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Abstract

The germinal center serves as a site of B cell selection and affinity maturation, critical processes 

for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal 

center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular 

T cells are crucial regulators of this process, providing signals necessary for B cell survival in 

the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive 

germinal center. Recent advances in immunological techniques have allowed study of the gene 

expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies 

provide insight into the potential role follicular T cells play in preventing or facilitating germinal 

center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive 

germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.

Introduction

T cell dependent B cell activation is a key step in the formation of humoral immune 

responses. Following antigen priming, T and B cells meet at the T/B border in the spleen 

or interfollicular region in lymph nodes, forming extrafollicular foci (EF) or migrating to 

developing germinal centers (GC)1. Follicular helper T (TFH) cells differentiate from naïve 

CD4 T cells that have received antigen priming and co-stimulation from dendritic cells, 

leading to downregulation of CCR7 and PSGL-1 and upregulation of CXCR5 which enables 

follicular entry2. In the GC, B cells receive help from TFH cells via CD40L, IL-4, and 

IL-21, which leads to somatic hypermutation (SHM), class switch recombination (CSR), 

affinity maturation, and memory B cell formation2,3. This well-orchestrated yet intricate 

dance between T and B cells in the GC reaction underlies the remarkable ability of our 

immune system to produce robust, functional, and long-lasting responses to both infection 

and vaccination.
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While GC responses help fight disease, they might also contribute to autoimmunity4. 

Pathogenic autoantibodies have been implicated in autoimmune disease5 and are commonly 

used for diagnostic6 and prognostic7 clinical evaluation. These autoantibodies may be 

oligoclonal, class-switched, and hypermutated8–11, suggesting a GC origin. However, both 

EF and GC-derived autoantibodies have been described in mouse models of autoimmunity4. 

As B cells can develop extrafollicularly without T cell help12, these observations suggest 

that not all autoantibody responses are T cell dependent. Peripheral tolerance mechanisms 

prevent activation of autoreactive B cells, mediated by availability of T cell help, antigen 

abundance, intrinsic B cell signaling, and stromal regulation in the GC13. The breakdown 

of peripheral tolerance in autoreactive GCs suggests that TFH cells are dysfunctional in 

autoantibody disease.

Despite recognition of the importance of follicular T cells in autoreactive GC reactions, the 

molecular features of dysfunction in TFH and follicular regulatory T (TFR) cells have only 

recently been characterized. Developments in single cell sequencing and mass cytometry 

have facilitated interrogation of numerous cell types, including TFH and TFR cells, with 

unparalleled detail. These studies have both provided mechanistic insight and generated new 

hypotheses for the multifaceted roles follicular T cells may play in loss of B cell tolerance. 

Here we review the historical evidence that T cell help is a necessary and sufficient driver 

of autoantibody formation, describe emerging studies of follicular T cell dysfunction in 

autoimmune disease, and pose open questions to be addressed by future studies.

Main Text

T cell dependence of autoantibody responses

Autoantibodies have been identified in over 80 different autoimmune diseases5. These 

autoantibodies may have specificity for either tissue-specific antigens, such as thyroid 

peroxidase in autoimmune thyroid disease14, or for ubiquitous antigens, such as dsDNA 

in systemic lupus erythematosus (SLE)15. Autoantibodies may also be pathogenic16, 

such as anti-acetylcholine receptor in myasthenia gravis (MG)17, or may be associated 

with disease, such as anti-cyclic citrullinated peptides in rheumatoid arthritis (RA)18. 

Autoantibody specificity may also evolve over time in a single patient, leading to reactivity 

against different autoantigens, termed epitope spreading19. The degree of epitope spreading 

correlates with disease severity, allowing autoantibody specificity to serve as a biomarker for 

both clinical diagnosis and prognosis20–25. Somatic mutations have also been identified in 

autoantibody sequences11,26–32. The evolving specificity, affinity maturation, oligoclonality, 

class switching, and chronic production of autoantibodies suggest that some may have T cell 

dependent GC origins5.

GC-derived autoantibodies represent a breakdown of tolerance mechanisms normally in 

place to maintain GC homeostasis. Autoreactive B cells that escape central tolerance either 

die following failure to receive T cell help33–36 or adopt an IgM low state with reduced 

antibody secretion in the periphery, termed clonal anergy37,38. Accumulating evidence 

has suggested that these anergic B cells are recruited into germinal centers where they 

undergo clonal redemption and lose autoreactivity39,40, a process that if dysregulated could 

lead to autoantibody development and epitope spreading (Figure 1). Clonal redemption 
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in HEL3X bone marrow chimeras requires foreign antigen elicited T cell help41 or in 

MRL/lpr mice requires CD40L but not B7-CD28 mediated TFH help42. Current models of 

clonal redemption state that only once B cells have mutated away from self and toward 

foreign antigen binding are they able to receive sufficient T cell help39,40,43–45, suggesting 

that the failures of clonal redemption observed in autoantibody-mediated disease are due 

to provision of T cell help despite maintenance of B cell autoreactivity. Alternatively, 

autoreactive B cells may overcome T cell dependence due to TLR adjuvanticity, driven by 

large amounts of self-DNA and RNA from dying cells in the GC46,47. The stochastic nature 

of somatic hypermutation also leads to the generation of autoreactive BCRs in both healthy 

and autoimmune patients11,48–50, but only results in high affinity pathogenic autoantibody 

production in disease51, likely representing a fundamental breakdown of GC tolerance.

Given the importance of follicular T cells for maintaining GC tolerance, dysregulated TFH 

and TFR cells have long been thought to contribute to the development of autoreactive 

B cells. Increased TFH frequency has been observed in SLE, MG, Sjögren’s syndrome 

(SS), multiple sclerosis (MS), autoimmune thyroid disease, and RA52–62, and altered 

TFR frequency has been observed in SLE, RA, ankylosing spondylitis, SS, MG, and 

MS63–67. Mouse models of systemic autoimmunity such as OX40L overexpression, TLR7 

overexpression, or Roquinsan/san have increased TFH cells43,68–70, which can also confer 

disease when adoptively transferred. Loss of GC TFH cells either through SAP deficiency71 

or Bcl6 haploinsufficiency72,73 decreases GC cells, autoantibody development, and 

glomerulonephritis in Roquinsan/san mice. Spontaneous GC formation and ensuing epitope 

spreading in a mixed 564Igi bone marrow chimera model of autoimmunity is CD40L 

dependent74. CTLA4Ig and anti-CD40L alone or in combination abrogates autoreactive GCs 

by inducing tolerance, prevents autoantibody development, and ameliorates disease75–79. 

