), those with a variant allelic fraction (VAF) of
<5 % and/or those supported by <3 reads. We excluded variants
for which the tumor VAF was <5 times that of the paired non-
tumor VAF. We further excluded variants identified in at least
two of a panel of 123 non-tumor samples, captured and
sequenced using the same protocols using the artifact detection
mode of MuTect2 implemented in GATK. All indels were
manually inspected using the Integrative Genomics Viewer15.
FACETS (v.0.5.14)16 was used to identify allele-specific copy
number alterations (CNAs). Genes with total copy number
greater than gene-level median ploidy were considered gains;
greater than ploidy+ 4, amplifications; less than ploidy, losses;
and total copy number of 0, homozygous deletions. Somatic
mutations associated with the loss of the wild-type allele (i.e., loss
of heterozygosity [LOH]) were identified as those where the lesser
(minor) copy number state at the locus was 0. For chromosome
X, the log ratio relative to ploidy was used to call deletions, loss,
gains and amplifications. All mutations on chromosome X in
male patients were considered to be associated with LOH.
Comparison of copy number between organoids and tumor were
performed at gene level.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Case presentation. A 74-year-old man presented with sudden
one-sided loss of vision in the absence of other neurological
symptoms. Diagnostic workup revealed giant cell arteritis (GCA)
with involvement of the temporal artery, which was confirmed
histologically and treated with aspirin as well as high-dose ster-
oids. An imaging workup was initiated to investigate whether
GCA was a paraneoplastic phenomenon. A computed tomo-
graphy scan revealed a mass with maximum diameter of 4 cm in
the gastric corpus as well as an intrahepatic mass with a max-
imum diameter of 4 cm. The intrahepatic mass was hypoecho-
genic in ultrasound and was highly suspicious for malignancy in
the consecutive magnet resonance imaging (MRI) (Fig. 1a, b).
Biopsies of the two lesions revealed two independent malig-
nancies: A gastrointestinal stromal tumor (GIST) of the stomach
and a poorly differentiated hepatocellular carcinoma (HCC).
Liver values were within the normal range (aspartate amino-
transferase (ASAT) of 17 U/l, alanine aminotransferase (ALAT)
of 17 U/l, gamma-glutamyl transferase (GGT) of 30 U/l, alkaline
phosphatase (AP) of 77 U/l). Liver function tests were normal,
and the radiological findings were not suspicious for advanced
liver fibrosis or cirrhosis. Tumor markers revealed high Alpha-
Fetoprotein (AFP) levels of 754 kIU/l (normal range: <5.8 kIU/l),
as well as slightly elevated carcinoembryonic antigen (CEA)
(4.7 μg/l, normal range: <3.4 μg/l) and carboanhydrate-antigen
19-9 (CA 19-9) (47.7 U/ml, normal range: <34 U/ml) (Fig. 1a).

The interdisciplinary tumor board recommended a curative
treatment approach with surgical resection. The patient

underwent left-lateral liver resection and simultaneous partial
gastrectomy without complications, allowing complete local
resection of both tumors. Histopathological assessment con-
firmed the diagnosis of GIST of the stomach (Supplementary
Fig. 1a). Based on the tumor size of 3.7 cm, mitotic activity and
tumor localization, the GIST had a low risk for progression and
required no further therapy17. Macroscopic evaluation of the
resected liver tumor showed a polynodular tumor with beige and
partly yellow cut-surface. Microscopy displayed a poorly
differentiated tumor composed of medium to large cells with
moderate to marked pleomorphism, growing in solid patternless
sheets, lack of sinusoidal spaces and gland formation, compatible
with Edmondson–Steiner grade IV HCC10 (Supplementary
Fig. 1b). Furthermore, lymphovascular and perineural invasion
could be observed and the tumor was necrotic in about 20%
(Supplementary Fig. 2). Immunophenotypic characterization
resulted in the definitive diagnosis of poorly differentiated
hepatocellular carcinoma (Edmondson-Steiner grade IV) with
neuroendocrine differentiation (HCC-NED). The tumor cells
were positive for Hep Par-1, Arginase 1 (ARG1), CD10,
Glypican-3 (GPC3), and KRT19 (Fig. 1c, Supplementary Figs. 1
and 2). The same tumor cells were also positive for the
neuroendocrine markers Synaptophysin (SYP) and Chromogra-
nin (CHGA) (Fig. 1c and Supplementary Fig. 2). Weak positive
staining for somatostatin-receptor 2 (SSTR2) was detected in 10%
of the tumor cells (Supplementary Fig. 1c). In contrast CD56 was
negative (Supplementary Fig. 1c). The proliferation marker KI-67
was expressed in 85% of the tumor cells, documenting a very high
proliferation rate (Fig. 1c and Supplementary Fig. 2). The
adjacent non-tumoral liver displayed no substantial alterations
(Supplementary Figs. 1b and 2).

