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Despite the wealth of knowledge gained on intrinsically disordered proteins (IDPs) since their 

discovery, there are several aspects that remain unexplored and hence, poorly understood. A living 

cell is a complex adaptive system that can be described as a wetware – a metaphor used to describe 

the cell as a computer comprising both hardware and software and attuned to logic gates – capable 

of ‘making’ decisions. In this focused review, we discuss how IDPs, as critical components of 

the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them 

minimally frustrated. Since IDPs lie between order and chaos, we explore the possibility that they 

can be modeled as attractors. Further, we discuss how conformational dynamics of IDPs manifests 

itself as conformational noise, which can potentially amplify transcriptional noise to stochastically 

switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, 

in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and protein 

conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas 

provide a new conceptual framework to discern how IDPs may perform critical biological 

functions despite lack of structure.
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“As far as the laws of mathematics refer to reality, they are not certain; and as far as 

they are certain, they do not refer to reality.”

Albert Einstein (Address to the Prussian Academy of 

Sciences, 1921)
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1. INTRODUCTION

1.1. Dark matter in biology

The plethora of proteins from all the extinct and extant organisms, is defined as the protein 

‘universe’, a concept introduced by István Ladunga in the 1990s.1 While a significant 

fraction of the protein universe is well studied, and the structures of thousands of proteins 

have been determined, the nature of remainder of this universe remains poorly understood. 

The latter fraction of proteins with unknown structures is referred to as the ‘dark’ proteome, 

being a constituent of the biological dark matter.2 Indeed, significant fractions of the 

proteomes of archaea and bacteria, and almost half of the eukaryotic and viral proteomes, 

are estimated to be dark.3 Like the dark matter in the physical universe, the dark matter in 

biology is not easily detectable by traditional approaches of structural biology. However, the 

dark matter is essential to life, is involved in performing functions that are perceptible and 

complement the functions performed by their ordered (visible) counterparts.

Several computational studies on the molecular evolution of the protein universe3–6 suggest 

that the protein universe is expanding, and proteins with common ancestors they shared 

billions of years ago, are diverging in their molecular composition.7 Further, they also 

reveal that within the dark proteome, even the foldable domains have specific features. For 

example, they are generally shorter in length and have unique distributions of hydrophobic 

residues when compared to known domain families. More importantly, the studies indicate 

that the constituents of the dark proteome exhibit a higher propensity for intrinsic disorder.6 

Indeed, intrinsically disordered proteins (IDPs) (and intrinsically disordered protein regions 

within ordered proteins, or IDPRs) that lack 3-Dimensional structure under physiological 

conditions,8–10 comprise a large fraction of the dark matter in the protein universe.4,8,11–16

In line with these observations, bioinformatics analyses reveal that the proteomes of 

organisms across kingdoms including viral proteomes, are considerably enriched in IDPs/

IDPRs.8,11–16 Furthermore, the length and frequency of IDPRs appear to positively correlate 

with organismal complexity. For example, ~33% of eukaryotic proteins contain long IDPRs, 

and ~10% of proteins in eukaryotes are fully disordered.17 In other studies, noticeably 

broader penetrance of intrinsic disorder into the various proteomes was indicated, where 

fractions of disordered residues range from 12 to 21% and from ~18% to ~28% in archaea 

and bacteria increasing to 20–40% and 35–45% in viruses and eukaryotes, respectively.11 

Whole genome analyses from several organisms from bacteria to mammals revealed that 

their genomes encode proteins which are predicted to be highly disordered.18 Furthermore, it 

was recently shown that intrinsic disorder is not only correlated with organismal complexity 

but also appears to contribute to clade-specific functions.19

1.2. IDPs and their interactions

IDPs lack rigid structure and exist as diverse conformational ensembles. These ensembles 

are malleable (dynamic), which facilitates the interactions of IDPs with multiple partners 

in response to the changing environment.20–21 All of these interactions form the interaction 

networks (PINs) that are scale-free,22–23 and channelize the flow of information within 

the cell. Consistent with this role, PIN organization and properties are evolutionarily 
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conserved.24 IDPs occupy hub positions in the PINs25–30 and play important roles in 

transcription, translation, signal transduction,13,31–36, cell cycle regulation,37–38 circadian 

rhythmicity,39–42 and in regulating phenotypic plasticity.11,43–44 Furthermore, IDPs tend to 

engage in “promiscuous” interactions which can lead to pathological states.45–48 Therefore 

it is unsurprising that, overexpression of IDPs has emerged as a major cause for several 

chronic human diseases, e.g. diabetes, cancer and neurodegenerative illnesses.32,49–56

With regard to the molecular mechanisms underlying the functions of IDPs, it is generally 

held that at least some IDPs transition from disordered conformational ensembles to (at 

least partially) ordered structures upon interacting with their targets, a process referred to 

as “coupled folding and binding”.57 Possible mechanism that underlie this phenomenon58 

include the “induced fit” hypothesis, which suggests that folding occurs after binding to 

the target, and the “conformational selection” hypothesis which envisages that potential 

conformations pre-exist in the unbound state and the target selects the most appropriate one. 

However, the binding mechanisms of many IDPs possibly involve some combination of the 

above two models. On the other hand, many IDPs retain significant intrinsic disorder in their 

bound states,59–65 with some of them being capable of forming ultrahigh-affinity but highly 

disordered complexes (see below). Finally, some IDPs have been observed to stochastically 

switch conformational states while remaining intrinsically disordered.66

Together, these observations suggest that some IDPs are on the verge of structural 

instability and can readily adopt functional conformations to become biologically active. 

This is conceptually analogous to the conformational (fold) switching events seen in 

some metastable folded proteins (referred to as ‘metamorphic’ proteins) subsequent to 

mutagenesis or environmental perturbations, giving rise to new functions (Fig. 1).67 On 

the other hand, some IDPs remain mostly disordered even when they interact with other 

proteins.60,68–70 In fact, recent computational studies seem to indicate that less compact 

protein structures are essential for biological activity due to their capacity of weak yet 

dynamic interactions with the target proteins.71–72

Notwithstanding the multiplicity of mechanisms, both coupled folding and binding73 and 

the degree of disorder in the “fuzzy complexes”,62 constitute the majority of the atomistic 

mechanisms underlying the interactions promoted by IDPs. Indeed, IDPs can interact with 

very high affinity (Kd =picomolar range)74 while remaining disordered and maintaining 

their flexibility and dynamic natures.74–75 Interactions of the above kind were observed in 