These observations in human and murine autoantibody disease suggest that T cell help is 

both necessary and sufficient to propagate disease.

Mechanisms of T cell mediated peripheral tolerance in the GC likely involve crosstalk 

between autoreactive T and B cells. CD40LG and MHC class II are genetic risk loci 

for elevated levels of autoreactive B cells80, suggesting that CD40 and TCR signals from 

follicular T cells to autoreactive B cells help maintain B cell tolerance. MRL/lpr mice 

with MHC class II-deficient B cells have decreased TFH frequency and autoantibody 

production81. IPEX patients bearing mutations in FOXP3 have defective peripheral B cell 

tolerance and increased B cell homeostatic proliferation82, suggesting that regulatory T 

(TREG) or TFR cells maintain peripheral B cell tolerance. These observations suggest that 

TCR and co-stimulation mediated help from follicular T cells likely serves as a checkpoint 

against autoreactive GC development. Despite recognition that some autoantibody responses 

are T cell dependent, more detailed characterization of the follicular T cell dysfunction 

underlying loss of tolerance have only recently been characterized through advances in 

immunological techniques.

Follicular T cell dysfunction

Comparisons of follicular T cell phenotypes between foreign and autoimmune responses 

have provided insight into the characteristics of follicular T cells that permit autoantibody 
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development. Flow cytometric profiling of follicular T cells in combination with more recent 

advances in single cell sequencing and mass cytometry have allowed for transcriptome and 

repertoire wide characterization of autoimmune follicular T cells. These approaches have led 

to appreciation for the heterogeneity amongst the follicular T cell population, identification 

of novel subsets of follicular T cells, gene expression to clonality correlational analyses, 

and developmental trajectory inference. Collectively, these studies have revealed changes 

in follicular T cell transcription factor expression, chemokine and cytokine profiles, co-

stimulation, metabolism, exhaustion, trafficking, and differentiation in autoantibody disease 

(Figure 2).

Dysregulated transcription factors—Transcription factor expression not only governs 

TFH differentiation but can also influence TFH function83. TFH cells may express 

lineage-specific transcription factors in response to pathogen identity, ultimately influencing 

cytokine production and ensuing CSR84–88. TFH Bcl6 expression normally suppresses T-bet 

and RORγt expression, thereby reducing IL-17 production89,90, and dysregulated IL-17 

signaling contributes to SLE91–95. Gata3 and RORγt expressing circulating TFH cells are 

more prevalent and correlate with disease severity in juvenile dermatomyositis, SLE, SS, 

RA, and MS96–98. ETS1 is an SLE risk locus and deletion of the transcription factor 

Ets1 in T cells leads to Gata-3 TFH2 cell-driven SLE-like autoimmunity in mice99. Id3 
expression was decreased on TFH and TFR cells in 564Igi bone marrow chimeras100 and 

peripheral blood CD4 T cells from SLE patients101. ID3 is a transcription factor necessary 

for TFR maturation102,103, suggesting that impaired TFR development might contribute to 

autoreactive GCs. Tcf7 was negatively associated with clonal expansion in autoimmune TFH 

and TFR cells, but not foreign antigen elicited TFH and TFR cells100. TCF-1 (protein name 

for Tcf7) promotes TFH fate determination over TH1 cells by repressing Blimp1104,105. 

Maf and Ikzf2 are upregulated in CD4 T cells from B6.Sle1yaa mice106 and human SLE 

kidney biopsies107. c-Maf (protein name for Maf) is an AP-1 transcription factor necessary 

for TFH development and IL-21 production108. The transcription factor Helios (protein 

name for Ikzf2), although commonly used to identify thymic-derived TREG cells109, has 

also been observed on activated TFH cells110. TFH upregulation of FoxP3 facilitates GC 

contraction111, failure of which could lead to chronic GCs observed in autoantibody disease. 

We hypothesize that these transcription factor changes represent instability in TFH identity 

following autoantigen-driven expansion.

Pathogenic cytokine secretion and improper co-stimulation—Follicular T cells 

canonically provide help to GC B cells through cytokine release and co-stimulation, 

which if dysregulated might permit autoreactivity. CD4 T cells from B6.Sle1yaa mice 

had dysregulated cytokine and chemokine profiles including increased expression of 

Il12rb1 Il15ra, Il21, Il2rb, Ccl5, Ccl4, Il10ra, Il3ra, Il4, and Ifng70. Human SLE risk 

loci include variants in IL2, IL6, IL10, IL12A, TYK2, TNFSF4, STAT4, IRF5, IRF8, 
IL21, and IL21R112–125. Administration of low dose IL-2 to SLE patients led to TFH 

contraction and reduced disease severity126, supporting TREG independent IL-2 mediated 

immunosuppression via Blimp-1 and T-bet suppression of Bcl6127–129, suggesting that IL-2 

deficiency might contribute to autoreactive GC development. In contrast, IL-6 deficiency 

in Was−/− murine lupus prevents TFH expansion and autoimmune pathology130, suggesting 
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that excessive IL-6 signaling might promote loss of GC tolerance. Il7r expression was 

decreased on TFH cells from 564Igi bone marrow chimeras100 and human SLE kidney 

biopsies107, as well as peripheral blood CD4 T cells from SLE patients101. IL-7R is 

repressed by Bcl-6 and can negatively regulate TFH identity131–133, possibly reflecting 

transcription factor influence on TFH fate in autoimmunity. TFH cell-derived IL-17 

can increase RGS13 and RGS16 expression on B cells, contributing to autoantibody 

development in BXD2 and NZB/W F1 mice91,92,134–137. IL-17 in combination with TFH 

cell-derived BAFF can prevent BCR mediated B cell apoptosis, retain B cells in the GC, 

and traffic TFH to the light zone (LZ) of GCs91,92,138, processes that if dysregulated 

in the setting of excess IL-17 might lead to autoreactive GC formation. Autoantibody 

production decreased in B6.Sle1yaa and NZB/W F1 mice following IL-21 blockade139–142 

and BXSB/Yaa mice have elevated serum IL-21143, a TFH defining cytokine that promotes 

CSR and long-lived plasma cell (LLPC) formation but might also contribute to loss of 

GC tolerance by increasing the TFH to TFR ratio144–146. IL-23 correlates with disease 

severity in SLE147 and IL-23 deficiency in B6/lpr or MRL/lpr mice leads to decreased 

TFH cells, autoantibodies, and glomerulonephritis93,148,149, suggesting that IL-23 signaling 

could also promote loss of GC tolerance. A milieu of cytokines with disparate functions 

are dysregulated in autoimmune TFH cells, representing potential pathogenic drivers and 

therapeutic targets.

