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Current concepts and perspectives 
for articular cartilage regeneration
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Abstract 

Articular cartilage injuries are common in the population. The increment in the elderly people and active life results 
in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. 
However, because of cartilage’s low regenerative capacity, finding an efficacious treatment is still challenging for 
orthopedics.

Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new 
approaches for cartilage lesion treatment.

Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming 
conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by 
modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in 
regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce 
surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with sur-
rounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulat-
ing cell signal pathways.

To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical 
and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and 
inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we 
describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to 
identify the best perspectives.
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Introduction
Articular cartilage covers the bony ends of diarthrodial 
joints; it is a smooth thin hyaline tissue with friction-
reducing and load-bearing functions. It lacks blood 
vessels, lymphatics, and nerves [1]. As for connective 
tissues, an extracellular matrix (ECM) composed of 
water, collagens, and proteoglycans surrounds the cells. 
Chondrocytes are mature secretory scarcely distributed 
cells located in spaces termed lacunae. They are spread 
among superficial, middle, deep, and calcified four zones. 

Those zones display different cell shapes, secretory pat-
terns, and fiber orientation [2]. The layer of bone below 
the hyaline cartilage is known as subchondral bone. It has 
a structural and mechanical function (shock absorber) 
and can be involved in the etiology or effects of cartilage 
damages or diseases [3].

Chondral (affecting articular cartilage) and osteochon-
dral (affecting cartilage and the underlying bone) lesions 
are very common and can appear at any age [4, 5]. In 
the young population, they are most of traumatic origin 
(sport or accident), often with ligament and meniscal 
injuries. Some conditions like osteochondritis dissecans 
may lead to articular surface disruption and release of 
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intra-articular bodies composed of cartilage or cartilage 
and bones [6]. In the elderly population, lesions are asso-
ciated with rheumatic diseases (i.e., Osteoarthritis-OA) 
or derived from wear and tear due to excessive use (occu-
pational injury) or age [7, 8].

In general, repair of full-thickness cartilage lesions 
mainly depend on the patient’s age, defect size, and loca-
tion. Small full-thickness defects may adjust through the 
formation of hyaline cartilage. In contrast, large osteo-
chondral defects repair by forming a scar, fibrous tissue, 
or fibrocartilage in which the predominant component is 
collagen type I [2, 9].

This kind of cartilage could be functionally active for a 
short period, but the tissue does not present the mechan-
ical and strength characteristics of normal cartilage, thus 
not ensuring the healing of the defect nor the symp-
tom remission. This situation could favor, over time, the 
development of OA [10].

Conventional cartilage treating procedures are pallia-
tive and reparative. Palliative strategies usually represent 
the first-line treatment to decrease symptoms without 
addressing the causes. Reparative approaches are abra-
sions drilling and microfracture. They include a subchon-
dral bone penetration allowing stem cells to migrate from 
bone marrow to the injury site and form, as explained 
before, mostly a tissue with fibrous features.

Regenerative methods have emerged as an alternative 
to tissue repair or replacement to regrow or restore dis-
eased cells, tissues, or organs. Osteochondral grafting 
represents a possible solution for creating a hyaline-like 
tissue in the affected area. However, it has shown some 
drawbacks like donor site morbidity, graft failure (auto-
graft), or possible disease transmission (allograft) [11]. 
Lately, different therapeutic solutions in cartilage regen-
erative medicine have emerged.

With this manuscript, we would like to report the 
main therapeutic strategies in this field, focusing on 
recent approaches in tissue engineering and particularly 
on up-to-date knowledge’s on cells, growth factors, and 
scaffolds.

Tissue engineering
Tissue engineering has represented a new fascinating, 
and innovative approach to regenerating articular tissue 
[12]. As reported above, this therapeutic strategy involves 
the use of cells, scaffolds, and growth factors (GF), trying 
to mimic the complex three-dimensional microenviron-
ment of the joint that requires the interaction between 
these different components. Reproducing such complex-
ity is critical, and many issues are still open concerning 
the ideal cell population, the use of GF and the suitable 
scaffolds [1, 13].

Cells
Cells can be administered as therapeutic agents to 
rebuild damaged cartilage in joints. The leading cell types 
used in treating chondral and osteochondral defects are 
chondrocytes and mesenchymal stromal cells from vari-
ous sources [14]. The technique requires that cells are 
isolated and then expanded ex vivo in a monolayer cul-
ture before the implant. In terms of legislation, expanded 
cells belong to Advanced Therapy Medicinal Products 
(ATMPs) and must follow specific rules already encoded 
for conventional drugs and known as Good Manufactur-
ing Practices (GMPs). GMPs entail the standardization 
and control of medicinal manufacturing, ensuring their 
safety and reducing contaminations [15].

