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Background. Hypoxia plays a significant role in the pathogenesis of pancreatic cancer, but the effect of hypoxia-related genes in
pancreatic cancer remains to be elucidated. This study aimed to identify hypoxia-related genes related to pancreatic cancer and
construct a prognostic signature. Methods. Pancreatic cancer datasets were retrieved from TCGA database. Cox regression
analyses were used to identify hypoxia-related genes and construct a prognostic signature. Datasets from International Cancer
Genome Consortium and GEO databases were used as validated cohorts. The CIBERSORT method was applied to estimate the
fractions of immune cell types. DNA methylation and protein levels of the genes in pancreatic cancer were examined. Results.
Three hypoxia-related genes (TES, LDHA, and ANXA2) were identified as associated with patient survival and selected to
construct a prognostic signature. Patients were divided into high- and low-risk groups based on the signature. Those in the
high-risk group showed worse survival than those in the low-risk group. The signature was shown to be involved in the HIF-1
signaling pathway. The time-dependent ROC analyses of three independent validated cohorts further revealed that this
signature had a better prognostic value in the prediction of the survival of pancreatic cancer patients. Immune cells analysis for
three datasets demonstrated that high-risk signature was significantly associated with macrophages and T cells. DNA
methylation and protein levels of the three genes validated their aberrant expression in pancreatic cancer. Conclusions. Our
research provided a novel and reliable prognostic signature that composes of three hypoxia-related genes to estimate the
prognosis of pancreatic cancer.

1. Introduction

Pancreatic cancer is a common, malignant solid carcinoma
that poses a great threat to human health [1]. Despite signif-
icant advancements have been made in the treatment
modalities for pancreatic cancer, the survival of patients with
pancreatic cancer remains poor, especially those at the late
stage of disease [2]. To date, several molecular markers have
been identified for the early diagnosis, treatment monitor-
ing, and survival prediction in pancreatic cancer patients.
These have remarkably improved the prognosis of patients
and provided new targets for treatment [3]. However, although
the molecular mechanism of pancreatic cancer pathogenesis

has been studied in past decades, the exact mechanism remains
largely unknown and requires further study.

Hypoxia is a key characteristic feature of the tumor
microenvironment (TME), mostly occurring in solid tumors
[4]. The occurrence of hypoxia in the TME is due to the
imbalance between rapid proliferation of tumor cells and
insufficient blood and nutrition supply. Under hypoxic con-
ditions, tumors initiate a wide array of adaptive behaviors,
including tumor cell epithelial-mesenchymal transition, pro-
liferation, differentiation, and invasion in response to low
oxygen levels, and finally leading to a more aggressive nature
of the tumor [5]. Hypoxia also occurs in pancreatic cancer,
and some hypoxia-related molecules such as ADAM8 [6],
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BX111 [7], and CF129 [8] have been identified to play cru-
cial roles in the progression of pancreatic cancer, which
might have potential as prognostic biomarkers and thera-
peutic targets for pancreatic cancer. In addition, the complex
interplay between immune cell infiltrates within the hypoxic

TME of cancers has been reported in several studies. For
example, hypoxia was shown to be a dominant remodeler
of the effector T cell surface proteome, relative to activation
and regulatory T cell suppression [9]. Hypoxia was also
found to drive immunosuppression by Treg and type-2
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Figure 1: (a) Volcano plot of 2615 differentially expressed genes (DEGs) between pancreatic cancer and noncancerous pancreatic tissues;
(b) 67 overlapped genes between DEGs and hypoxia induced genes. (c) Biology process enrichment of 67 overlapped genes; (d) KEGG
pathway enrichment of 67 overlapped genes.
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conventional dendritic cells in hepatocellular carcinoma
[10]. These results indicated that hypoxia played important
roles in the regulation of immune cells in cancers. Thus,
exploring the role of hypoxia-related genes or signature
genes in cancers and the interaction with immune cells
might help to uncover the mechanism of pathogenesis and
progression in cancer and predict the survival of patients
with cancers.