In addition to dysregulated cytokines, surface molecule expression on TFH cells is altered 

in autoimmune disease with potential functional consequences. Overexpression of ICOS 

in TFH cells is necessary and sufficient to induce autoreactive GC responses in the 

Roquinsan/san mouse model of SLE43,71,150,151 and is associated with autoantibodies and end 

organ damage in human disease152–154. CD95-deficient B cells can lead to fatal systemic 

immunity155–159 whereas CD95L overexpression on T cells can suppress autoreactive B 

cells160,161, suggesting that TFH cells can mediate negative selection of autoreactive B 

cells via CD95/CD95L. Cd74 was more strongly associated with clonal expansion in 

TFR cells from 564Igi bone marrow chimeras100 and FaslprCd74−/− mice have decreased 

autoantibodies and kidney pathology162. CD74 serves multiple functions in facilitating 

MHC class II peptide loading163, regulating CD95/CD95L signaling164, and in complex 

with CXCR4 serving as a receptor for the cytokine MIF165–167. Serum MIF levels correlate 

with SLE severity168,169 and MIF deficiency reduces kidney pathology in MRL/lpr and 

NZB/W F1 mice170,171, suggesting that MIF mediated CD74 signaling in follicular T cells 

might contribute to autoantibody production. CD153 was increased on TFH cells from 

564Igi bone marrow chimeras100 and on CD4 T cells from B6.Sle1yaa mice106. CD153+ 

follicular T cells are senescent yet pathogenic due to their ability to initiate spontaneous 

GCs and glomerulonephritis via osteopontin secretion172. Given the functional importance 

of these surface molecules, their dysregulated expression in autoimmune follicular T cells 

likely contributes to loss of GC tolerance.

Altered metabolic states—Autoimmune disease might also be influenced by 

altered metabolic states of lymphocyte populations, including follicular T cells. TFH 

differentiation and function require metabolic tuning, as HDL components can inhibit 

TFH formation173,174 and 7α,25-dihydroxycholesterol can guide TFH positioning via EBI2 
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signaling175. ApoE-deficient bone marrow chimeras reconstituted with BXD2 bone marrow 

develop increased TFH cells, GCs, and autoantibodies176, suggesting that dyslipidemia may 

contribute to TFH associated loss of GC tolerance. Bcl6177 and PD-1178 suppress glycolysis, 

but mTOR signaling is necessary for TFH activation179–181. CD4 T cells from SLE patients 

have increased mTORC1 signaling and glycolysis182–190 and mTORC1 promotes Bcl6 

expression in autoreactive TFH cells191,192. Inhibition of glycolysis in B6.Sle1.Sle2.Sle3, 

NZB/W F1, BXSB.yaa, or B6.lpr mice with 2-deoxyglucose and metformin reduced 

autoantibody and TFH levels but preserved the ability to mount humoral responses to 

foreign antigen184,185,191,193. Follicular T cells have increased glycolysis and hypoxia 

related gene signatures in 564Igi bone marrow chimeras100 and computational metabolic 

modeling of CD4 T cells from B6.Sle1yaa mice revealed widespread increase in metabolic 

activity, including glycolysis106. These results suggest that glucose inhibition is an appealing 

therapeutic strategy to selectively target autoreactive TFH cells while preserving immunity 

against foreign pathogens.

Co-inhibitory module induction—Although best characterized in CD8 T cells, 

exhaustion and co-inhibitory receptor expression on follicular T cells might have functional 

consequences in autoimmunity. Lag3 expression was increased on TFH cells in 564Igi 

bone marrow chimeras100 and Tigit, Lag3 and Pdcd1 are upregulated in CD4 T cells from 

B6.Sle1yaa mice106 and human SLE kidney biopsies107. Co-inhibitory module upregulation 

most commonly follows continuous TCR engagement and T cell activation to facilitate 

homeostatic contraction194,195, and therefore their upregulation on TFH cells in autoimmune 

disease likely signals antigen experience in the GC. Alternatively, type I interferon signaling 

can also increase co-inhibitory module expression196, and both 564Igi and B6.Sle1yaa have 

elevated interferon signaling197–199. As in CD8 T cells200, PD-1 signaling can attenuate 

TFH expansion and activation201. PD-1 might also have GC specific functions, including 

promotion of IL-21 and IL-4 release and ensuing LLPC production202,203. PD-1 also 

influences TFH positioning within the follicle as PD-L1 expression on bystander B cells 

can limit follicular entry of ICOS negative CD4 T cells while facilitating GC entry of TFH 

cells204. Lag-3 inhibition in mice infected with Plasmodium resulted in increased TFH cells 

and malarial clearance205,206. Tim-3 expressing TFH cells identified in cancer patients were 

less responsive to stimulation and less capable to promote CSR207–209. We hypothesize that 

increased co-inhibitory receptor expression on autoimmune TFH cells is reflective of the 

chronic nature of autoreactive GCs and that targeting these pathways in autoantibody disease 

warrants caution given their multifaceted roles in TFH function.

Impaired GC trafficking—Follicular T cell differentiation and positioning within the 

GC are tightly regulated processes that may be dysregulated in the autoreactive GC. 