According to the recommendations of the interdisciplinary
tumor board, the patient was enrolled into a postoperative HCC
surveillance program. The first computed tomography (CT) scan
three months after surgery revealed multifocal intrahepatic
disease recurrence (max. diameter of 8 cm) with portal vein
invasion as well as pulmonary metastasis, requiring palliative
systemic therapy (Fig. 1a–c). Because HCC-NEDs are exceedingly
rare, there was no published evidence to guide drug selection. The
tumor board tentatively recommended drugs approved for the
treatment of HCC but was well aware of the risk that the
neuroendocrine differentiation of the tumor might limit the
response to these drugs.

Patient-derived HCC-NED organoids as a preclinical tumor
model. Within the last few years, patient-derived organoids have
emerged as powerful preclinical model system to assess drug
responsiveness of tumor cells in vitro, thereby allowing perso-
nalized medicine18. Accordingly, we generated organoids from
the patient’s resected HCC-NED tissue. HCC-NED organoids
grew rapidly after initial seeding, allowing their expansion and
characterization within a short time frame of 3 weeks (compared
to an average model generation time of 8 weeks for HCC
organoids8). Morphologically, HCC-NED organoids presented as
solid spheroids comparably to other HCC organoid models8.
Histologically, HCC-NED organoids retained growth pattern and
differentiation grade of the original tumor (Fig. 1c). Notably,
markers of hepatic (Hep Par-1) and neuroendocrine (SYP,
CHGA) differentiation were equally retained in the organoids,
further underlining their ability to recapitulate the tumor biology
in vitro.

Moreover, to assess their in vivo tumorigenicity, HCC-NED
organoids were subcutaneously injected in immunodeficient
mice. HCC-NED organoids could indeed easily be propagated
as xenografts. The xenografts retained histological features as well
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Fig. 1 Poorly differentiated hepatocellular carcinoma with neuroendocrine differentiation. a Clinical time course of the patient. AFP Alpha Fetoprotein,
CTx chemotherapy, HCC hepatocellular carcinoma, Rx treatment. b Representative computed tomography (CT) scans of the abdomen with contrast at
diagnosis (12 weeks before surgical resection), after postoperative recurrence (week 12), after two cycles of etoposide and carboplatin therapy (week 19)
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of the microscopic findings). Immunohistochemical stainings were performed for hepatocellular (Hep Par-1, ARG1) as well as neuroendocrine markers
(SYP, CHGA). Scale bar: 100 μm. ARG1 Arginase 1, CHGA Chromogranin A, GPC3 Glypican-3, H&E hematoxylin and eosin, Hep Par-1 Hepatocyte Paraffin
1, SYP Synaptophysin.
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as marker expression reminiscent of the patient’s primary tumor,
including the very high expression rate of the proliferation
marker KI-67 (Fig. 1c and Supplementary Fig. 1c).

HCC-NED displays mutations in TP53, CTNNB1 and NTRK1.
It has been shown that the genetic profile can influence clinical
decision-making and treatment selection in several cancer
types19. Therefore, we performed whole-exome sequencing
(WES) of the HCC-NED tumor (mean coverage 136×) matched
to the non-tumoral liver tissue (mean coverage 130×) and its
derived organoids (mean coverage 154×) to identify targetable
alterations.