Some previous studies have constructed prognostic signa-
tures using hypoxia-related genes to predict the prognosis of
cancer, including lung cancer [11], glioma [12], and hepatocel-
lular carcinoma [13]. However, prognostic signatures using
hypoxia-related genes in patients with pancreatic cancer are
still limited [14]. Therefore, in this study, we aimed to identify
hypoxia-related genes in pancreatic cancer, constructing a
prognostic signature to predict the prognosis of patients with
pancreatic cancer. Next, we explored the association between
the hypoxia-related prognostic signature and immune infiltra-
tion in pancreatic cancer. Finally, we examined the effect of
DNA methylation on the expression of hypoxia-related genes
and validated the protein expression of genes in pancreatic
tissues.

2. Materials and Methods

2.1. Data Collection. The gene profile dataset of pancreatic
cancer (PAAD, level 3 RNA-seq FPKM) was downloaded
from The Cancer Genome Atlas (TCGA) database, which
included 179 cancer tissues and four normal tissues. Because
the number of normal tissues was small, to improve the sta-
tistical robustness, we also downloaded a dataset of 167 nor-
mal pancreatic tissues from the GTEx database, which was
used to combine the data with the normal data of the
TCGA-PAAD dataset. The dataset of 189 patients with pan-
creatic adenocarcinoma was downloaded from the Interna-
tional Cancer Genome Consortium and used as one of the
validated datasets (ICGC-PACA). In addition, the GSE57495
dataset [15] (GPL15048 platform, Rosetta/Merck Human

RSTA Custom Affymetrix 2.0 microarray) retrieved from the
Gene Expression Omnibus (GEO) database was used as
another validated dataset, and it included the data of 63 pan-
creatic cancers. The related clinical data of the three datasets
were extracted. The hallmark gene sets of hypoxia were
retrieved from Molecular Signatures Database (MSigDB ver-
sion 6.0), including 200 genes that were found to be upregu-
lated during hypoxia (Table S1).

2.2. Identification of Differentially Expressed Genes and
Hypoxia-Related Genes for Prognosis. Differentially
expressed genes (DEGs) between pancreatic cancer and nor-
mal tissues were screened in the TCGA-PAAD dataset using
the “edgeR” package and used for examining differential
expression of replicated count data [16]. The DEGs were
defined as absolute log2-fold change ðjFCjÞ > 1:0 and an
adjusted P value of less than 0.05. Then, the DEGs between
pancreatic cancer and normal tissues were overlapped with
the known 200 hypoxia genes from MSigDB; the common
genes of the two gene sets were defined as hypoxia-related
DEGs. Next, univariate Cox regression analyses were con-
ducted to screen the identify the hypoxia-related DEGs that
related to overall survival (OS) of pancreatic cancer patient,
and genes with a P value < 0:05 were considered statistically
significant; finally, the hypoxia-related DEGs from univari-
ate Cox regression analyses were incorporated into multivar-
iate Cox regression analyses for further analysis; genes with a
P value less than 0.05 were used in the subsequent analysis.

2.3. Establishment and Validation of a Prognostic Gene
Signature. The hypoxia-related prognostic gene signature was
constructed using the hypoxia-related gene from multivariate
Cox regression analyses as previously reported [11]. Briefly,
the regression coefficient (β) value of genes derived frommulti-
variate Cox regression analyses was multiplied by the expres-
sion of the corresponding gene to generate the risk score, and
the risk score is then calculated according to the following for-
mula: risk score = ðβmRNA1 ∗ expression of mRNA1Þ + ðβ
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Figure 2: Construction and validation of three-hypoxia-related signature in pancreatic cancer. (a) Pancreatic cancer data from TCGA
database; (b) pancreatic cancer data from ICGC database; (c) pancreatic cancer data from GSE57495 dataset.
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mRNA2 ∗ expression of mRNA2Þ +⋯+ðβmRNAn ∗
expression of mRNAnÞ. Based on the median risk score,
patients with survival data were divided into high- and low-
risk groups, and then, the association of risk score with survival
and clinical features of patients was investigated by Kaplan–
Meier survival analysis, which further evaluate the predictive
ability of the prognostic signature. The results were validated
in the ICGC and GSE57495 datasets.