IDPs with regions of considerable opposite net charges in their sequences. Protein-protein 

interaction between these IDPs are governed by the complementarily charged, unstructured 

regions (long-range electrostatic attraction) rather than specific inter-residue contacts or 

binding sites within folded domains.74 Since eukaryotic proteomes are enriched in proteins 

with high net charge,32,76 it is possible that such an interaction mechanism is quite abundant 

in nature.74 Consistent with this reasoning, it is now increasingly evident that IDPs are key 

functional constituents of proteinaceous membrane-less organelles (PMLOs). The opposite 

charge interactions are likely crucial in IDP mediated liquid-liquid phase separation forming 

these organellies.77–82 1.3. Scope of this Focused Review

Kulkarni et al. Page 4

Chem Rev. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite this wealth of knowledge regarding IDPs, since they were first discovered >20 years 

ago,83 as well as the mechanisms by which they accomplish their biological functions in 

the absence of apparent structure, there are several unique aspects that remain relatively 

unexplored and poorly understood. In this Focused Review, we examine IDPs from a 

dynamical systems perspective, since this unique aspect of the IDPs though acknowledged, 

has not been investigated in sufficient detail. First, we examine how IDPs, as complex 

systems that self-organize, may influence cell-fate decisions by wiring PINs to drive 

the system toward a stable attractor. Next, we discuss how conformational dynamics of 

IDPs could potentially manifest itself as conformational noise, which in turn can amplify 

transcriptional noise resulting in PIN rewiring, phenotypic plasticity, and adaptive evolution. 

Finally, we highlight the potential role of IDPs in the origin and evolution of life from a 

primordial, Chemoton-like entity,84–85 to the last universal common ancestor (LUCA), and 

eventually through the major evolutionary transitions,86 to multicellular forms and beyond. 

In concluding, we note that a deeper understanding of the IDPs that likely pre-dated life as 

we know it, could shed new light on how these constituents of the dark matter of biology 

evolved as critical components of the wetware and guide cellular decision making.

2. IDPs, SELF-ORGANIZATION AND SCALE-FREE NETWORKS

2.1. Self-organization

Living systems, and many non-living systems, fall in the category of complex systems 

that follow two primary characteristics 1) ability to self-organize, and 2) manifestation 

of nonlinear dynamics.87 Self-organization is defined as a process by which global order 

emerges from local interactions between the components of a system that is initially 

disordered or chaotic. Such systems are open systems that reside far from thermodynamic 

equilibrium.88 Furthermore, self-organized systems exhibit emergent properties that are 

different from those of their individual components and are collectively governed by the 

interactions among the constituent parts within a global topology. Emergent properties are 

not predictable based on the behavior of the individual components unless their mutual 

interactions are considered as well. Further, systems with emergent properties respond to 

external perturbations in non-linear ways, leading to complex coordinated dynamics.89

2.2. Self-organizing properties of scale-free networks

Previously, it was generally held that biological networks follow a random architecture, 

where the nodes interact with one another with a fixed probability that is independent of the 

other edges in the network.90 The modern concept of scale-free networks was introduced 

by Barabasi et al.22–23,91 who discovered that the degree distribution (probability P(k) of 

a random network node to be connected to k other nodes, degree being the number of 

connections) of biological networks often follow a power law. Specifically, P(k) ~ k−γ 

(exponent γ is a constant), where most of the network connectivity is concentrated among a 

few of the nodes (hubs), while the rest of the nodes have very low degree. Furthermore, 

these insightful studies also revealed that scale-free networks are resilient and remain 

functional even in response to the failure of random nodes. However, scale-free networks are 

vulnerable and can become suboptimal in response to failure of hubs.92

Kulkarni et al. Page 5

Chem Rev. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As self-organizing systems, scale-free networks are comprised of self-repeating patterns 

(fractals) across diverse length scales.93 Curiously, the same principles are also applicable 

to individual proteins since the spatiotemporal structural organization can be envisaged 

as an intra-protein network, wherein the individual amino acids participate in interactions 

that are transient or stable.94 In fact, as it was recently shown that a protein molecule 

may be visualized as a complex system existing as a dynamic, multilevel network of 

networks analogous to a nesting doll (Matryoshka). In this metaphor, one can think of the 

different regions of the polypeptide chain as forming secondary structure elements through 

local networks of inter-residue contacts, as the lowest level or organization. Interactions 

between the elements of secondary structure would give rise to the next level to form 

foldons, non-foldons, and unfoldons etc. These interactions give rise to higher levels of 

the network namely proteins domains and finally, a network including inter-domain and 

between domains interactions to result in second-tier networks. Therefore, from this Russian 

nesting doll perspective, a typical PIN represents a highly dynamic and multilevel network 

of networks.94

3. IDPs, CONFORMATIONAL NOISE, AND PHENOTYPIC SWITCHING

3.1. Conformational noise

Based on the characteristics discussed in section 2, a model was proposed95 that is known 

as the MRK hypothesis.96–97 The authors postulated that the conformational dynamics of 

IDPs may contribute to differential signaling noise in cells. The authors referred to this noise 

as ‘conformational noise’ to distinguish it from the well-recognized transcriptional noise. 

Thus, in contrast to transcriptional noise, the MRK hypothesis states that conformational 

noise may be defined by the randomness in the confirmations that an IDP ensemble 

populates. Although interconversion of IDP conformations exhibit fast exchange, covalent 

modifications that occur post-translationally or changes in their environment, can enable the 

ensemble to preferentially occupy particular conformations and/or conformational dynamics. 

Thus, variations in the conformational ensembles can have significantly physiological 

effects.98 Furthermore, conformational noise can promote promiscuous interactions of the 

IDPs.48 Given that, many transcription factors (TFs) are IDPs,99–102 the authors of the MRK 

hypothesis posited that conformational noise can be a fundamental aspect of transcriptional 

variation, and IDPs could potentially propagate or enhance the stochasticity of cellular 

response in reaction to intrinsic and/or extrinsic perturbations.

3.2. IDPs and phenotypic switching

As per the MRK hypothesis, conformational noise due to stochastic IDP interactions in 

conjunction with intrinsic or extrinsic stimuli, would enable the system to explore the 

broader network configurational space. Therefore, this heuristic enables network rewiring 

and consequently, phenotypic switching, giving rise to phenotypic heterogeneity. Stated 

differently, the hypothesis implies that IDPs unmask latent network configurations to cause 

phenotypic switching to alternate states (Fig. 2).95 Indeed, stochastic phenotypic switching 

is observed during differentiation,103 somatic cell reprogramming (induced pluripotent (iPS) 

cell generation),104–109 and cancer cells with stem cell-like properties.110–111
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Of note, the MRK model implied that information encoding cellular phenotype, resides in 

the PIN configuration, and every cell has the potential to switch its phenotype in response to 

a specific input. Per this model, although the network is relatively flexible to physiological 

changes, it is robust in resisting non-physiological perturbations. More importantly, per the 

MRK model IDPs can rewire the network, unmasking latent network configurations (and 

consequently, alternative phenotypes) in response to stress. However, the model envisaged 

that the PIN can return to the normal (default) setting when the stress is relieved.