Following extrafollicular engagement with B cells, TFH fate determination and guidance 

towards the follicle is necessary for GC formation and is dictated by chemokine gradients 

and molecular cues such as downregulation of CCR7210, miR-17–9289, and PSGL-1211 

and expression of CXCR5210, S1PR2212, EPHB6213, miR-155214, EBI2215, Sema4C216, 

LFA-1217,218, VLA-4219, integrin αV
220 and SAP221. TFH cell extrinsic signals also 

influence TFH migration towards and maintenance within the GC, such as B cell expression 

of PD-L1204,222, SLAM receptors221, PlxnB2216, and EFNB1213, and FDC expression of 
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CXCL13223. Itgb1 and Ahnak are upregulated in CD4 T cells from B6.Sle1yaa mice106 

and human SLE kidney biopsies107. Integrin β1 is a component of VLA-4 (α4β1), whose 

expression on TFH cells may influence T-B conjugate formation219 or interactions with 

FDCs via VCAM-1224,225. AHNAK is a scaffold protein necessary for Ca++ signaling in 

CD4 T cells226,227 that also promotes pseudopod protrusion and migration on metastatic 

cancer cells228. Itgb7 and Selplg are upregulated in TFH cells belonging to TCR specificity 

groups expanded in 564Igi bone marrow chimeras100. Integrin β7 is a component of 

α4β7, the receptor for the gut homing molecule MAdCAM-1229, while PSGL-1 (protein 

name for Selplg) limits TFH entry to the GC211 and may doubly serve as a checkpoint 

molecule230, suggesting that TCR autoreactivity might influence T cell trafficking out of the 

GC. This hypothesis is supported by the observation that Selplg was negatively associated 

with clonal expansion in foreign antigen elicited TFH cells but not TFH cells from 564Igi 

bone marrow chimeras100. PSGL-1 mediated autoreactive TFH suppression or GC exit 

might have functional consequences, as a subset of central memory-like CD44+CD62L+ 

TFH cells are decreased in 564Igi bone marrow chimeras with a corresponding increase in 

PSGL-1loCD62Llo extrafollicular CD4 T cells100. CD4 T cells from B6.Sle1yaa mice also 

increased expression of Cxcr3 and Cxcr4106, chemokine receptors that regulate migration 

towards the interferon-inducible ligands CXCL9, CXCL10, and CXCL11231 or between the 

LZ and dark zone (DZ)232, respectively. TFH cells in autoreactive GCs modulate expression 

of key trafficking molecules, which we hypothesize represent a homeostatic response to 

autoantigen recognition that limits T cell help via GC exit.

TFR dysfunction—TFR cells are central regulators of the GC reaction that curtail 

autoreactive B cells233. TFR cells may suppress GC B cells directly by downregulating 

B cell expression of MHC class II and B7–1 and B7–2 via TFR expression of CTLA-4234, 

suppressing GC B cell activation via release of neuritin, IL-10, and TGB-β235–237, or killing 

GC B cells via granzyme mediated cytolysis238. TFR cells may also limit TFH cell help 

directly by granzyme mediated killing of TFH cells239 or mechanically disrupting their 

interaction with GC B cells240, a process potentially governed by TCR affinity241,242. 

FoxP3CreBcl6fl/fl mice have increased autoantibodies after influenza infection, pristane 

injection, experimental SS, and spontaneously after 30 weeks239,243–247. Conditional 

deletion of TFR cells in FoxP3CreCxcr5LSL-DTR mice after immunization led to the 

production of autoreactive IgG248. Single cell sequencing of TFR cells in 564Igi bone 

marrow chimeras revealed similar transcriptional changes as in TFH cells, including 

upregulation of Ly6a and Gm42031 and downregulation of Id3 and Lag3100. ID3 is 

necessary for maintenance of the regulatory T cell pool and ID3 depletion impairs TFR 

localization103. We propose that just as TFH cells aberrantly provide help to autoreactive B 

cells in autoantibody disease, dysfunctional TFR cells fail to suppress autoreactive B cells, 

representing an orthogonal breakdown of peripheral tolerance in the autoreactive GC.

Autoreactive follicular T cell repertoire

Maintenance of peripheral B cell tolerance is at least partially governed by limiting of 

T cell help dictated by cognate TCR interactions between TFH and GC B cells5,249–251. 

Inefficiency of central B cell tolerance252 in combination with the stochastic nature of 

SHM therefore rely on the relatively greater efficiency of central T cell tolerance to 
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prevent autoantibody development250,252. Clonal redemption of autoreactive B cells is T 

cell dependent42, with TCR specificity42,242,253 and antigen availability41,51 likely serving 

as selective pressures for BCR mutation away from self-reactivity. Despite long held models 

of the importance of follicular T cell specificity, only recently have advances in single cell 

sequencing allowed for unbiased study of the follicular T cell repertoire. These studies have 

provided insight into not only TFH and TFR clonality in normal immune responses, but also 

hypotheses for how these regulatory processes might fail in the autoreactive GC.

TFH and TFR cells have distinct repertoires254, likely reflecting disparate ontogenies and 

functions. TCR transgenic experiments demonstrated that TFH recruitment into the GC is 

governed by specificity for the immunizing antigen, whereas TFR entry is not influenced by 

antigen identity254. Foreign immunization of TCR transgenic mice also results in oligoclonal 

expansion of TFH but not TFR cells, whose repertoire instead more closely resembles 

thymic-derived TREG cells254. A low frequency of antigen-specific FoxP3- T cell-derived 

TFR cells emerged following immunization with either self or foreign antigen in IFA255, 

suggesting that adjuvant identity may influence TFR development and clonality. TFR cells 

expressed greater Ki-67 than TFH cells in B6.Sle1yaa mice106, possibly reflecting selective 

expansion in response to encounter with autoantigen-driven by differences in TFH and TFR 

specificities. These observations lead to the model that antigen-specific TFH cells focus B 

cell affinity maturation towards foreign antigens, while autoreactive TFR cells limit survival 

of B cells that gain autoreactivity.

TCR transgenic mice or reliance on tetramers likely fail to capture the true diversity of wild 

type TFH and TFR repertoires. Although less diverse than non-follicular T cell repertoires, 

TFH and TFR repertoires from non TCR transgenic mice were also polyclonal but non-

overlapping256. Surprisingly, immunization of non TCR transgenic mice expands TFH and 

TFR pools but does not significantly alter their clonality256,257, although greater clonotype 

overlap was observed amongst TFH cells following foreign immunization and amongst 

TFR cells following autoantigen immunization256. Instead, immunization resulted in non-

specific TFH and TFR bystander activation256 possibly due to TCR cross-reactivity258–261. 

Bystander activation may also be TCR independent and be driven by TLR signaling and 

cytokines rather than antigen262–265. TFH and TFR repertoires were also polyclonal and 

non-overlapping in 564Igi bone marrow chimera mice100, suggesting that non-specific 

TFH and TFR bystander activation occurs in autoimmune disease as well. Notably, the 

polyclonal nature of follicular T cell responses may simply represent a generalizable T cell 

phenomenon that is only now being appreciated due to the unbiased nature of repertoire 

wide sequencing in a field that has previously relied on TCR transgenics and tetramer 

enrichment.