2.4. Analyses of Clinical Significance and Prognostic Value of
the Gene Signature in Pancreatic Cancer. The associations of
the hypoxia-related prognostic gene signature with the clin-
ical features in pancreatic cancer were first analyzed in the
TCGA-PAAD dataset and then validated in the ICGC-
PACA dataset. A two-tailed P value of less than 0.05 was
considered statistically significant. The prognostic value of
the signature in predicting the 1-, 3-, and 5-year survival
probability of pancreatic cancer patients was determined
using time-dependent receiver operating characteristic
(time-ROC) curves, and the results were estimated by the

area under the curve (AUC), which was running in R pack-
ages of “timeROC” [17].

2.5. Estimation of Immune Cell-Type Fractions in Pancreatic
Cancer Tissues. To investigate the association of the gene sig-
nature with immune cells in the context of pancreatic can-
cer, the mRNA expression matrix of the TCGA-PAAD,
ICGC-PACA, and GSE57495 datasets was normalized and
analyzed using the CIBERSORT tool, which was used to esti-
mate the fractions of 22 human immune cells, and the
results were visualized using a Heatmap graph. Then, the
differences in each immune cell fraction between the high-
and low-risk groups were determined. P < 0:01 was consid-
ered statistically significant.

2.6. Gene Function and Pathway Analysis. The “clusterProfi-
ler” package [18] was used to perform the gene function (Bio-
logical Process, BP) and KEGG pathway analysis for the
hypoxia-related DEGs. Gene set enrichment analysis (GSEA)
was conducted to evaluate the signaling pathways regulated by

Table 1: Association of risk score of signature with clinical features in pancreatic cancer.

TCGA dataset ICGC dataset
Risk score P value Risk score P value

Age

>60 years 11:314 ± 0:707 0.144 10:719 ± 0:345 0.456

<60 years 11:467 ± 0:621 10:767 ± 0:395
Gender

Female 11:381 ± 0:668 0.773 10:737 ± 0:358 0.919

Male 11:351 ± 0:696 10:732 ± 0:364
Grade

G1 10:765 ± 1:15 0.002 10:749 ± 0:358 0.016

G2 +G32 + G4 11:487 ± 0:455 10:444 ± 0:298
T stage

T1 + T2 10:919 ± 1:138 0.014 10:788 ± 0:283 0.264

T3 + T4 11:459 ± 0:493 10:723 ± 0:374
N stage

N0 11:22 ± 0:903 0.153 10:741 ± 0:352 0.889

N1 +N2 +Nx 11:42 ± 0:569 10:732 ± 0:364
M stage

M0 11:457 ± 0:485 0.088 10:548 ± 0:158 0.165

M1+Mx 11:289 ± 0:802 10:738 ± 0:362
Clinical stage

I + II 11:374 ± 0:667 0.571

III + IV 11:2 ± 0:926
Chemotherapy

Yes 11:29 ± 0:79 0.276

No 11:42 ± 0:61
Radiation

Yes 11:39 ± 0:59 0.941

No 11:38 ± 0:70
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the genes and the hypoxia-related signature, with P < 0:01 con-
sidered significant pathways.

2.7. Association of DNA Methylation with Gene Expression.
The DNA methylation data of each gene of the signature
in pancreatic cancer were retrieved from the TCGA data-
base, and the methylation levels of genes between pancreatic
cancer tissues and normal tissues were compared. The corre-
lations between methylation levels and mRNA expression
were analyzed. The survival time between high- and low-
methylation levels of each gene was analyzed using the
Kaplan–Meier (KM) curve and the log-rank method. P <
0:01 was considered statistically significant. All these analy-
ses were conducted using the DNA Methylation Interactive
Visualization Database [19] (DNMIVD, http://119.3.41
.228/dnmivd/index/).

2.8. Validation of the Protein Expression of Genes in the
Human Protein Atlas Database. To further explore the pro-
tein expression of genes in the signature in pancreatic cancer
and normal tissues, immunohistochemistry staining of these
genes was performed using the Human Protein Atlas data-
base (http://www.proteinatlas.org).

3. Results

3.1. Identification of Hypoxia-Related DEGs in Pancreatic
Cancer and Analysis of their Function. We first screened

DEGs using the gene profile of pancreatic cancer from the
TCGA database based on the selection criteria, and 2615
DEGs were identified between pancreatic cancer and adja-
cent noncancerous tissues (Table S2, Figure 1(a)). We then
overlapped the DEGs with the hypoxia gene markers and
obtained 67 hypoxia-related DEGs in pancreatic cancer
(Figure 1(b)). Gene ontology enrichment and KEGG
analysis revealed that these genes were enriched in NADH
regeneration, canonical glycolysis, and glucose catabolism
to pyruvate (Figure 1(c)). The most enriched pathways
were the HIF-1 signaling pathway, glycolysis,
gluconeogenesis, and carbon metabolism (Figure 1(d)).

