Skip to main content
. 2022 Mar 21;49(9):3098–3118. doi: 10.1007/s00259-022-05746-4

Table 1.

Summary of deep learning based low-dose to full-dose post-processing implementations reviewed in this work. Details from each

source are: the neural network architecture, dimensions of the input data, additional input information, tracer, anatomical region, activity and acquisition time, the dose or time reduction factor, and the evaluation metrics used to convey performance

Network architecture PET input dimensions Additional input data Tracers Anatomy Activity/Acq, time (MBq, min) Dose/time reduction factor Evaluation metrics
[73] CNN 2D Patch T1 18F-FDG Brain (203,12) 4 PSNR, nMSE
[74] Unet 2.5D None 18F-FDG Brain (370,40) 200 SSIM, PSNR, NRMSE
[75] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain (330, 20) 100 PSNR, RMSE, SSIM, QCS, rSUV, CD
[76] Unet 3D CT 18F-FDG Cardiac (300,10) 10, 100 LVEF, ESV, EDV
[77] Modified Unet 2.5D LAVA 18F-FDG Whole body

Site 1: (3 kg−1, 3.5 bed−1)

Site 2: (3 kg−1, 4 bed−1)

16 PSNR, NRMSE, SSIM, rSUV, CTD
[78] Unet 3D Patch None 18F-FDG Brain (5.18 kg−1, 5 bed−1) 7.5, 30 SNR, SSIM
[79] CNN (Dilating convolutional kernels) 2D None 18F-FDG Brain (166.5, 10) 10 MAE, PSNR, SSIM, rMAE
[80] Unet 3D None 18F-FDG Brain (205, 20) 20 PSNR, RMSE, SSIM, rSUV, QCS
[81] FFNN 2D Patch None Sim 82Rb, 82Rb Cardiac (N/A, 7) 7, 3.5, 1.5 NMSE, ROI Contrast
[82] Unet 3D Patch None 18F-FDG Whole body (225.3, 10) 6.7, 9.1, 13.3, 17.5, 26.3, 66.7, 125, 250, 500 Lesion SUV, QCS, CTD
[83] Modified Unet 2D Sim T1 Sim 18F-FDG Brain (N/A, N/A) N/A MSE, Lesion CR
[84] CNN 3D T1 18F-FDG Brain (N/A, N/A) 10, 100 NRMSE, SUV bias
[85] cycleGAN 2D Patch None 18F-FDG Brain (218.3, 20) 125 PSNR, NRMSE, SSIM, SUV bias
[86] GAN 2D None 18F-FBB Brain (300, 20) 10 PSNR, NRMSE, SSIM, rSUV, QCS, CD
[87] GAN 3D Patch None 18F-FDG Whole body (5.55 kg−1, 20) 2 SSIM, PSNR
[88] cycleGAN 3D Patch None 18F-FDG Whole body

BMI 18.5: (370, 1.5 bed−1)

18.5 BMI 25: (370, 2 bed−1)

25 BMI 30: (370, 2.5 bed−1)

30 BMI: (444, 2.5 bed−1)

8 MAE, NRMSE, rPSNR
[89] cycleGAN 2D Patch None 18F-FDG Whole Body (370, 5) 3.3, 10 PSNR, NRMSE SUV bias
[90] GAN 2D Patch None 18F-FDG Whole body (N/A, N/A) 10 PSNR, RMSE, SSIM Lesion SUV
[91] GAN 2.5D None 18F-FBB Brain (330, 20) 100 PSNR, RMSE, SSIM, FBM, EBM, CD
[92] GAN 3D Patch None 18F-FDG Brain (203, 12) 4 PSNR, nMSE, rSUV
[93] GAN 3D Patch T1, DT 18F-FDG Brain (203, 12) 4 PSNR, SSIM, rCR
[94] GAN 3D Patch None 18F-FDG Whole body (5.55 kg−1, 20) 5 NRMSE, PSNR, RFSIM, VIF
[95] CAE, Unet, GAN 2D, 2.5D, 3D None 18F-FDG Thoracic (370, 20) 10 PSNR, nMSE, Lesion SUV bias
[96] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain

LD: (8, 30)

FD: (334, 20)

42 PSNR, RMSE, SSIM rSUV, QCS, CD
[97] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain

Site 1: (330, 20)

Site 2: (283, 20)

Site 1: 100

Site 2: 20

PSNR, RMSE, SSIM rSUV, QCS, CD
[98] Unet 3D Patch None 18F-FDG, 18F-FMISO, 68Ga-Dotatate Whole body

FDG: (340, 20)

FMISO: (181, 50)

DOTATATE: (130, 21.6)

10 PSNR, NRMSE, Lesion SUV bias
[99] Residual Unet 2.5D None Sim 18F-FDG, 18F-FDG Brain (185, 70) 4 CR
[100] Unet 2.5D None 18F-FDG Whole body

Site 1: (481, 3 bed−1)

Site 2: (400, 3 bed−1)

Site 3: (429, 3 bed−1)

4 QCS, CTD, rSUV
[101] Residual Unet 3D None 18F-FDG Whole body (391, 2.45 bed−1) 1.33, 2, 4 CTD, rSUV
[102] Modified Unet 2.5D T1, T2 18F-FDG Brain (230, 30) 180 PSNR, SSIM

DT diffusion tensor, PSNR peak signal-to-noise ratio, RMSE root mean square error, NRMSE normalised root mean square error, MSE mean square error, MAE mean absolute error, rSUV regional SUV, CR contrast recovery, SSIM structural similarity index, QCS qualitative clinical score, CD clinical diagnosis, CTD clinical tumour detectability, LVEF left ventricular ejection fraction, EDV end diastolic volume, ESV end systolic volume, LAVA liver acquisition volume acceleration, RFSIM Riesz-transform based feature similarity, VIF visual information fidelity, Sim simulated data