While repertoire wide analyses of TFH and TFR TCRs have provided insight into 

clonality, antigen specificity has remained elusive. Autoreactive CD4+CD25- T cells 

regularly escape central tolerance and are found in the periphery of healthy mice and 

humans261,266,267 but are curtailed by peripheral tolerance mechanisms including TREG 

cells, anergy, and suppressive CD8 T cells268–270. Both conventional CD4 T (TCON) 

and TREG cells exhibit increased oligoclonality in B6.Sle1yaa mice compared to foreign 

antigen immunized mice106. Autoreactive CD4 T cells correlate with autoantibody mediated 
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disease severity271–276. In transgenic mouse models these autoreactive T cells can receive 

autoantigenic stimulation from autoreactive B cells, leading to TLR independent loss of 

tolerance and autoantibody production 46,47. The representation of these autoreactive CD4 T 

cells in the homeostatic repertoire, their spatiotemporal location, and mechanism of driving 

loss of tolerance remain uknown277–279. Given the inherent differences between follicular 

and non-follicular T cell repertoires256, conclusions regarding CD4 T cell specificity in 

autoimmune disease are difficult to extrapolate to TFH and TFR cells.

Although autoreactive T cells that escape central tolerance are incapable of SHM and clonal 

redemption like autoreactive B cells39,40,43–45, they may still be subject to activation due to 

the highly cross-reactive nature of the TCR258–261. Just as TCR affinity influences thymic 

education280, low TCR signal strength can promote TFH clonality281 and polarization over 

TH1 commitment241,282, possibly permitting lower affinity yet autoreactive TCRs283–285 in 

the TFH repertoire. Computational prediction of antigen specificity revealed that follicular 

T cell repertoires from both foreign antigen immunized and 564Igi bone marrow chimeras 

had highly similar predicted specificities100. Similarly, TCR repertoires from foreign antigen 

immunized and B6.Sle1yaa mice shared the majority of predicted specificities106. This 

overlap likely represents bystander activation of non-antigen-specific follicular T cells with 

polyreactive TCRs256,261. A minority of predicted specificities were enriched in 564Igi 

bone marrow chimeras100, possibly representing an autoantigen-specific response slightly 

detectable in a sea of non-specific proliferation, akin to the tetramer-specific responses 

observed after foreign antigen immunization254,255. Indeed, TCR database annotation could 

predict antigen specificities for follicular T cell clonotypes commonly expanded in both 

foreign antigen immunized mice and 564Igi bone marrow chimeras but not clonotypes 

enriched in 564Igi bone marrow chimeras100, potentially reflecting the lack of annotated 

autoantigens in TCR databases. Further studies are needed to determine whether the 

follicular T cell clonotypes expanded in both foreign and autoimmune disease are specific 

for foreign antigens, autoantigens, or both.

Given the consistent bystander activation of TFH and TFR cells and convergence of 

follicular T cell predicted specificities in foreign antigen immunized and autoimmune mice, 

we hypothesize that autoreactive B cells co-opt cross-reactive TCRs present within the 

follicular T cell repertoire to license T cell help in developing autoreactive GCs. A follicular 

T cell repertoire that is cross-reactive with self might also explain how epitope spreading and 

molecular mimicry propagate. Given the importance of MHC class II expression to maintain 

peripheral B cell tolerance46,47,80,81, we propose that autoreactive B cells overcome clonal 

anergy by internalizing and presenting self-antigens to cross-reactive follicular T cells 

which then provide help to B cells with specificities against unrelated antigens (Figure 

3). Marginal zone (MZ) B cells have polyreactive BCRs and relatively decreased activation 

thresholds286–288, and therefore might represent a B cell population capable of polarizing 

cross-reactive T cells against self. Notably, this model assumes both the presence of 

TCRs cross-reactive with autoantigens in the follicular T cell repertoire and the ability of 

autoreactive B cells to overcome mechanisms of peripheral tolerance.
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Extrafollicular autoantibody development

In addition to TFH mediated help in autoreactive GCs, T cell help mediated by other cell 

types and in other immunologic niches have been identified in autoantibody disease (Figure 

4). T cell help might be provided to autoreactive B cells not only by TFH and TFR cells, 

but also by peripheral helper T (TPH) cells, circulating TFH (cTFH) cells, and CD8 T cells. 

Autoreactive B cells might also develop in EF and tertiary lymphoid structures (TLS) or 

ectopic GCs. Indeed, mounting evidence suggests that extrafollicular origins might serve as 

the dominant source of autoantibodies in disease.

High resolution analyses of patient biopsies have led to the characterization of alternative 

T cell populations capable of providing T cell help107,289. Circulating, pre-follicular, and 

extrafollicular TFH cells all express CXCR5 and PD-1290. Indeed, the canonical markers 

of GC TFH cells are likely imprecise290, as CXCR5+PD-1+ cells encompass both GC and 

non-GC TFH cells, two populations with distinct antigen requirements, gene expression, 

and repertoires291. TFH cells can inefficiently enter circulation292, with varying levels of 

retained Bcl6, CXCR5, and PD-1 expression293. SLE patients have increased cTFH that 

correlate with disease severity, plasmablasts (PBs), and autoantibody levels52,294–297. These 

cTFH cells might simply be a marker of active GC reactions292 or might represent a memory 

population capable of secondary lymphoid organ homing and GC re-entry298,299.

TPH cells were identified in the synovium of seropositive RA patients and are distinct from 

cTFH cells due to their PD-1hiCXCR5-Bcl6- profile and ability to migrate to peripheral 

sites of inflammation107,300–303. TPH cells produce IL-21 and CXCL13304, express TFH 

signature genes289, exhibit hallmarks of exhaustion289, can stimulate PB formation in 
vitro289,304,305, and correlate with age-associated CD11c+CD21- B cell (ABC) levels304,306. 

Antigen-specific TPH cells have been identified in celiac disease and autoimmune 

hepatitis307,308, suggesting that TCR specificity influences TPH fate and possibly function. 

Other CD4 T cell populations such as resident helper T (TRH) cells309,310, CXCR3+PD1hi 

CD4 T cells301, or TH17 cells147,311 might also provide tissue-specific help to autoreactive 

B cells in autoimmune disease. Non-TFH sources of T cell help must be considered when 

designing therapy for autoantibody disease, as Bcl6-deficient mice are still capable of 

neutralizing antibody responses312,313.