3.2. Construction and Validation of a Hypoxia-Related
Signature in Pancreatic Cancer. First, we screened the
hypoxia-related genes that associated with the prognosis of
pancreatic cancer using the univariate Cox regression by
analyzing the 67 hypoxia-related DEGs and identified three
DEGs (TES, LDHA, and ANXA2) conforming to the pro-
portional hazards assumption were significantly related to
the OS of patients with pancreatic cancer (P < 0:01). Then,
the coefficients of these three genes from multivariate Cox
regression were multiplied by their expression to establish a
prognostic signature, which is calculated as follows: risk score
= ð1:251 ∗ TES expressionÞ + ð1:398 ∗ LDHA expressionÞ + ð
0:373 ∗ANXA2 expressionÞ. Using the median risk score as
the cutoff value, the patients were divided into high- and low-
risk groups. The KM curve indicated that the OS of patients
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Figure 3: Prognostic value of hypoxia-related signature in pancreatic cancer. (a) Analysis of TCGA-PAAD dataset; (b) analysis of ICGC-
PACA dataset.

8 Disease Markers

http://119.3.41.228/dnmivd/index/
http://119.3.41.228/dnmivd/index/
http://www.proteinatlas.org


in the high-risk group was significantly shorter than that of the
low-risk group (P < 0:05). The area under the time-dependent
ROC curves (AUCs) for 1-, 3-, and 5-year OS were 0.683,
0.654, and 0.776, respectively (Figure 2(a)), indicating a good
predictive performance of this prognostic model.

To validate the prognostic value of the signature, the
pancreatic cancer datasets of ICGC-PACA and GSE57495
datasets were used. Similar to the above results, the results
from ICGC-PACA dataset revealed that, after dividing
patients into the high- and low-risk groups with a median
risk score as cutoff, the patients in the high-risk group had
poorer survival than those in the low-risk group (P = 0:004
). The AUCs of the prognostic model were 0.670, 0.628,

and 0.761 for the 1-, 3-, and 5- year survival times, respec-
tively (Figure 2(b)). In addition, the results from the
GSE57495 dataset indicated that the patients in the high-
risk group also had poorer survival than the low-risk group ð
P = 0:031Þ. The AUCs of the prognostic model were 0.684,
0.612, and 0.647 for the 1-, 3-, and 5- year survival times, respec-
tively (Figure 2(c)). Taken together, these results suggest a reli-
able and high prognostic value of the three-hypoxia-related
signature in pancreatic cancer.

3.3. Hypoxia-Related Signature Is Correlated with Clinical
Features in Pancreatic Cancer. To explore the clinical
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significance of the three hypoxia-related gene signatures in
pancreatic cancer, we analyzed the association of the risk
score of the signature with the clinical features in pancreatic
cancer from the TCGA-PAAD and ICGC-PACA datasets.
As shown in Table 1, the risk score of the signature was
related to the grade and T stage of pancreatic cancer
(P < 0:05), but not to the age, gender, N stage, and M stage
of patients in the TCGA dataset (P < 0:05). Similar to the
results of the TCGA dataset, the results from the ICGC data-
set indicated that the risk score of signatures was related to
the grade of cancer (P < 0:05), but not to age, gender, and
TNM stage (P > 0:05). To compare the prognostic value of
the gene signature with other clinical features in predicting
the prognosis, we analyzed the survival data from the TCGA
dataset and the ICGC dataset, and the results showed that
only the risk score of signatures was significantly associated
with the prognosis in patients with pancreatic cancer
(P < 0:05; Figure 3).