Autologous chondrocyte implantation
Autologous Chondrocyte Implantation (ACI) is a two-
step procedure that has been used in the clinic for many 
years [16]. In the original ACI technique (first-generation 
technique), the first step consisted of surgically removing 
small biopsies of normal cartilage from non-weight-bear-
ing areas of the knee. Chondrocytes were then enzy-
matically isolated from the biopsies, expanded ex  vivo 
in monolayer culture condition, and, after several weeks, 
harvested as a cell suspension. In the second step, sur-
geons injected the cell suspension under a periosteal flap 
harvested from the proximal medial tibia and previously 
sutured over the cartilage. Chondrocyte expansion was 
deemed necessary due to cartilage cell scarcity [17].

ACI that uses suspended cultured chondrocytes with 
a covering of collagen type I/III membrane is consid-
ered a second-generation. Third-generation ACI com-
prises those procedures that deliver autologous cultured 
chondrocytes using cell carriers or cell-seeded scaffolds. 
These second and third generation modifications are also 
known as autologous chondrocyte implantation using 
collagen membrane (C-ACI), membrane-associated 
autologous chondrocyte implantation (MACI), and scaf-
fold-based ACI [13, 18]. These procedures were intro-
duced in the clinical practice one decade ago, showing 
similar results while at the same time overcoming most 
of the concerns related to the first-generation ACI. The 
use of scaffolds to create a cartilage-like tissue in a three-
dimensional culture system allows for the optimization 
of the procedure from both the biological and surgical 
points of view [19, 20].

Although good clinical radiological and histological 
outcomes of the different ACI procedures, one of the 
main drawbacks is the need for a cell expansion phase 
which is long-lasting, complicated, and expensive pri-
marily due to GMPs requirements. Moreover, the need 
for two hospitalizations increases the risk for the patients 
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and the costs for the public health system. For all these 
reasons, investigations have been moving towards differ-
ent cell populations as reported below [9, 21, 22].

Mesenchymal stromal cells (MSC)
Stromal cells from various sources are currently avail-
able for cartilage regeneration. This is due to their abil-
ity to proliferate in culture and directionally differentiate 
by synthesizing structural and functional hyaline ECM 
molecules. Moreover, they can release many anti-inflam-
matory, anti-apoptotic, and immuno-modulatory fac-
tors favoring the healing process [23]. Many studies have 
reported benefits in treating cartilage injuries with adult 
bone marrow-derived MSC [23]. Adipose-derived stem 
cells (ASC) have also drawn attention for their anal-
ogy with bone marrow ones, but with easier harvesting, 
a higher cell density, and proliferation. Other sources of 
stem cells investigated for cartilage repair include mus-
cle, synovial membrane, trabecular bone, dermis, blood, 
umbilical cord blood, and periosteum [23]. Although 
various successful applications in cartilage regeneration, 
several problems remain, like stem cell heterogeneity and 
premature differentiation during in vitro expansion [24].

Induced pluripotent stem cells (iPSCs) have a prom-
ising potential for cartilage regeneration. Besides, they 
allow overcoming limitations associated with current 
cell sources since large numbers of cells can derive from 
small starting populations. However, issues related to 
genomic modifications still need addressing [25].

Genetically modified cells showed the ability to poten-
tiate cartilage regeneration. Transfected genes induc-
ing chondrogenic differentiation, synthesis of a hyaline 
matrix, and release of pro-inflammatory factors differen-
tiation are feasible. Gene transfection may be systemic or 
local, ex vivo or in vivo. Because cartilage injuries are not 
life-threatening, it is critical to ensure a safe procedure 
[26].

MSC, as a pure cell population, require the selec-
tive elimination of cells that do not express their typical 
markers. Recently, new insight turned into the role of the 
surrounding MSC microenvironment (or “niche”) that 
also encloses ECM, accessory cells, adhesion molecules, 
growth factors, cytokines, and chemokines. Stem cell 
activity is not only the expression of intrinsic capabilities 
but also the result of the interactions with the “niche”. It 
is the whole “niche” that can support the healing process. 
No cell selection and expansion in the laboratory are 
necessary, and a single operative procedure is effective 
[27–29].

In recent years, also articular cartilage regeneration 
research moved towards the use of the stem cell “niche” 
in the form of concentrates such as Bone Marrow Con-
centrate (BMC) and Stromal Vascular Fraction (SVF) 

from adipose tissue. Both concentrates are obtained with 
minimal manipulation (no expansion in culture) and pro-
vide a less invasive (one step-surgery) and less expensive 
(no GMPs) alternative to cultured cells.