Another salient feature of this model is that information generated by network rewiring 

may operate across different temporal scales. Therefore, while transient information resides 

within the PIN, information related to slower changes (e.g., evolutionary processes), is 

transferred to the genome accounting for transgenerational inheritance. Alternatively, the 

model postulated that a mechanism similar to genetic assimilation of the acquired character 

as suggested by Waddington may be involved.112 Furthermore, it was postulated that the 

macroscopic behavior of a system such as, phenotype switching and adaptive evolution, are 

driven by PIN rewiring initiated by the IDPs.95–97,113

From the foregoing it follows that cell fate specification need not be only deterministic 

but can also be stochastic and thus account for reversible phenotypic switching as seen 

in epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), 

the switching of a drug-sensitive cell to one that is drug resistant or vice versa108,114–117 

or the malignant transformation of a normal cell and its reversal to a non-malignant 

phenotype.118–119 Interestingly, many transcription factors involved in EMT and/or MET,43 

and in drug resistance such as paxillin120 are IDPs. A theoretical study elucidating how 

transformation of a normal cell into a cancer cell, and its reversal, may be actuated by 

modulating the levels of the oncogene c-Myc, an illustrative IDP,121 further supports many 

aspects of the MRK hypothesis.

The significance of IDPs in PIN rewiring warrants development of statistical or dynamical 

models to further elucidate such mechanisms. The complexity in developing any such model 

is contributed by the multiple cellular processes (e.g., protein dynamics, PTMs, intracellular 

diffusion, and gene expression) manifested at various spatiotemporal levels. One has to 

therefore come up with a suitable multiscale approach which integrates the different time 

and length scales using appropriate models and parameterizations. Development of such 

approaches has been the topic of several reviews122–123.

4. CAN IDPs BE REPRESENTED AS COMPLEX DYNAMICAL SYSTEMS?

4.1 IDPs as complex or “edge of chaos” systems

In dynamical systems theory pioneered by Poincaré124 that describes complex systems, an 

“attractor” may be defined as a set of values of the variables, towards which the system 

tends to evolve from diverse initial states (Box 1). As discussed above, the configuration of 

the PIN (in conjunction with the environment) defines a cell’s phenotype.95 A PIN could 

be represented as a dynamical system in an appropriate configuration space. It could then 

be thought of as starting from a context-dependent initial configuration, evolving in time 

due to mutual interactions and eventually settling down into an “attractor”, defined here as 
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a stable cell phenotype.43,125 The different steady states that a PIN can potentially occupy, 

can be predicted by modeling its dynamics. Therefore, at steady state, the probability that 

the system will occupy an attractor is proportional to the stability of the PIN configuration of 

the attractor. Thus, a set of attractors and their probabilities of being occupied by the system, 

represent a high-dimensional ‘landscape’ as envisioned by Waddington in the epigenetic 

landscape metaphor (Fig. 3).126

The concept of an “attractor” has been adopted in cancer as well.127–129 Here, ‘cancer 

attractors’, defined as stable states of latent PIN configurations not occupied by normal cells, 

drive a normal cell to switch to a malignant phenotype. Access to cancer attractors can be 

determined by genetic or non-genetic mechanisms in which the IDPs play a crucial role, 

especially as occupants of key hubs in the PIN.

To elaborate further, complex systems are thought to have some of the following 

properties:130

a. They contain many nonlinearly interacting heterogeneous components Thus, the 

behavior of complex systems may not be defined by the sum of its parts

b. There is interdependency of constituents

c. Constitute a nested entity that encompasses multiple components (each of which 

can be complex systems themselves) spanning diverse scales

d. Is capable of emergent behavior

e. The system enables a dynamic exchange between order and chaos (disorder)

f. Can involve cooperation as well as positive (reinforcing) and negative (damping) 

feedbacks

g. Likely to have a memory (hysteresis). Previous states may influence future 

states.

Thus, it follows that IDPs could be considered as complex systems.131 For example, IDPs 

are heterogeneous (see above) with constituents that are autonomous or dependent on 

each other, and can interact nonlinearly. The functional misfolding may be thought of as 

a product of coupled competition and cooperation. The fact that the IDPs can undergo 

excursions between order and disorder underscores their spatiotemporal complexity. IDPs 

exhibit conformational changes in response to various stimuli to exhibit the ‘butterfly effect’ 

where minute thermodynamic perturbations might produce significant conformational and 

eventually functional changes (Fig. 4). Finally, IDPs display emergent behavior. Under 

certain conditions (e.g. post-translational modifications or contact with other proteins) they 

can self-organize by undergoing disorder-to-order transitions.131

4.2 IDPs: strange attractors?

From the foregoing, it is tempting to conjecture that, in an appropriate space, the dynamics 

of the constantly changing IDP network configuration can be described as a chaotic 

system,131–132 where the system neither converges to a steady state nor does it diverge 

to infinity; it will stay in a bounded region with chaotic motion in that space (Fig. 5) (Box 
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1). Under some conditions, it is likely that the system trajectory could be analogous a 

strange attractor; i.e. small changes in initial conditions can cause significant changes in the 

outcome (butterfly effect).133

To make matters more concrete, consider the Lorenz system The Lorenz attractor is a non-

linear dynamical system that was developed to describe atmospheric convection in response 

to perturbations in gravity and temperature.134–135 Lorenz and his coworkers modeled this 

system using coupled differential equations involving three independent variables x, y and 
z. This system exhibits a strange attractor behavior (Fig. 5). The time evolution of an 

independent variable in the Lorentz system (Fig. 5B) shows a striking resemblance with 

the conformational dynamics trajectory of an IDP, represented by the FRET characteristics 

plotted over time (Fig. 5A). The donor-acceptor distance stochastically fluctuates as the IDP 

adopts various conformations over time, leading to different FRET efficiencies.

How IDP dynamics can be modeled in a similar way using nonlinear differential equations 

to reproduce chaotic behavior (analogous to the Lorenz system) is currently unclear. 

However, we want to provide the readers with some possible avenues for the investigation 

in this direction. At first glance, the analogy between the two systems (weather and IDP) 

is not at all apparent. One is a model for fluid convection and atmospheric changes over 

time, while the other is about the changes in protein conformation over time. However, upon 

closer inspection, one can see that the two systems indeed have certain common aspects.