We detected 111 and 116 somatic mutations in the HCC-NED
tumor and HCC-NED organoids, respectively (Supplementary
Data 1). Of those, 106 were shared between both samples (87.6%;
Fig. 2a). Moreover, analysis of genome-wide copy number
alterations detected by WES showed a 71 % correlation between
HCC-NED tumor and HCC-NED organoid including the loss of
chr 5, 8p, 1q, gain of chr 13p, 20p and the focal amplification of
the 19q12 locus (Supplementary Fig. 3a).

The genomic analysis revealed that the HCC-NED tumor
harbored CTNNB1 (p.S45P) and TP53 (p.R273C) hotspot muta-
tions (Fig. 2b). Both genes are frequently mutated in HCC20. TP53
is also commonly mutated in gastroenteropancreatic neuroendo-
crine cancers21. Furthermore, NTRK1, encoding the Neurotrophic
Receptor Tyrosine Kinase 1, was found to harbor a missense
variant (p.T741P) of unknown significance (VUS) in the tyrosine
kinase (TK) domain in tumor and matched organoids (Fig. 2b,
Supplementary Fig. 3b and Supplementary Data 1).

HCC-NED organoids are sensitive towards carboplatin, eto-
poside and entrectinib. Because HCC with neuroendocrine dif-
ferentiation is a very rare entity, treatment allocation is still
unclear and relies on documentations found in single case
reports. As a first treatment option for this patient, the combi-
nation of atezolizumab and bevacizumab was considered, because
it is the current first-line therapy for advanced HCC20,22. How-
ever, immunostaining revealed the lack of Human Leucocyte
Antigen (HLA) ABC and Programmed Death-Ligand 1 (PD-L1)
expression on tumor cells (Supplementary Fig. 1c, e), and
therefore, the efficacy of immune checkpoint inhibitor therapy
might be impaired in this patient23–25. Current guidelines
recommend a limited number of systemic treatments for
advanced HCC or for NET/NEC21,26 (Supplementary Fig. 4a). To
identify potentially effective drugs, we used the HCC-NED
organoids for in vitro drug response testing. 4 HCC organoids
from our biobank (Supplementary Data 2) served as controls.
Drug screenings were performed with a broad drug dilution range
of 0.02 nM to 10 μM. Cells were treated for six days at which time
the cell number was then determined using an ATP-based
readout as described in the materials and methods. HCC-NED
organoids showed the same response to the multikinase-
inhibitors sorafenib, lenvatinib, cabozantinib and regorafenib as
the control HCC organoid lines (Fig. 2c, Supplementary Fig. 4b,
Supplementary Data 3 and 4). We then tested drugs approved for
advanced neuroendocrine tumors and carcinomas, including
somatostatin analogs (octreotide, lanreotide, pasireotide), the
multikinase-inhibitor sunitinib, the mTOR-inhibitor everolimus
as well as conventional chemotherapeutics (5-FU, cisplatin, eto-
poside, carboplatin). Compared to conventional HCC organoids,
HCC-NED organoids responded better to the classical che-
motherapeutics cisplatin, etoposide and carboplatin (Fig. 2c, d,
Supplementary Fig. 4c, Supplementary Data 3 and 4). Of note, no
antitumoral activity could be observed for any of the somatostatin
analogs. We also tested the pan-TRK inhibitors entrectinib and

larotrectinib. In a recent report, these drugs were strong growth
inhibitors of organoids derived from gastroenteropancreatic
neuroendocrine neoplasms27. Larotrectinib had no effect on our
HCC-NED and HCC organoids (Fig. 2c, Supplementary Fig. 4d
and Supplementary Data 4). On the other hand, HCC-NED
organoids were growth inhibited by entrectinib with an IC50 of
0.61 μM (Fig. 2c, d, Supplementary Data 3 and 4).