CD8 T cells exhibit dysfunctional phenotypes in autoantibody disease, including impaired 

cytotoxicity of circulating CD8 T cells314–318, impaired suppressive ability of regulatory 

CD8 T cells269,319–322, and effector memory phenotypes of tissue resident CD8 T cells323. 

Regulatory CD8 T cells represent a CD8 T cell subset that exert Qa-1 restricted suppression 

of TFH and GC B cells, preventing autoantibody development and glomerulonephritis268. 

KIR+ CD8 T cells can eliminate autoreactive CD4 T cells and are increased in the 

circulation of celiac disease, MS, SLE, and COVID-19 patients324. CXCR5+ follicular CD8 

T cells represent a distinct subset capable of GC entry where they facilitate autoreactive 

B cell CSR and autoantibody development325–327. CD40L+ CD8 T cells are necessary for 

ectopic GC formation in RA328,329. These results suggest that CD8 T cells can provide B 

cell help, potentially in collaboration with TFH cells. Single cell sequencing of SLE kidneys 

revealed increased cytotoxicity of infiltrating CD8 T cells107,317 whereas circulating CD8 T 

cells has decreased cytolytic capacity in SLE316. B6.Sle1yaa mice had decreased frequency 
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of splenic CD8 T cells, which also exhibited metabolic rewiring and clonal expansion of an 

effector subset106. Given the differences in circulating and tissue resident CD8 T cells, we 

hypothesize that tissue residence drives altered CD8 T cell metabolic profiles that facilitate 

cytotoxicity and contribute to autoantibody pathogenesis. Alternatively, these cytotoxic CD8 

T cell phenotypes might be driven by TFH cell-derived IL-21, which can license CD8 T cell 

responses in both cancer330 and chronic viral infection331.

SHM, CSR, and memory B cell formation may occur outside GCs in EF in both T cell 

dependent and T cell independent manners4,72,332–334. Immunization results in early CD4 T 

and B cell proliferation in EF, ultimately leading to emergence of short-lived plasma cells 

in an ICOS and CD40L dependent manner277,335–339. Extrafollicular Bcl6+CXCR5loICOSlo 

CD4 T cells secrete IL-21 and IL-10 and can more efficiently convert naïve B cells into 

antibody secreting cells (ASC) than GC TFH cells340. Autoantibody levels decrease quickly 

following B cell depletion with anti-CD20341–345, suggesting production by extrafollicular 

short lived plasma cells. SLE flares correlate with circulating PC frequency346 and ASC 

development from activated naïve B cells followed by production of lowly mutated 

autoantibody347, reminiscent of a non-GC origin. BAFF transgenic mice produce class 

switched autoantibody outside GCs in a T cell independent manner348,349 and B6.56R 

mice loss B cell tolerance in a T cell and TLR9 independent manner350. TLR7 dependent 

extrafollicular ABCs expressing T-bet and CD11c, particularly CXCR5-CD21- DN2 cells351, 

are pathogenic in lupus347,352. T-bet+CD11c+ B cells arise outside the GC in the marginal 

zone, are TFH dependent, and can rapidly become ASC353. Indeed, RNA velocity analysis 

of B6.Sle1yaa splenic B cells suggested that autoreactive plasma cells (PCs) originate 

at least partially from MZ B cells106, consistent with T cell independent activation of 

extrafollicular autoreactive MZ B cells observed in autoantibody disease286–288,354–356. 

These observations provide multiple distinct potential ontogenies of autoantibody secreting 

cells.

CD4 T cells with a TFH signature are also present in EF in lupus prone mice. 

B6.Sle1yaa and NZW/BXSB mice eventually lose splenic GC organization accompanied 

by extrafollicular localization of TFH cells106,357. 564Igi bone marrow chimeras have 

increased extrafollicular cells that also expressed increased PD-1 and Selplg expression 

on follicular T cells correlated with predicted autoreactivity100, suggesting that TCR 

autoreactivity promotes EF responses. MRL/lpr mice develop autoantibodies from T 

cell dependent extrafollicular SHM and ASC production72,358, likely due to increased 

extrafollicular PSGL-1lo T cells that express CXCR4 and facilitate IgG production via IL-21 

and CD40L277,335. Although SHM and ASC production is T cell dependent in MRL/lpr 

mice, autoantibody production is T cell independent and instead requires TLR9 or TLR7 

mediated MYD88 signaling358,359. In contrast, autoantibody production in Dnase1l3−/− mice 

by extrafollicular short lived ASCs is dependent on CD40L mediated T cell help, although is 

also promoted by TLR9 and TLR7 signaling360. Both GC TFH and extrafollicular T cells in 

BXSB/yaa mice express increased IL-21143, suggesting simultaneous EF and GC responses. 

Autoantibody responses might originate in EF due to lack of tolerogenic pressures that 

normally facilitate negative selection or clonal redemption in the GC. We hypothesize that 

ultimately both EF and GC serve as sites of loss of tolerance with potential differences in 

threshold, kinetics, and T cell dependence in autoantibody disease.
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Beyond EF in secondary lymphoid organs, TLS or ectopic GCs may also promote 

autoantibody development. TLS develop following chronic inflammation locally at sites 

of infection, autoimmune processes, or solid tumors361. Pathogenic TLS have been 

identified in the lungs of Wegner granulomatosis362,363 patients, thyroid in Hashimoto 

thyroiditis364,365, meninges in MS366–370, thymus in myasthenia gravis371, synovium in 

RA372,373, salivary gland in Sjogren syndrome374,375, and kidney in SLE376,377. Peripheral 

tolerance mechanisms are dysregulated in autoimmune TLS, as autoreactive B cells are 

capable of TLS entry and ensuing autoantibody production372,378. Gut associated lymphoid 

tissue is also capable of shaping the immature transitional B cell repertoire away from 

autoreactivity, a process that fails in SLE379. Autoimmune TLS harbor latent Epstein-

Barr virus (EBV)380,381 and EBV transformed B cells can produce autoantibodies382,383. 