Like the weather model, proteins are multidimensional systems involving numerous 

variables (e.g., the coordinates of thousands of protein atoms and the surrounding solvent 

and ions). Due to the frequent inter-atomic interactions, the dynamics of many of 

these variables are correlated, thus making dimensionality reduction feasible.136 It is the 

coupled dynamics of correlated variables that makes it possible to represent complex 

systems like the weather using simpler mathematical models, such as the one devised by 

Lorenz and coworkers. Notably, the strange attractor was also recently discussed in the 

context of cellular networks (which too involve thousands of interacting variables) that 

drive diseases such as cancer.137 Protein dynamics features resulting from methods like 

molecular dynamics can be approximated by linear models in reduced dimensions using 

approaches, such as principal component analysis or time-lagged independent component 

analysis.138–139 This raises several important questions that warrant further investigations. 

For example, can the IDP dynamics involving millions of atoms be expressed as a 

mathematical model in reduced dimensions, analogous to the system of ordinary differential 

equations (ODEs) that exemplifies the strange attractor? Could certain thresholds in the 

parameters of this model represent the transition from the nearly deterministic behavior of a 

structured protein to the chaotic behavior of an IDP?

It is likely that a mathematical model involving IDPs may not be feasible using only 

three independent variables that were invoked to create the Lorenz attractor. Instead of two 

attractors of the Lorenz system, most IDPs will likely transition among multiple attractor 

basins. Perhaps, it may be possible to develop a mathematical system involving a greater 

number of dimensions. However, whether such a model is feasible for describing IDP 
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dynamics is not presently known. We leave it to the enthusiastic researchers of this and the 

future generation to figure it out.

4.3. IDP dynamics: A combination of deterministic and random components?

It is well known that some dynamical systems can be completely deterministic. Therefore, if 

one knows the system’s position a priori, one can predict its position in the future. However, 

some dynamical systems can be completely random. In such cases, even if one knows the 

history of the system up to a certain point in time a priori, that information cannot precisely 

predict the behavior of the system in the future. Most dynamical systems, however, fall 

somewhere in between these two extremes, where some aspects of the dynamics can be 

described as deterministic, and the rest as stochastic. Recently, the weak Pinsker conjecture, 

which states that all ergodic stationary processes can be expressed as a combination of an 

almost deterministic component and a completely random component (Box 2) was proven 

by Austin.140–141 Such endeavors, and the promising development of artificial intelligence 

in reproducing chaotic behavior142–143 have rekindled the interest in understanding complex 

systems by deconvolving their dynamics into elementary components.

Since IDPs are complex dynamical systems97 that exist as flexible ensembles in their 

physiological state, a logical question is, whether it is possible to understand the complex 

motion of IDPs in more systematic ways by elucidating the dynamics using statistical 

theories of dynamical systems. Protein motion, in general, is a combination of dynamics at 

multiple lengths and timescales ranging from bond vibrations in the picoseconds to domain 

motions (of ordered proteins) in the micro to millisecond timescales.144 This complex multi-

scale dynamics is a result of solvent viscosity that influences the slower motions of entire 

protein domains through friction, as well as thermal noise that affects the high frequency 

components of protein dynamics, such as side chain fluctuations. Consequently, all proteins 

exist as ensembles of conformations with frequent exchanges in real time. The difference 

between folded/ordered proteins and IDPs is that, for folded proteins/domains, this ensemble 

of conformations is tightly restricted to a small region of the conformational space, whereas 

in case of IDPs, the conformational ensemble is highly diverse.

The ensemble of protein conformations can be visualized via their corresponding free 

energy landscapes (Fig. 6),145 which is analogous to Waddington’s epigenetic landscape 

originally proposed for studying cellular phenotypes.126 The energy landscapes provide a 

mapping of possible states of the dynamical system, which, in the context of proteins, 

describe all possible conformations and their corresponding stabilities. While the free 

energy landscape of a structured protein typically shows a single deep attractor basin (also 

known as the folding funnel, Fig. 6C), the energy landscape of an IDP can have multiple 

attractors within a large overall basin (Fig. 6D). Therefore, the dynamics of an IDP can 

be envisaged as excursions to different attractors over time. Within each attractor well, 

the protein traverses a trajectory of closely related conformations, before transitioning to 

a neighboring well. However, the overall IDP dynamics is bounded within a well-defined 

region of the conformational space (the wider basin in Fig. 6D that includes the three 

attractors). In contrast, the free energy landscape of a completely unfolded (random coil-

like) polypeptide can be thought of as relatively flat (Fig. 6B). Of note, because of the 
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enormous spatiotemporal heterogeneity, some IDPs can also be characterized by nearly flat 

free energy landscapes.

How can such complex dynamics be broken into elementary components, for example, 

nearly deterministic and stochastic components? Although, we envision more research will 

be required in this direction, we will simply conjecture here that the IDP excursions between 

different attractor wells can be described in terms of stochastic dynamics. Under steady 

state, the probability of finding the IDP in a given attractor well is governed by the nature of 

the energy landscape. However, at a sufficiently long timescale, the transitions between these 

wells can be considered to be completely random. In contrast, the motion of an IDP within 

each attractor well can be described as clusters of closely related trajectories and therefore 

nearly deterministic. As a concrete but simplistic example, a hybrid system consisting of 

deterministic and random components can be modeled using the Langevin equation146:

mdv
dt = − ∇U(x) − λv + n(t) (1)

where, m is the mass of a protein particle (usually a coarse-grain cluster of protein atoms), 

v is the velocity vector, −∇U(x) is the force-field-dependent term that describes intra and 

intermolecular forces (i.e. the gradient of potential energy U, which is a function of the 

protein atomic/coarse-grain particle coordinates, represented by x), the term λν represents 

the viscous force due to solvent, and n(t) is a noise term describing the stochastic component 

(Fig. 6A). Models, such as described by the Langevin equation, and similar but more 

complicated and realistic models, are suitable for modeling protein and polymer dynamics 

because they include both deterministic component (i.e., −∇U(x) and λν) and a random 

component (n(t)). By varying the strength of the noise term, it is possible to adjust the 

contribution of the random component in such hybrid models. Inclusion of a protein 

conformation dependent component (−∇U(x)) allows excursions of the different attractor 

wells.

Such approaches in modeling IDP dynamics could have multiple applications. 

Deconvoluting the IDP dynamics into underlying components that are easier to 

conceptualize, allows us to complement existing computationally intensive methods 

for predicting IDP dynamics (e.g., Molecular Dynamics) with novel approaches. Such 

approaches have practical applications in understanding how the IDPs alter their 

conformations in response to cellular environments and interact with other proteins as 

well as in designing therapeutics. One potential application is the deconvolution of the 

ensemble-average experimental properties of IDPs, such as NMR shifts or small angle 

X-ray scattering intensities to derive the underlying conformational ensemble. For example, 

the intermolecular contacts made by the IDPs can be encoded by a Hopfield network to 

model the free energy landscape, where each attractor is characterized by a different cluster 

of intermolecular contacts.147 The resulting network can be trained using existing data 

to predict conformational ensembles in new cases, even with incomplete or noisy data. 