Progressive disease after two cycles of etoposide and carbo-
platin, followed by a treatment attempt with entrectinib. Based
on the above-mentioned results, a first-line palliative che-
motherapy with etoposide and carboplatin was initiated. The
therapy was well tolerated by the patient. However, a CT scan
after 4 weeks revealed progressive disease (Fig. 1b), and the
treatment was stopped after only two cycles. Because next-
generation sequencing analysis of the tumor had revealed a
NTRK1-mutation and the pan-TRK inhibitor entrectinib was
effective in HCC-NED organoids, a therapy attempt with
entrectinib was suggested for second line. After patient con-
sultation, interdisciplinary discussion at the tumor board, and
approval by the health insurance company, entrectinib treatment
was initiated 4 weeks later. Unfortunately, the patient’s general
health condition had rapidly deteriorated and he additionally
suffered a traumatic femoral neck fracture. Entrectinib treatment
was still initiated but had to be discontinued after two weeks. A
CT scan revealed progression of the number and size of the
metastatic lesions, but also increasing areas without up-take of
contrast material (non-viable tumor) (Fig. 1b). A formal evalua-
tion of the response to entrectinib was not possible due to the
short treatment period. The patient then received best supportive
care. He deceased one week later.

Discussion
Hepatocellular carcinoma with neuroendocrine differentiation is
a very rare tumor entity1,2. No evidence-based treatment options
are established for these aggressive primary liver carcinomas.
Published reports describe the use of surgical resection, percu-
taneous ablation, transarterial chemoembolization and classical
systemic chemotherapies4. However, most reports describe a poor
outcome despite these treatments. In the present report, we
describe for the first time a functional precision oncology
approach to guide the choice of systemic chemotherapeutics in
liver cancer. We successfully generated tumor organoids that were
then used for testing the efficacy of drugs in vitro. The HCC-NED
organoid line grew very rapidly, probably reflecting the exceed-
ingly high proliferation rate of the originating tumor. It is known
that high proliferation rates increase the success rate for gen-
erating organoids from tumor biopsies8. We therefore believe that
HCC-NECs and HCC-NEDs are good candidates for generating
tumor organoids. Furthermore, the rapid growth of HCC-NED
organoids allowed their characterization as well as drug testing
within a time frame of 5–6 weeks, the latter being an important
factor when using pre-clinical models for therapy guidance.
Indeed, the applicability of tumor organoid models in the clinical
setting strongly depends on the time scale of establishment28–30.

In our case, despite good efficacy in the organoid tumor model
in vitro, the combination of etoposide and carboplatin as first-line
palliative therapy was clinically not effective. We can only spec-
ulate about the reasons for this failure. Clearly, the organoid
models, while maintaining most of the key cellular and molecular
features of the originating tumors, have important limitations
because they lack the tumor stroma. This precludes testing anti-
angiogenic drugs such as ramucirumab or immune-checkpoint
inhibitors. It is also conceivable that the tumor stroma influences
the response to treatments targeted to the tumor cells. Such
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effects cannot be assessed in the organoid models. It is also
possible that the drug concentrations in the tumor were too low,
or that the tumors developed rapid resistance to etoposide and
carboplatin in vivo.

Fusions involving NTRK genes are the most common
mechanisms of oncogenic TRK activation31. Typically, the fusions
contain 3’ sequences of NTRKs that include the kinase domain
and 5’ sequences of a different gene. The fusion results in a
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Fig. 2 Genetic characterization of HCC-NED and drug screening using patient-derived organoids. a Venn diagram representing the number of somatic
mutations detected in each sample using whole-exome sequencing (WES). b Oncoprint of genetic alterations detected in the HCC-NED tumor and its
matched organoids by WES. Alterations are colored according to the legend. Alterations shown are those included in the cancer gene list (Supplementary
Data 1). c Half maximal inhibitory concentration (IC50) as determined in the HCC-NED (colored in red) and four different HCC organoid lines (colored in
black). Horizontal lines indicate the median IC50. CTx chemotherapy, HCC hepatocellular carcinoma, HCC-NED hepatocellular carcinoma with
neuroendocrine differentiation, inh. inhibitors, NEC neuroendocrine carcinoma, NET neuroendocrine tumor, Rx therapy, SSA somatostatin analogs. d Dose-
response curves for the chemotherapeutics etoposide and carboplatin as well as the pan-TRK inhibitor entrectinib with concentrations ranging from
0.02 nM to 10 µM. The HCC-NED organoid line is colored in red, the four HCC organoid lines included as reference in black. After 6 days of treatment, an
ATP-based readout was used as a surrogate for cell number. All values were normalized to vehicle control (DMSO or water) and are displayed as the mean
of n= 2 biologically independent experiments. DMSO dimethyl sulfoxide.
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chimeric oncoprotein with ligand-independent constitutive activa-
tion of the TRK kinase32. Clinical detection of NTRK fusions is
mainly based on next-generation sequencing (NGS). Immunohis-
tochemistry is a complementary method that can detect TRK
overexpression as a surrogate for NTRK fusions33,34. The missense
mutation present in our case (T741P) was not associated with TRK
overexpression, since both HCC-NED tissue and organoids stained
negative in pan-TRK IHC (Supplementary Fig. 1d).