Abnormal T cell help might also influence TLS autoreactivity, as CD8 and TH17 cells 

are necessary for TLS formation in RA synovium329 and experimental autoimmune 

encephalomyelitis CNS384–386, respectively. Although TFH like cells have also been 

identified in autoimmune TLS385,387, their ontogeny and function remain unclear. We 

propose that TLS are established following secondary lymphoid organ loss of tolerance 

due to local antigen availability and their persistence allows for continual evolution of the 

autoantibody repertoire.

Other forms of germinal center dysfunction

In addition to contributing to autoantibody development, dysfunctional T cell help likely 

contributes to other abnormal GC responses. Insufficient, overactive, or dysfunctional GCs 

have been described in autoimmune disease, infection, and cancer. Molecular mechanisms 

of T cell help dysfunction in both autoreactive GCs and other diseases might reciprocally 

provide biological insight and therapeutic targets for each other. Recent discoveries have 

revolutionized our understanding of GC dysfunction in molecular mimicry, cancer, and 

COVID-19 (Figure 5).

Molecular mimicry is the process by which immune responses against foreign antigens lead 

to autoimmune responses against homologous antigens likely through epitope spreading 

or cross-reactivity388,389. Documented triggers include Streptococcus pyogenes infection 

leading to rheumatic heart disease390, Campylobacter jejuni infection leading to Guillain-

Barre syndrome391, and EBV infection leading to MS392. BCR repertoire analysis from 

MS CSF revealed that SHM of an EBNA1 antibody led to cross-reactivity with the CNS 

restricted protein GlialCAM26. CSF oligoclonal PBs increased expression of HLA-DR26 

and latent EBV persists in meningeal TLS380, suggesting that EBV reactive B cells may 

break T cell tolerance in meningeal TLS, allowing them to receive T cell help and mutate 

towards autoreactivity in MS. Molecular mimicry was exacerbated by phosphorylation of 

GlialCAM26 and citrullinated peptides or phosphorylated Ro/La are targets in RA393 and 

SLE394, respectively, suggesting that tissue-specific post translational modification might 

explain escape from central tolerance mechanisms. Even after loss of tolerance, epitope 

spreading to an evolving set of autoantigens may occur with both diagnostic and prognostic 

utility in autoimmune disease20–25,395,396. We hypothesize that molecular mimicry and 

epitope spreading is facilitated by the cross-reactivity of the T cell repertoire285, which 
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allows for non-specific bystander TFH activation and provision of T cell help leading to B 

cell SHM and autoreactivity, particularly in situations of chronic GCs.

Although cancer immunotherapies have historically focused on anti-tumor CD8 T cells, 

there is growing appreciation for the importance of CD4 T and B cells in anti-tumor 

immunity. Aberrant epitope spreading might also contribute to both beneficial anti-tumor 

immune responses397–405 and adverse autoimmune events406–410 following checkpoint 

blockade cancer immunotherapy. Paradoxically, epitope spreading and worse immune 

related adverse events (irAE) correlate with better anti-tumor immunity411–415 and anti-

tumor antibodies can evolve from pre-existing autoantibodies through SHM416, suggesting 

that overcoming GC tolerance mechanisms might benefit cancer immunotherapy. TPH, 

TFH, and B cells have been identified in tumors and tumor associated TLS, and their 

presence correlates with improved survival303,417–433. Mice genetically engineered to 

express B cell neoantigens in lung cancer develop tumor-specific TFH and B cell responses 

with greater anti-tumor immunity330. IL-21 production by tumor-specific TFH cells is 

necessary for anti-tumor CD8 T cell cytotoxicity330, suggesting cross talk from B cells to 

TFH cells to CD8 T cells. T cell help via IL-21 promotes formation of cytolytic CX3CR1+ 

CD8 T cells that are capable of controlling both chronic LCMV and tumor growth434. 

Similarly, TFH cell-derived IL-21 promotes antigen-specific CD8 T cell responses in 

chronic LCMV infection331. Given the increased CD8 T cell cytotoxicity observed in 

autoantibody disease106,107,317, these studies highlight convergent mechanisms of T cell 

help in cancer, infection, and autoimmunity. While epitope spreading is pathogenic in 

autoantibody disease, it might provide therapeutic benefit in cancer.

GC dysfunction has also been described in COVID-19, as patients with severe disease 

lack TFH cells and GC structures435. Despite lack of GCs, severe COVID-19 patients still 

form extrafollicular T-B cell conjugates and class switched antibodies435,436. SARS-CoV-2 

infection and vaccination results in generation of both TFH-dependent and TFH-independent 

antibodies312,437,438. Impaired TFH help in immunocompromised kidney transplant 

recipients likely accounts for decreased responsiveness to mRNA vaccination439. However, 

Cd4CreBclf6fl/fl mice demonstrated that although TFH-independent antibodies were less 

somatically mutated, they were still neutralizing and broadly reactive against SARS-

CoV-2 and heterologous viruses312. Although these antibodies appear protective, ongoing 

extrafollicular responses correlate with worse outcomes of COVID-19436. Autoantibodies 

targeting type I interferons correlate with COVID-19 severity440, likely due to the protection 

conferred by type I interferons against SARS-CoV-2441. Pathologic autoantibodies against 

other immunomodulatory proteins such as cytokines, chemokines, and complement also 

emerge in COVID-19 and multisystem inflammatory syndrome in children (MIS-C), 

similarly affecting clinical outcomes442–446. Given the association between autoantibodies 

and atherogenesis and arrhythmias447–450, aberrant autoantibody production might explain 

the cardiovascular complications of COVID-19. Autoantibody levels in COVID-19 patients 

also correlate with anti-SARS-CoV-2 antibody levels and is an independent risk factor 

for development of post-acute sequelae of COVID-19 (PASC) or long COVID-19451. 

Informed by the role of extrafollicular responses in autoantibody disease, we hypothesize 

that although capable of producing neutralizing antibodies against SARS-CoV-2, ongoing 
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extrafollicular TFH-independent B cell responses also lead to autoantibody development 

which directly exacerbates COVID-19 severity.

Conclusion

Technological advances have allowed for the study of the autoreactive GC at single 

cell resolution, transforming our understanding of the role of T cell help in loss of 

tolerance. These developments have led to new models of TFH and B cell crosstalk in 

not only autoantibody disease, but also other autoimmune diseases, cancer, and infection. 

Gene expression profiling has identified metabolism and adhesion molecule expression as 

therapeutic targets specific to autoreactive TFH cells. Repertoire analyses have revealed 

a surprising degree of bystander activation of follicular T cells, leading to the hypothesis 

that cross-reactive T cells might license B cell loss of tolerance and epitope spreading. 