3.4. Immune Cells Associated with the Hypoxia-Related
Signature. The effect of hypoxia on the immune microenviron-
ment is crucial to the pathogenesis and progression of cancers
[20, 21]. To examine the association of the hypoxia signature
with the immune microenvironment in pancreatic cancer, we
estimated the immune infiltration of 22 immune cell types
using the CIBERSORT method in TCGA-PAAD, ICGC-
PACA, and GSE57495 datasets, respectively (Figure 4). We
depicted the landscape of 22 immune cell types in pancreatic

cancer by dividing them into the low- and high-risk groups
and found that the proportion of most immune cells was rela-
tively small in pancreatic cancer. Only the macrophages and T
cells accounted for a larger proportion than other immune cells
in the three datasets did.When comparing the risk score in each
immune cell, we found that the proportions of B cells, T cells,
and macrophages were significantly different between the high-
and low-risk groups (P < 0:05). Furthermore, when analyzing
the correlations between three hypoxia gene expression and
immune cell expression in pancreatic cancer, we found that
the correlations were varied among the three datasets (TCGA-
PAAD, ICGC-PACA, and GSE57495), but we also noted that
only the Macrophages M0 significantly correlated to the three
genes among the three datasets (P < 0:05, Table 2).

3.5. Effect of Methylation on the Expression of Hypoxia-
Related Genes. Since these three hypoxia-related genes were
differentially expressed in pancreatic cancer, and the methyla-
tion of DNA has been confirmed to affect the expression of
genes, we further explored the methylation levels of each gene.
Using the methylation data of pancreatic cancer from the
TCGA database, we found that only LDHA methylation was
significantly higher in pancreatic cancer tissues than in normal
pancreatic tissues (P = 0:029), while no significant differences
were found in TES and ANXA2 (P > 0:05). The correlation
analysis revealed that the mRNA expression of TES and LDHA
was negatively correlated with their methylation levels (P < 0:05
). Furthermore, we also found that the expression of TES and

Table 2: Correlation of ANXA2, LDHA and TES with immune cells.

TCGA-PAAD ICGC-PACA GSE57495
ANXA2 LDHA TES ANXA2 LDHA TES ANXA2 LDHA TES

B cells memory 0.387 0.461 0.642 0.038 0.017 0.516 0.471 0.825 0.201

B cells naive 0.103 0.192 0.744 0.060 0.042 0.982 0.139 0.296 0.171

Dendritic cells activated 0.553 0.029 0.452 0.125 0.068 0.733 0.028 0.136 0.085

Dendritic cells resting 0.489 0.486 0.034 0.471 0.774 0.612 0.051 0.041 0.004

Eosinophils 0.557 0.181 0.789 0.979 0.193 0.726 0.568 0.017 0.193

Macrophages M0 0.000 0.000 0.031 0.016 0.000 0.472 0.002 0.022 0.010

Macrophages M1 0.157 0.243 0.378 0.358 0.023 0.754 0.036 0.281 0.934

Macrophages M2 0.362 0.514 0.823 0.593 0.184 0.362 0.579 0.670 0.526

Mast cells activated 0.252 0.694 0.019 0.453 0.201 0.495 0.666 0.703 0.627

Mast cells resting 0.121 0.235 0.867 0.132 0.514 0.210 0.305 0.856 0.514

Monocytes 0.072 0.044 0.605 0.240 0.061 0.232 0.114 0.156 0.014

Neutrophils 0.294 0.008 0.252 0.696 0.228 0.848 0.162 0.025 0.083

NK cells activated 0.773 0.197 0.068 0.856 0.151 0.698 0.109 0.188 0.623

NK cells resting 0.901 0.204 0.712 0.053 0.357 0.988 0.237 0.209 0.352

Plasma cells 0.143 0.274 0.635 0.095 0.042 0.387 0.107 0.153 0.929

T cells CD4 memory activated 0.318 0.837 0.916 0.303 0.359 0.945 0.728 0.187 0.252

T cells CD4 memory resting 0.002 0.041 0.727 0.014 0.000 0.731 0.727 0.150 0.479

T cells CD4 naive 0.920 0.400 0.868 0.219 0.360 0.255 0.375 0.978 0.832

T cells CD8 0.029 0.001 0.070 0.000 0.000 0.347 0.209 0.136 0.888

T cells follicular helper 0.330 0.339 0.050 0.968 0.006 0.259 0.000 0.052 0.072

T cells gamma delta 0.237 0.579 0.329 0.022 0.020 0.214 0.016 0.022 0.001

T cells regulatory Tregs 0.007 0.140 0.926 0.005 0.904 0.916 0.617 0.641 0.497

PAAD: pancreatic cancer; PACA: pancreatic adenocarcinoma.
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LDHA was significantly associated with survival of pancreatic
cancer patients (Figure 5). These results uncovered the effect
of methylation on the regulation of hypoxia-related genes.