Our laboratory investigated the behavior of BMC cells 
within a hyaluronan-based scaffold. Histological immu-
nohistochemical and molecular results showed the for-
mation of a cartilage-like ECM [30]. We also evaluated 
BMC chondrogenic and osteogenic potential on a bi-lay-
ered scaffold mimicking the osteochondral compartment 
(collagen and hydroxyapatite). The obtained data demon-
strated the ability to reproduce the native osteochondral 
compartment by generating two separated cartilage and 
bone zones [31, 32].

SVF obtained from lipoaspirate contains several cell 
types like ASCs, ECM fibroblasts, and white and red 
blood cells. After washing passages, the obtained SVF 
can be combined with scaffold and soluble factors and 
administered into the joint. Compared to BMC, SVF 
ensure easier accessibility and the availability of an 
increased number of stem cells per gram of tissue [33].

Cell free products
In the early stages, it seems that the ability of MSC to dif-
ferentiate into various cell types played the main thera-
peutic effect. Later, it emerged that their capacity to 
release some GF and chemokines play a role (secretome). 
MSCs secrete bioactive molecules inhibiting apoptosis 
and the formation of fibrosis or scarring at the injury 
site; stimulate angiogenesis and blood supply, and mitosis 
of tissue-specific progenitors. They also secrete immu-
nomodulatory agents that deactivate the T cells surveil-
lance and chronic inflammatory processes. Therefore, 
the secretome use for tissue regeneration increased, 
based on its composition of trophic factors (chemokines, 
cytokines, hormones, and lipid mediators) with paracrine 
effects on the cells of the local microenvironment [34].

The soluble factors of the secretome can initiate regen-
erative signaling events also without the use of cells. The 
therapeutic effect of this biological product in musculo-
skeletal diseases is a frontier of regenerative medicine. 
The secretome could overcome the negative aspects of 
cell use and help concentrate paracrine factors at physi-
ological levels at the injury site.

Although many studies provide strong evidence for 
the potency of MSC-secreted factors in mediating tis-
sue repair and regeneration, the precise mechanisms of 
action are still not fully understood [35].

The paracrine action of MSC is not limited to the pro-
duction of soluble factors but also of many extracellular 
vesicles (EVs). EVs [36] are involved in intercellular com-
munication by releasing mRNAs and proteins. Besides, 
they have anti-apoptotic, antifibrotic, pro-angiogenic, 
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and anti-inflammatory effects. EVs released from tissue-
damaged cells can re-program stem cells’ phenotype by 
releasing specific mRNAs or microRNAs. EVs produced 
by circulation-recruited or resident MSCs can re-pro-
gram tissue-damaged cells by inducing de-differentiation, 
production of soluble paracrine mediators, and initia-
tion of the cell cycle of these cells, thus promoting tissue 
regeneration [37].

Growth factors
Biologic agents represent an emerging treatment for 
several musculo-skeletal pathologies. These agents are 
mainly represented by natural GF and anti-inflammatory 
mediators that can accelerate tissue healing and regen-
eration. They can act through various mechanisms, 
including matrix synthesis and remodeling, cell recruit-
ment and modulation of inflammatory markers and 
metalloproteinases.

Moreover, GF may influence protein synthesis and cel-
lular interactions, controlling stem cell differentiation. 
Bone Morphogenic Protein-2 (BMP-2) regulates osteo-
genesis, Vascular Endothelial Growth Factor (VEGF) 
angiogenesis, and Transforming Growth Factor-β1 
(TGF-β1) chondrogenesis. The possible role played by 
GF in pian reduction and tissue regeneration has gener-
ated a growing interest in their possible therapeutic use 
in patients with musculo-skeletal injuries.

Recently, discoveries, combined with knowledge of the 
importance and role of growth factors for tissue engi-
neering, have been further developed and deepened [38].
GF facilitate and promote the regeneration of new tis-
sues by interaction with specific transmembrane recep-
tors and regulating protein synthesis within cells. Binding 
to the specific growth factor receptor specifically stimu-
lates cell signal transduction pathways that trigger cell 
migration, survival, adhesion, proliferation, growth, and 
differentiation.

Although GF have great potential to stimulate cartilage 
repair, only a limited number of treatments have been 
approved by government regulatory agencies for clinical 
use [39].

Platelet-rich plasma (PRP) represents an economical 
source for obtaining many GF in physiological propor-
tions and has already been widely applied in various fields 
of medicine for its property of promoting tissue regener-
ation [12, 40]. PRP can be defined as a blood derivative 
product in which platelets are present in high concentra-
tion. Platelets have demonstrated regenerative properties 
because they are rich in important GF.

In particular, α platelet granules contain and release 
numerous GF including PDGF, TGF-β1, VEGF, Epi-
dermal Growth factor (EGF), Fibroblast Growth Factor 
(FGF) and Insulin-like Growth Factor (IGF).