Such an approach has been applied in modeling Waddington’s epigenetic landscape, where 

the inner architecture of gene regulatory networks (GRNs) could be derived by training 

against single cell transcriptomics data.148 Therefore, such approaches could also prove 
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highly advantageous in modeling the IDP conformational landscapes. However, one should 

keep in mind that as a complex dynamical system, IDPs are not easily subjected to the 

reductionist approach. In fact, as it follows from the general understanding of such systems, 

their heterogeneous components are interconnected and interact nonlinearly, indicating that a 

perturbation does not necessarily cause a proportional effect, and that the system’s behavior 

is not equal to the sum of its parts. Clearly, further studies along these lines are needed to 

shed new light on the remarkable correlation between complexity and intrinsic disorder; they 

could also reveal why IDPs, as complex dynamical systems, occupy key nodes in PINs and 

hence, were selected during evolution.

5. IDPs AND EVOLUTION

5.1 IDPs and prebiotic evolution

Starting from the prebiotic origins of life to the Last Universal Common Ancestor (LUCA), 

that gave rise to all living beings are thought to have evolved, several evolutionary 

innovations occurred that are thought to be guided by self-organization.149 Furthermore, it 

was postulated that short, unstructured peptides (possible precursors to IDPs) may have been 

the key components of a flexible cellular network with the capacity to readily evolve.150 

The inclusion of primitive IDPs into discrete membranous structures, may have given rise 

to a self-sustaining unit that could replicate itself. Such a hypothetical entity is conceptually 

similar to the Chemoton (or chemical automaton, a basic entity satisfying the sufficient 

and necessary conditions for sustaining life).84–85 Thus, it is quite likely that IDPs had self-

templating activity. In subsequent steps, interactions between IDPs and other biopolymers, 

through self-organization, may have formed an interaction network. Through many rounds 

of selection, such a structure, may have given rise to the predecessor of LUCA.151–152

Consistent with their involvement in prebiotic evolution, IDPs across lineages are enriched 

in polar and charged amino acids but show a paucity in hydrophobic residues.76,153–155 

Furthermore, the amino acids are thought to be added to the genetic code in a temporal 

order: G/A, V/D, P, S, E/L, T, R, N, K, Q, I, C, H, F, M, Y, and W. Notably, the first 

few amino acids to emerge (until S in the above list) are disorder inducing, while the later 

amino acids are order promoting (e.g. Y, F, W, C), suggesting that protein disorder played a 

critical evolutionary role in early life.(Fig. 7).156–157 These observations were confirmed by 

Brooks et al., whom estimated the distributions of different amino acids in the last universal 

ancestral genomes.158

It is generally held that the primordial IDPs in prebiotic evolution may not have catalytic 

activity.159 However, it is equally unlikely that the transition from disordered primordial 

polypeptides to modern enzymes with highly ordered domains occurred in quick succession 

during evolution. Thus, it is possible that some primordial IDPs evolved limited catalytic 

functions. In fact, a challenge, the Janus challenge,160 seeks to address this particular facet 

of IDPs. Indeed, it has been reported that some modern enzymes or their mutated variants 

behave as molten globular structures (i.e., structures with a loose tertiary topology, but 

lacking intricate inter-residue contacts).161–164 It is also possible that primordial enzymes 

were more disordered than the molten globule state. In line with this argument, a ligase 

evolved in vitro lacked a hydrophobic core synonymous with structured enzymes; instead, it 
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contained a flexible, catalytic loop which was supported by a polar core with zinc atoms.165 

Indeed, emerging evidence suggests that so-called classical enzymes may lack a unique 

structure and yet be functional.163–164,166–172 Therefore, the idea that prototypical IDPs 

could have had catalytic activity seems plausible, and the chances that the Janus challenge 

will be met in the near future are high.

Yet another salient feature of the prototypic IDPs that may be of significant relevance 

to the origin of life, is the potential for liquid–liquid phase transitions (LLPTs) or liquid–

liquid phase separation (LLPS) or coacervation, resulting in protein-enriched liquid phases. 

Proteins together with nucleic acids, or by themselves, can phase separate resulting in 

proteinaceous membrane-less organelles (PMLOs). PMLOs exist as liquid droplets and 

are found in chloroplasts.77,173–179 Recently, it was pointed out that LLPS serves as a 

fundamental mechanism of compartmentalizing intracellular space and bio-membranes, thus 

enhancing the cellular adaptation to environmental variations.180 Furthermore, it seems 

that LLPS can take place in 1D, 2D, and 3D, where the 3D-condensation is associated 

with the PMLO biogenesis, 2D-films may be formed near membrane surfaces whereas 

1D phase separation occurs on DNA and/or the cyto- and nucleoskeleton.180 PMLOs 

serve many important biological functions such as protein degradation, phosphorylation, 

splicing and transcriptional regulation.79 Thus, it is conceivable that PMLO functionality is 

predetermined by the nature of its constituentIDPs.79 Alternatively, it is also possible that 

the properties of PMLOs could enable the functions of their constituents.79

PMLOs may also act as micro-reactors that brings the RNA and protein molecules in close 

proximity to accelerate cytoplasmic reactions.178,181–182 Thus, we speculate that, primordial 

IDPs equipped the ability to phase separate, gave rise to protein-enriched phases183 (Fig. 

8). This conjecture is consistent with the model proposed by Oparin in 1922.184 Indeed, 

the demonstration of peptide-based synthons can form catalytically active coacervates, 

lends further credence to this hypothesis.185 For a recent article on the conformational 

plasticity of IDPs from a physical chemistry standpoint see a recent comprehensive review 

by Mukhopadhyay.186

Additionally, it was recently hypothesized that spaces between mica sheets may have been 

potential sites for the origin of life as it may have provided shelters to the primitive 

PMLOs.187 Taken together, these examples underscore the critical role of IDPs in the life’s 

origin and evolution on the earth,188 which ultimately led to the evolution of multicellular 

forms and their expansion.

5.2 IDPs and multicellularity

One of the key milestones in the timeline of evolution is the emergence of multicellularity. 

It is estimated that multicellularity has evolved multiple times independently in evolutionary 

distinct lineages from bacterial biofilms to plants and metazoans with the most ancient 

eukaryotic instances dating back to ~1.6 billion years ago.189 It is thought to be driven by 

the life history trade-offs between survival and reproduction in response to stress and/or 

predation. Adaptive changes, such as increase in size, division of labor and increase 

in complexity, enable the multicellular organisms escape from predators and cope with 

environmental and nutritional stress. Comparative and functional genomics data suggest a 

Kulkarni et al. Page 13

Chem Rev. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recurring theme in the evolution of multicellularity is the co-option of ancestral pathways 

from unicellular organisms190–192. But the key question is how were the ancestral pathways 

and genes adopted for the new functions of the multicellular organisms? The facts that IDPs, 

by virtue of their conformation flexibility and propensity for post-translational modification 

(e.g., phosphorylation), can rewire the PINs and several of stress response proteins are IDPs, 

suggest that they can be a source of adaptive plasticity required for bringing about this 

evolutionary transition.