3.6. Validation of TES, LDHA, and ANXA2 Protein
Expression in Pancreatic Tissues. Based on the immunohis-
tochemical staining results of the pancreas from the Human
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Figure 5: (a) Expression of methylation in pancreatic cancer and normal tissues; (b) correlation between methylation levels and mRNA in
pancreatic cancer; (c) survival analysis of TES, LDHA, and ANXA2 in patients with pancreatic cancer.
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Protein Atlas database, we found that the protein expression
of TES, LDHA, and ANXA2 was not expressed in normal
pancreatic tissues, whereas medium and high expression
levels of these genes were observed in pancreatic cancer tis-
sues (Figure 6), which was in agreement with the mRNA
results from the TCGA-PAAD dataset. In summary, these
results indicated that the mRNA and protein expression
levels of the three genes were overexpressed in pancreatic
cancer.

3.7. GSEA Identified Pathways That Were Regulated by TES,
LDHA, and ANXA2. To examine the pathways that TES,
LDHA, and ANXA2 were involved, we performed GSEA
using the TCGA-PAAD dataset. As shown in Figure 7,
TES was mainly involved in EGFR tyrosine kinase inhibitor
resistance (P < 0:001), and LDHA and ANXA2 were both
involved in cytokine-cytokine receptor interaction pathways
(P < 0:001).

4. Discussion

In the present study, we identified three hypoxia-related
genes that are associated with the prognosis of patients
with pancreatic cancer using the gene profile and estab-
lished a prognostic signature using the above three genes.
The prognostic value of this signature was validated by
two independent cohorts, and the results further guarantee
the robustness of the prognostic value. Next, we examined
the association of the signature with the clinical features,
pathways, and the immune microenvironment. Finally, we
explored the effect of DNA methylation on gene expression,
and the pathways regulated by these three genes, and con-
firmed the protein expression of these genes. Considering
the widely varying prognostic outcomes of pancreatic cancer,
our results provide a relatively reliable signature to clarify

patients with different risks and prognoses, which greatly help
in the selection of personalized strategy and timely follow-up
for high-risk patients.

Hypoxia is a common feature that occurs during the
development of solid tumors. Evidence has shown hypoxia
to be associated with poor prognosis in patients with sev-
eral cancers. Targeting hypoxia might be an effective strat-
egy to overcome hypoxia-associated resistance in cancer
treatment [22, 23]. Currently, precisely predicting the
prognosis of patients with pancreatic cancer remains a
great challenge [24]. Since hypoxia plays critical roles in
the progression of pancreatic cancer, many studies have
employed hypoxia-related genes to predict the survival of
these patients, finding that these genes have a good prog-
nostic performance [11–13]. For example, HIF-1α has
been widely studied in many cancers, including pancreatic
cancer, and overexpression of HIF-1α is significantly asso-
ciated with poor prognosis in pancreatic cancer [25].
Wang et al. [26] found that overexpression of STIM1
mediated by HIF-1α promotes pancreatic cancer progres-
sion and STIM1 is a potential prognostic marker for
treatment.

In addition to the single hypoxia-related gene, the gene
signature of several genes has been studied in several cancers,
such as lung cancer [27] and gastric cancers [28], which could
achieve a more reliable prognostic value than the single one. In
the present study, we also analyzed the function and pathways
of hypoxia-related DEGs and identified three hypoxia-related
genes that were significantly associated with prognosis in pan-
creatic cancer patients. Our results demonstrated that the
three hypoxia-related gene signatures could effectively predict
the prognosis of patients with pancreatic cancer. Using two
independent cohorts, the prognostic value of the signature
was further validated. Interestingly, we found that this signa-
ture was associated only with the grade of pancreatic cancer,

Normal
tissues

TES LDHA ANXA2

Tumor
tissues

Figure 6: Representative immunohistochemistry staining of TES, LDHA, and ANXA2 in pancreatic normal tissues and cancer tissues
derived from the HPA database.
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but not with other clinical features. The reasons for this are
unknown, and further study is warranted.