In recent years, PRP has achieved great success in clini-
cal practice, thanks to its safety and simply preparation 
technique, which allows exploiting its biologically active 
content.

PRP has been used successfully in several surgical tech-
niques, obtaining good results in association with microf-
ractures or scaffolds for the treatment of cartilage lesions 
[41]. The most significant evidence on PRP is instead for 
its intra-articular use in the treatment of osteoarthritis, 
especially in the knee. Despite this, the most suitable type 
of PRP remains debated, with different preparation meth-
ods available that can give products with different com-
position and properties [42].

Scaffolds
Scaffolds are support sustaining three-dimensional (3D) 
tissue development. They differ in material composi-
tion, structure, and status. An ideal scaffold should be 
biomimetic, biocompatible, biodegradable, and non-
immunogenic; induce cell attachment, growth, and dif-
ferentiation. Once implanted, it should integrate into the 
lesion site and support the healing process. It should also 
be easy to handle by surgeons, and cost-effective Scaf-
folds for cartilage regeneration may be natural, or syn-
thetic [43].

Natural materials possess high biocompatibility and 
bioactivity. However, show poor mechanical stabil-
ity because of their rapid hydrolysis. A list of the most 
known natural materials with the principal advantages 
and disadvantages is reported in Table 1.

Synthetic polymers like poly(ethylene glycol) (PEG), 
polycaprolactone (PCL), polylactic acid (PLA), polyu-
rethane, poly(glycolic acid) (PGA), polyethersulfone 
(PES), and polysulfone provide cell attachment, and good 
mechanical, physical, and chemical properties. Moreover, 
the mechanical properties and degradation time can be 
controlled by combining them as copolymers or blends. 
Disadvantages consist of the lack of biological proper-
ties and the host organism’s side effects in response to 
metabolite production, mainly concerning acids that can 
be toxic or induce an inflammatory response [43].

Hybrid scaffolds, such as a combination of collagen-
chitosan- PLA, merge the advantages of synthetic and 
natural materials, allowing biocompatible membranes 
with defined mechanical properties and tunable degrada-
tion necessary for cartilage regeneration [43].

Studies highlighted the in vitro and in vivo interaction 
of cells with scaffolds [44]. Our group had the opportu-
nity to evaluate some natural scaffolds based on collagen 
or hyaluronan. We highlighted that scaffold presence 
allows the re-creation of physiological-like conditions 
whereby cells interact with the biomaterial and produce 
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a new ECM by the secretion of anabolic, anti-inflamma-
tory, and anti-apoptotic factors [45–50].

A challenge in the design and fabrication of scaffolds is 
the reproduction of the osteochondral compartment. To 
this end, composite bilayer or gradient scaffolds mimick-
ing the osteochondral tissue have been developed and 
evaluated in association with cells. The data obtained 
demonstrated cell ability to zonally interact and repro-
duce the native osteochondral compartment by generat-
ing separated cartilage- and bone-like zones [5].

Another challenge is the cell seeding onto the scaf-
fold. Conventional method involves the manual/static 
or the automated/dynamic seeding of cells onto previ-
ously fabricated scaffolds. The static seeding allows an 
uneven cell distribution into the width of the biomaterial. 
The dynamic seeding carried out with bioreactors (for 
instance perfusion) favor a more homogenous cell distri-
bution [24]. The recent approach of bioprinting foresees 
that cells and biomaterial are released together in order 
to produce a construct. Such options allow a better cell 
encapsulation and spatial distribution [51].

Future directions
In the next decades we will assist to important steps for-
wards the repair of articular cartilage lesions. The use of 
iPSCs and or stem cell derivatives such as secretome, EVs 
could contribute to improve tissue regeneration.

Emerging technologies like Additive Manufacturing 
three-dimensional (3D) printing should allow for a fur-
ther improvement of the treatment. 3D printing repli-
cates the damaged tissue shape starting from a patient 
medical image. It creates scaffolds through the progres-
sive addition of material layer by layer until reaching the 
desired shape. The technology can mimic cartilage organ-
ization, ECM composition, and functional and mechani-
cal properties [52–55].

Indeed, the identification of the ideal cell population, 
cell-free products, clinical grade growth factors and 
customized scaffolds could contribute to ameliorate the 
technique, reducing the time for surgery and enhancing 
patient recovery.

Conclusion
Chondral and osteochondral damages remain a tough 
challenge for clinicians. Tissue engineering-based strate-
gies have proven feasible for cartilage regeneration with 
good results on patients’ quality of life. More research 
needs to find the best combinations of cells, bioactive 
factors, and scaffolds. More clinical trials should confirm 
the obtained results. There is also the demand to develop 
minimally invasive and cost-effective strategies which do 
not require long-lasting hospitalization.
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