Cell specification and specialization is thought to be facilitated by modification of the 

GRNs,193 involving differential gene expression and cell signaling. TFs and signaling 

molecules are important components of the GRNs, and many of them are IDPs.36,194–196 

IDPs and hybrid proteins with ordered domains and IDPRs, can regulate cell-specific 

transcription by forging promiscuous interactions with different partners via changes in 

conformations in the IDPs/IDPRs. In addition to the stochastic changes in conformations, 

PTMs of IDPs can cause changes in their conformational ensembles resulting in interactions 

with different partners. IDPs can also change protein interaction networks via the addition, 

deletion, or modification of binding sites by means of alternate splicing of pre-mRNA 

coding IDPRs.9,197–198 Transcriptional noise originating from the inherent stochasticity of 

gene expression can result in heterogeneity in isogenic cellular populations. Therefore, 

IDP overexpression in response to a specific extrinsic perturbation (e.g., stress), results in 

amplification of transcriptional noise and rewiring of PINs that result in modification of the 

GRNs to actuate phenotypic switching and facilitate adaptive evolution.97,98

Several proteins that are key to the development of innovations required for multicellularity, 

such as extra cellular matrix expansion, cell adhesion, cell communication, cell cycle 

modifications, asymmetric cell division, and cell differentiation, are IDPs. For example, 

cadherins, which play important roles in cell segregation and boundary formation 

during development, are IDPs199 and were co-opted from the unicellular progenitor of 

animals to function as adhesion receptors in epithelia. Similarly, retinoblastoma (RB) and 

retinoblastoma-related proteins (RBRs) that regulate the cell cycle, are IDPs.200 RBs and 

RBRs are transcriptional repressors that modulate cell cycle regulated gene expression 

through binding to E2F-DP transcription factors. The disordered linker domain of the RB-

like protein, that is phosphorylated by cyclin-CDK,201 is different between Chlamydomonas, 
a unicellular organism and Gonium and Volvox which are multicellular,192 suggesting that 

different protein-protein interactions of RBs and their interacting partners regulate cell 

cycle in these unicellular and multicellular organisms. HSP70, a chaperon protein, that 

regulates asymmetric cell division in Volvox is also an IDP202 and so is hydroxyproline-rich 

glycoprotein (HRGP), a constituent of the extra-cellular matrix (ECM), which is also highly 

disordered203. Disorder in the ECM interactome could provide the structural flexibility 

required for the ECM to interact with membrane proteins and soluble proteins in more 

complex organisms.

Interestingly, some HRGPs of both multicellular and unicellular algal forms have evolved 

into pheromones deployed for sexual signaling 204–207 The HRGPs are also present in 

much greater numbers in Volvox than in unicellular algae. Therefore, it is likely that 

during evolution, intrinsically disordered ECM/cell wall proteins diversified to adapt to 
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developmental processes. Therefore, these proteins may represent a source of adaptive 

plasticity that is specifically observed in the volvocine algae.190 The increase in the 

disordered residues in proteomes from bacteria to single-celled and multicellular eukaryotes, 

lends further credence to the involvement of IDPs in the origin of multicellularity.19,208–210

In order for unicellular organisms to exist as stable multicellular clusters, the individual cells 

need to adapt to changing environments and cooperate with neighboring cells. We envision 

that IDPs, due to their unique structural and dynamic properties, facilitated the necessary 

phenotypic plasticity and adaptation that were critical to the origin of multicellularity. It is 

well known that IDPs can couple with multiple binding partners, and these promiscuous 

interactions could have been advantageous in PIN rewiring and switching of phenotypes. 

Moreover, IDPs alternate between multiple structures in a stochastic manner, as evidenced 

from the time-resolved Förster Resonance Energy Transfer (FRET) measurements.211 This 

conformational noise coupled with their interaction with multiple signaling proteins could 

produce the phenotypic diversity that enabled the multicellular clusters to exist.

While a sophisticated model connecting IDP conformational noise with PIN rewiring is 

beyond the scope of this review, we present a simple conceptual framework elucidating the 

role of IDPs, where conformational noise acts as intrinsic noise in the cellular network and 

phenotypic transitions are controlled by the level of disorder in the cell (Fig. 9A). Consider 

that within the cell, the IDP A is expressed at low levels (at any time, the expression of 

A is denoted by A as well) and is produced at a rate R1. For simplicity, we will assume 

R1 to be constant. We also propose that A stochastically switches between two alternative 

conformations Aa and Â (this is a simplified description, since IDPs typically will adopt 

multiple conformational states, rather than just two). While the conformation Aa couples 

with other proteins to carry out cell signaling and phenotypic transition, the conformation 

Â gets phosphorylated and degraded. This model bears similarity to the PAGE4 circuit 

described previously, where the IDP PAGE4 is degraded upon hyperphosphorylation.212 Due 

to the structural flexibility of IDPs, the level of Â in the cell will fluctuate with time and 

these fluctuations will be more prominent at low protein concentrations, which is typical 

for many IDPs in the cell.213 The time averaged Â concentration will depend on the depth 

of the attractor well representing Â in the IDP free energy landscape. Under the above 

assumptions, the temporal rate of change of the IDP concentration can be expressed as

dA
dt = R1 − k2A (2)

dApℎos
dt = k2A − k3Apℎos (3)

Here, k2 is the rate constant for converting Â to Aphos, the phosphorylated form of A, by 

a kinase. In general, such enzymatic reactions will follow Michaelis-Menten kinetics,214 

but at low substrate concentrations, the reaction rate can be approximated to be linearly 

proportional to the substrate concentration. Also, we model the degradation rate as linearly 
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proportional to the level of phosphorylated A, with a rate constant k3. Since Â fluctuates due 

to intrinsic, conformational noise, the above equations are stochastic in nature.

Coupled differential equations have been widely used in the literature to model 

transcriptional regulation and catalytic events such as phosphorylation, involving multiple 

partners, potentially in a feedback loop. Equation 3 demonstrates how such models can 

be extended to incorporate stochastic effect of IDP conformational fluctuations that may 

lead to distinct cellular states. Fig. 9 demonstrate how IDP conformational fluctuations, 

in conjunction with environmental perturbations may stabilize distinct phenotypes in a 

multicellular environment. We suggest that single cell models exemplified by equation 3 

can be coupled together to numerically simulate such multicellular systems and analyze the 

emergence of stable phenotypes. Quantitative demonstration of such models is an exciting 

idea, but unfortunately is beyond the scope of this manuscript. One of the overarching goals 

of this article is to stimulate exploration in this direction by aspiring scientists.