The number and activity of immune cells in the TME are
crucial to tumor pathogenesis and progression. Several
immune cells have been reported to be associated with the
prognosis and treatment effect of pancreatic cancer [29].
Recently, the relationship of the TME has been studied. Cur-
rent evidence indicates that hypoxia could incapacitate
immune effector cells [30] and enhance the activity of immu-
nosuppressive cells [31], immune escape [32], and tumor cell
adaptations to hypoxia [33], subsequently facilitating cancer
cell invasion and metastasis. In recent years, immune cell
strategies, such as CAR-T technology, havemade great success
in hematological malignances; however, their effect in solid
tumors is unsatisfactory. This may be attributed to the fewer
immune cells that undergo infiltration into solid tumors [34,
35], especially pancreatic cancer. In this study, we found that
most of the 22 immune cells showed little infiltration in pan-
creatic cancer; only T cells and macrophages showed rela-
tively higher infiltration. Our results also found that only
macrophage M0 cells were significantly different between
high- and low-risk signatures, suggesting that macrophage
M0 cells might be closely related to the signature, but the
mechanism needs to be further investigated.

Among the three hypoxia-related genes, the TES gene
appeared to possess the properties of a tumor suppressor.
Mutation analysis of the coding TES exons in 21 human
tumor-derived cell lines revealed the presence of a frameshift
mutation in one allele in the breast cancer cell line ZR-75

[36], but its role in pancreatic cancer has not been reported.
Unlike TES, LDHA together with KLF4 [37] or c-Myc [38]
has been found to positively regulate aerobic glycolysis and
promote tumor progression in pancreatic cancer. A previous
study showed that FOXM1 promotes the Warburg effect and
pancreatic cancer progression via transactivation of LDHA
expression [39]. Regarding ANXA2, high expression of
ANXA2 is associated with DNA repair, metabolic alteration,
and worse survival in pancreatic cancer [40] Moreover, our
results also revealed their methylation levels with gene expres-
sion and patient survival, and the pathways they involved in,
which provided more information about their role in pancre-
atic cancer. However, no previous study has investigated the
role of these genes in cancers under hypoxia conditions.

There are a number of articles regarding a type of gene
that can be used as a prognostic marker for human
tumors. A recent study used a 4-gene-based hypoxia signa-
ture to predict the prognosis of pancreatic cancer patients
[41]. Our study used the used two larger pancreatic cancer
sets from ICGC and GEO database, which guaranteed the
robustness of our results. In addition, we analyzed the
DNA methylation with gene expression and validated the
gene expression at protein levels, which were not reported
previously, the results provide novel insight into the role
of these genes in the pathogenesis of pancreatic cancer.

However, several limitations of our study need to be
noted. First, although we used two external independent
cohorts to verify the results, the robustness needs to be
further validated in other large cohorts. Second, the
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Figure 7: GSEA identified the pathways that TES, LDHA, and ANXA2 involved. (a) Pathways of TES; (b) pathways of LDHA; and (c)
pathways of ANXA2.

14 Disease Markers



expression of hypoxia-related genes was tested by RNA
sequencing or microarray. Other methods, such as RT-PCR,
are warranted to test gene expression and verify our results.
Third, immune cell infiltration was tested using gene markers,
and flow cytometry should be used to determine the exact
number of immune cells. Fourth, due to lack of clinical sam-
ples, we could not verify the expression of the three hypoxia-
related genes in pancreatic cancer using clinical samples. Fifth,
hypoxia-related genes were not reported in their role in pan-
creatic cancer under hypoxia condition. Therefore, in vivo
and in vitro basic experiments of the three genes under hyp-
oxia condition are needed to further validate their role in path-
ogenesis and progression of pancreatic cancer. Therefore,
future study should be conducted to address the abovemen-
tioned limitations.

5. Conclusions

In conclusion, this study constructed a prognostic signature of
three hypoxia-related genes, which is significantly associated
with the prognosis of patients with pancreatic cancer. This sig-
nature could identify high infiltration of immune cells and has
a better prognostic value than other clinical features. Our
results provide potential translational value for the clinical
management of patients with pancreatic cancer. Our results
also shed light on the role of hypoxia-related genes in the path-
ogenesis and progression of pancreatic cancer and provide
potential therapeutic targets.
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