An increasing number of NTRK mutations and splice variants
and cases of TRK ectopic expression and/or overexpression has
been reported32. However, overall NTRK1 is not frequently
mutated in neuroendocrine tumors such as pancreas35,36 and
prostate37 (0 and 1.2% frequency, respectively), in HCC the fre-
quency is 0.7%38–43. For most of these NTRK mutations, the
functional consequences and their role as oncogenic drivers are
unknown or remain controversial. In our case, we have no evi-
dence that the mutation in the kinase domain is indeed a driver
mutation. The observation that HCC-NED organoids did not
respond to the selective pan-TRK inhibitor larotrectinib, but were
sensitive to entrectinib, a pan-TRK inhibitor with additional
activity against the proto-oncogene kinase ROS1 and anaplastic
lymphoma kinase (ALK)44 does not support the hypothesis that
constitutive TRK activity was a main oncogenic driver in our case.
Moreover, NTRK1 (T741P) was predicted to be deleterious by the
MetaSV score45. Of note, this is only based on in silico predic-
tions and further studies are required to unveil the functional
impact of this mutation.

Limited resources did not allow us to test all conventional che-
motherapeutics listed in the guidelines for NET/NEC treatment21.
Specifically, we did not investigate the antitumoral efficacy of
temzolomide, streptozocin, capecitabine, leucovorin, oxaliplatin and
irinotecan in our HCC-NED organoid model. Accordingly, we
cannot rule out that these cytostatic drugs might have displayed
antitumoral activity. The efficacy of these components can be tested
to potentially inform future treatment decisions. Furthermore, this
unique HCC-NED organoid line can be used to screen additional
drug libraries, an effort that might identify promising candidates for
future cases of HCC-NED.

In conclusion, we describe a rare case of a patient with HCC with
neuroendocrine differentiation. The rapid establishment of patient-
derived tumor organoids allowed in vitro drug testing and thereby
personalized treatment choices in this patient. Unfortunately, the
drugs could not prevent the rapid tumor progression. Nevertheless,
the report provides a first proof-of-principle for using organoids for
personalized medicine in these rare primary liver cancers.

Data availability
The WES data reported here are available under restricted access at the European
Genome- Phenome Archive under primary accession number EGAS00001005887.
Access is restricted because genetic data is personally identifiable. To obtain access and
conditions of access to the EGA datasets, contact the corresponding authors, who will
respond within 4 weeks. The use of the data will be subjected to agreement of a data use
policy, which details the minimum protection measures required related to data
encryption and user access. The data will be available to the authorized users for the
duration of the requested project. Users will have to specifically agree to preserve, at all
times, the confidentiality of information and Data pertaining to Data Subjects and to use
or attempt to use the Data to compromise or otherwise infringe the confidentiality of
information on Data Subjects and their right to privacy. User have to agree not to
attempt to identify Data Subjects. The full data use policy will be available upon data
access request. Source data for Fig. 2 panels a and b can be found in Supplementary
Data 1. Source data for Fig. 2 panel c can be found in Supplementary Data 3. Source data
for Fig. 2 panel d, and Supplementary Fig. 4 panels b, c, and d, can be found in
Supplementary Data 4.
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