It would be an interesting exercise to extend this model further by imagining a cluster of 

cells, each exhibiting a similar set of reactions. We can also introduce additional terms in 

the rate equations to represent the influence of soluble factors exchanged with neighboring 

cells or the effect of the environment. Such a model is schematically depicted in Fig. 9B. 

It remains to be seen whether the solution to the above system of differential equations can 

yield multiple stable states, where each stable state is represented by a different proportion 

of Aa to Â. Cells that achieve a stable state with a Aa level beyond a certain threshold 

may undergo transition to a different phenotype (Fig. 9B). Additionally, conformational 

noise can make these phenotypic transitions more feasible. The above model can be 

easily extended to incorporate multiple functional conformations instead of just two, which 

may lead to increased phenotypic heterogeneity. We may therefore envision that increased 

disorder may lead to more stable states in the phenotypic landscape. Thus, in a multicellular 

system such as the one described above, IDP conformational noise, in conjunction with a 

variable environment can enable the cells to adopt different phenotypes. Such heterogeneity 

superposed with intercellular signaling may lead to interesting spatiotemporal patterns or 

cooperative phenotype development in an organized community of cells.

5.3 IDPs and inheritance of acquired characteristics

Yet another discovery that is of immense fundamental importance but appears to 

challenge the central dogma of molecular biology,215 is the facilitation of transgenerational 

information transfer by IDPs. Emerging evidence 216 that prions (proteins that are capable of 

self-replication by inducing prion-like conformations in other proteins), apart from nucleic 

acids, can drive organismal phenotypes by self-templating conformations, and thereby 

serve as vehicles of inheritance. Consistent with this observation, it was recently reported 

that in the yeast, several IDPs resemble prions from functional perspective.68 Indeed, the 

transient overexpression of several of these proteins yielded heritable traits even after their 

expressions returned to normal levels. Most intriguingly, these proteins were not identified 

as prions previously, and they did not form amyloids. However, they contained hallmarks of 

nucleic acid-binding proteins with long IDPRs and were evolutionarily conserved.68 Taken 
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together, the data established a general form of protein-based inheritance wherein IDPs give 

rise to new traits and adaptive opportunities.

At least one of these prion-like proteins was reported to drive self-assembly giving rise to 

gel-like condensates.217 Nonetheless, such protein-rich particles did not form amyloid fibrils 

but were infectious apparently using a protein-based epigenetic element. Cells expressing 

these proteins were found to repress gene expression patterns in order to facilitate improved 

growth when nutrient supply was limited. Thus, these non-amyloid proteins appeared to 

modulate a form of non-chromosomal epigenetics to modulate the expression of genes that 

are heritable over significantly long biological timescales. Since IDPs undergo LLPTs or 

coacervation giving rise to PMLOs,79,174 it may be expected that the prion-like particles 

self-assemble into gel-like condensates. In line with the observations in yeast, the IDP from 

C. elegans called PGL-1, was observed to form aggregate-like structures in the germ cells. 

Amazingly enough, such aggregates were found to be inherited for multiple generations 

even after the original mutation triggering their formation is not observed any more. 

Therefore, these observations suggest that even in animals, IDPs generate self-propagating 

aggregates that may serve as vehicles for transgenerational inheritance (Kennedy S.G. 

Available: https://grantome.com/grant/NIH/R21-AG061850-01A1. [Ref list] [(accessed on 

1 September 2020)].

6. CONCLUSIONS AND FUTURE DIRECTIONS

Despite several excellent reviews on IDPs that appeared in just this past year alone 

that cover many interesting aspects of these multifaceted proteins with pleotropic 

functions,218–232 very little is known about the IDPs from a dynamical systems 

perspective.43,97,125,131,233–234 However, from the foregoing, it follows that a rigorous 

theoretical foundation addressing how interactions between an organism and its environment 

can shape its phenotype,125,235 and how IDPs may modulate the attractor landscape in 

driving the phenotypic states,131 (guide cellular decisions), warrant further investigations. 

Although, the idea that a cell (or a protist) is capable of making decisions is often met 

with skepticism, and perhaps may even be bantered, several tantalizing reports suggest 

that cells can ‘anticipate’, and even ‘learn’ from, environmental fluctuations and survival 

hurdles.236–243 Together with the demonstration that noise plays an important role in cellular 

decision making,244 these observations should inspire new research in this next frontier. 

The wetware (i.e., the combined hardware and software in biology) metaphor should help 

invigorate scientists from across disciplines to study these fascinating molecules, IDPs, 

which are critical, yet poorly understood.

From an experimental perspective, elucidating the structure and dynamics of an IDP 

ensemble, and how the preferences are shaped by the environment, may help to better 

understand the mechanism(s), by which IDPs interact with their partners to carry out 

their respective functions. With the recognition of the IDPs and the critical roles they 

perform, a new frontier in the biology, biochemistry, and biophysics of proteins has dawned. 

Furthermore, recent developments in targeting IDPs that were previously marginalized as 

‘undruggable’, with small molecule inhibitors/activators,71,245–252 has ushered a new era in 

biomedical research.
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PMLOs Proteinaceous Membrane-less Organelles

PTMs Post-translational modifications

RB Retinoblastoma

RBRs Retinoblastoma-related proteins

TFs Transcription factors
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Box 1

Attractor can be described as a stable state towards which a system would tend to get 

‘attracted’ in long run. Strange attractor is strange because it has fractal structure. Often, 

but not always, they are chaotic in nature. A chaotic attractor is very sensitive to initial 

conditions. It means that two very close initial conditions inside a chaotic attractor can 

lead to two locally diverging trajectories thus showing local instability. But once the 

trajectory is inside its basin of attraction then it will not depart from the attractor, which 

shows global stability.
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Box 2

A key property of dynamical systems, irrespective of the complexity, is that they can 

be expressed as a combination of deterministic and random elements. Indeed, Pinsker140 

surmised (the Pinsker conjecture) that most, if not all, dynamical systems are a fusion 

of a stochastic dynamical system and a deterministic one. This idea was challenged by 

Ornstein.254 However, Thouvenot suggested that Pinsker’s conjecture may be valid if the 

deterministic component in Pinsker’s original description had some residual randomness. 

This led to the Weak Pinsker conjecture. Recently, the Weak Pinsker conjecture was 

mathematically proven by Austin141 on the foundation of the “stationary stochastic 

process” (where a dynamical system is described as a sequence of events that are 

individually random, but with fixed probabilities). The uncertainty of each event in the 

process (i.e. it’s decoupling from the past events) can be quantified by entropy, where 

zero entropy makes the system entirely deterministic. Austin’s proof analyzes the self-

clustering (deterministic) property of a dynamical system trajectory on a hamming cube 

by discretizing it in space and time, simultaneously resolving the inherent randomness 

within each cluster. This shows that the deterministic component of the system is always 

associated with some randomness that varies depending on system characteristics.