Mass cytometry of patient biopsies identified novel T helper subsets such as TPH cells 

and highlighted the contribution of extrafollicular responses to autoantibody development. 

Lessons learned from the autoreactive GC can also provide mechanistic insight into the 

autoantibody development observed in MS and COVID-19. These hypotheses highlight the 

therapeutic potential of targeting alternative pathways such as TFH metabolism, bystander T 

cells, or extrafollicular B cells in autoantibody disease.

In addition to generating new hypotheses, recent discoveries have opened the door 

to many remaining questions of autoreactive GC biology. Although TFH cells share 

predicted specificities in foreign antigen immunized and autoimmune mice, the antigenic 

targets of these TCRs remains unknown. Indeed, reactivities against overlapping antigens 

between TFH cells and epitope spread B cells has not been established. Identification of 

target antigens might clarify whether bystander follicular T cell activation is a necessary 

component of autoreactive GC responses or is simply a consequence of GC development. 

The degree of T cell dependence of extrafollicular responses and the tolerance mechanisms 

that normally restrain MZ or DN2 B cell conversion to autoantibody secreting cells also 

remain unclear. The nature of T cell help provided by other populations such as TPH 

and CD8 T cells and in other locations such as TLS, as well as their ability to propagate 

autoantibody responses, is poorly characterized. Pressing questions such as why SARS-

CoV-2 infection generates extrafollicular responses and whether these EF are the source of 

pathogenic autoantibody must be answered. Answers to these questions have the potential to 

not only improve our understanding of GC biology, but also lead to the development of more 

efficacious therapies for diseases ranging from autoimmunity to cancer.
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TFH follicular helper T cell

SHM somatic hypermutation

CSR class switch recombination

TFR follicular regulatory T cell

SLE systemic lupus erythematosus

MG myasthenia gravis

RA rheumatoid arthritis

SS Sjögren’s syndrome

MS multiple sclerosis

LZ light zone

LLPC long-lived plasma cell

DZ dark zone

MZ marginal zone

TPH peripheral helper T cell

cTFH circulating follicular helper T cell

TLS tertiary lymphoid structures

PB plasmablast

ABC age-associated B cell

TRH resident helper T cell

ASC antibody secreting cell

PC plasma cell

EBV Epstein-Barr virus

irAE immune-related adverse event

MIS-C multisystem inflammatory syndrome in children

PASC post-acute sequelae of COVID-19
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Figure 1. Failures in clonal redemption lead to loss of tolerance.
Autoreactive B cells normally undergo SHM to lose self-reactivity in a process termed 

clonal redemption. Anergic B cells that have escaped central tolerance are recruited into 

the GC of SLOs and mutate away from self to receive T cell help, which facilitates 

CSR and LLPC development. This process is regulated by checkpoints such as limited 

antigen-specific TFH cells, limited antigen availability on FDCs, co-stimulation provided 

by TFH cells, and TFR cells. We propose that in autoantibody disease an autoreactive B 

cell clone escapes clonal redemption due to failures of these checkpoints, triggering TFH 

dysfunction and epitope spreading towards autoantigens. SHM, somatic hypermutation; 

CSR, class switch recombination; GC, germinal center; TFH, follicular helper T cell; TFR, 

follicular regulatory T cell; FDC, follicular dendritic cell; LLPC, long lived plasma cell; 

SLO, secondary lymphoid organ; ASC, antibody secreting cell.
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Figure 2. Hallmarks of TFH dysregulation in autoimmune disease.
TFH cells isolated from mice and humans with autoimmune disease exhibit transcriptional 

and functional changes. We propose that loss of GC tolerance is due to TFH dysregulation, 

albeit through various mechanisms of dysfunction. TFH cells might permit or promote 

autoreactive B cell development due to dysregulated transcription factor expression, 

cytokine and chemokine profiles, co-stimulation, metabolism, exhaustion, and trafficking. 

GC, germinal center; TFH, follicular helper T cell.
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Figure 3. Bystander activation and cross-reactivity of the TFH repertoire.
Repertoire wide analyses have revealed that both immunization and autoimmune disease 

result in polyclonal responses of TFH and TFR cells. Computational prediction of antigen 

specificities also suggests overlap between autoimmune and foreign antigen elicited 

follicular T cell repertoire specificities. We propose that the cross reactivity of the TCR 

is responsible for non-specific bystander activation, which allows for provision of T cell 

help to autoreactive B cells, particularly in situations of chronic GC or extrafollicular B cell 

activation. GC, germinal center; TFH, follicular helper T cell; TFR, follicular regulatory T 

cell.
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Figure 4. Extrafollicular sites of autoantibody production.
T cell help to autoreactive B cells may be provided by cells other than follicular T cells and 

at locations other than GCs. TPH, cTFH, TRH, TH17, and CD8 T cells exhibit dysregulation 

in autoantibody disease and might also contribute to loss of GC tolerance. Autoantibodies 

might also originate from SLO EF and TLS, which might serve as sites of loss of tolerance 

or epitope spreading, respectively. GC, germinal center; TPH, peripheral helper T cell; 

cTFH, circulating follicular helper T cell; TRH, resident helper T cell; EF, extrafollicular 

foci; TLS, tertiary lymphoid structure; FO, follicle; ASC, antibody secreting cell; SLO, 

secondary lymphoid organ.
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Figure 5. Dysregulated GCs in autoimmune disease, cancer, and COVID-19.
Mechanisms of dysfunctional T cell help in autoantibody disease are applicable to other 

forms of GC dysfunction. (A) Molecular mimicry is an etiology of MS and might be driven 

by the cross reactivity of the TFH repertoire. (B) In contrast, epitope spreading might 

enhance anti-tumor immune responses, although might also exacerbate irAE following 

immune checkpoint blockade in cancer. (C) T cell independent neutralizing antibodies 

against SARS-CoV-2 are made in COVID-19, although EF and pathogenic autoantibodies 

are also observed in severe COVID-19. GC, germinal center; TFH, follicular helper T 
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cell; EBV, Epstein-Barr virus; MS, multiple sclerosis; irAE, immune related adverse event; 

EF, extrafollicular foci; MIS-C, multisystem inflammatory syndrome in children; PASC, 

post-acute sequelae of COVID-19.
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