Kulkarni et al. Page 34

Chem Rev. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Proteins on the brink of stability can undergo a continuum of order/disorder transitions. 

(A) Examples of transitions from top left to bottom right: Transition between the extended 

and collapsed disordered states of prostate associated Gene 4 (PAGE4), modulated by 

phosphorylation; disorder-to-order transition of 4E-BP2 induced by phosphorylation; order-

to-order fold switching between GA98 and GB98, triggered by single amino acid changes or 

ligand binding. In contrast, stable proteins such as subtilisin (shown in dark blue) do not 

undergo such changes. (B) Approximate energy well diagrams for each protein from PAGE4 

(top) to subtilisin (bottom). Reproduced with permission from Kulkarni et al. Structural 

metamorphism and polymorphism in proteins on the brink of thermodynamic stability. 

Protein Sci. 2018 Sep;27(9):1557–1567. Published by Wiley © 2018 The Protein Society.253
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Fig. 2: 
Rewiring of protein networks facilitates state-switching by activating latent pathways. (A) 

The state of a cell with phenotype A is depicted in grey and shows a simple protein network 

with three proteins (1–3), of which one is an IDP (indicated in dark blue) and expressed at 

different levels represented by the three vectors. This configuration represents the protein 

network’s ground state threshold. (B) Depicts a transition state. A perturbation causes 

increased IDP expression (protein 3). Overexpression of the IDP results in promiscuity and 

the protein network explores the network search space shown by the various dashed lines. 

This transition state is depicted state in yellow around the grey area. (C) The state of the 

cell after it has transitioned to phenotype B from phenotype A represented in yellow. A 

particular configuration of the protein network that increased its fitness is “selected,” which 

now represents the new ground state. Reproduced with permission from with permission 

from Mahmoudabadi et al. Intrinsically disordered proteins and conformational noise: 

Implications in cancer. Cell Cycle. 2013 12(1):26–3, Taylor & Francis Online.95
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Fig. 3: 
Schematic illustration of Waddington’s epigenetic landscape (adopted and from Schematic 

illustration of Waddington’s epigenetic landscape. Adopted from Waddington, 1957126). 

Reproduced with permission from Kulkarni P. Intrinsically Disordered Proteins: Insights 

from Poincaré, Waddington, and Lamarck. Biomolecules. 2020. 10(11):1490. MDPI 

Publishers.
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Fig. 4. IDPs, attractors and stable states.
A key IDP is expressed in a stem cell that and exhibits a high degree of conformational 

dynamics. The various conformations are shown in red to blue to green. If the initial 

conditions favor the red conformation more than the green or blue, the red conformation 

induces specific protein interaction that leads to the differentiation of the stem cell 

(e.g., the red phenotype). In addition, the initial conditions favor green conformation 

partially followed by blue conformation. The green and blue conformations initiate distinct 

interaction and give rise to the green and blue phenotypic state. The net result is a 

heterogeneous population with a mixture of phenotypes.
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Fig. 5: 
Similarity of the dynamic conformational behavior of an IDP with the behavior of a typical 

chaotic system (the Lorenz attractor). (A) Single molecule FRET trajectory of intrinsically 

disordered neuroligin cytoplasmic do-main as a representation of conformational dynamics. 

The top plot depicts the time evolution of donor (green) and acceptor (red) intensities. 

The bottom plot shows the FRET efficiency over time. A. U.: arbitrary unit. (B) The 

dynamics trajectory of a chaotic system; i.e., the Lorentz attractor, which shows qualitative 

resemblance with the conformational dynamics of an IDP. The Lorentz system is comprised 

of three independent variables and coupled differential equations to describe their dynamics. 

Here, the time evolution of one of the independent variable is depicted. (C) The phase-space 

representation of one of the variables of the Lorentz system. The variable is plot-ted against 

its rate of change. The overlapping loops represent the attractor basins of the strange 

attractor, where the system does not converge to a single state, neither diverges to an 

infinitely large space, but hovers within a defined domain of the attractor basin. Reproduced 

with permission from Uversky VN. Unusual biophysics of intrinsically disordered proteins. 

Biochim Biophys Acta. 2013. 1834(5):932–51. Elsevier Publisher.
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Fig. 6. 
A) Schematic of IDP with random coil and transient secondary structures. The Langevin 

equation modeling the deterministic and stochastic components of protein dynamics is 

shown below. B-D) model attractor landscapes for denatured, disordered, and folded 

proteins. The protein conformational trajectories over time are shown as red scribbles.
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Fig. 7. 
Intrinsic disorder and protein evolution. A) Modern genetic code with information on the 

early and late codons (shown by light pink and light cyan colors, respectively) and disorder- 

and order-promoting residues (shown by dark red and dark blue colors, respectively). 

Codons with intermediate ages are shown by light violet color. Disorder-neutral residues are 

shown by dark violet color. B) Evolution of intrinsic disorder in proteins has a characteristic 

wavy pattern. X-axis represents evolutionary time and Y-axis shows global disorder content 

in proteins at given evolutionary time point. Here, primordial proteins are expected to be 

mostly disordered (left-hand side of the plot), proteins in LUA likely are mostly structured 

(center of the plot), whereas many proteins in eukaryotes are either totally disordered or 

represent hybrids containing both ordered and disordered regions (right-hand side of the 

plot). Reproduced with permission from Kulkarni and Uversky. Intrinsically disordered 

proteins: The dark horse of the dark proteome. Proteomics 18(21–22):e1800061. ©2018 

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.150
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Fig. 8: 
Thermodynamic factors (top) and disorder-related features controlling liquid-liquid phase 

transitions in protein solutions.
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Fig. 9: 
A model for IDP conformational noise contributing to multicellularity. A) A conceptual 

reaction network where conformational noise leads to fluctuating levels of IDP 

conformation. In this model, the IDP A (where A also denotes its concentration in the cell) 

can assume two alternative conformations Aa (denoted by the red string, which participates 

in cellular signaling) and Â (blue string, which is phosphorylated and subsequently 

degraded). A stochastically switches between Aa and Â, leading to fluctuating levels of 

the two conformations over time. B) A schematic representing an array of cells with varying 

levels of the IDP A. High level of the functional conformation Aa allows the cells to switch 

to a different phenotype, represented in orange. The level of Aa is further modulated by 

exchange of diffusible factors with neighboring cells and the environment (indicated by 

the ⇌ symbol). Such a system can give rise to spatiotemporal patterns and cooperative 

development of cellular clusters, as a precursor to multicellularity.
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