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Abstract
There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, tel-
omeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular 
processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to 
allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs 
has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding 
protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution 
structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if 
in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, 
providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific 
interactions where available.
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Introduction

G4-quadruplexes (G4Q) are guanine-rich secondary nucleic 
acid structures that form from stacks of the planar orien-
tation of four guanosine residues held together by Hoogs-
teen bonds and stabilized by metal ions, typically K + ions 
(Fig. 1). The nucleic acid sequence that has the potential to 
form these structures is typically described in the formula 
GxNyGxNyGxNyGx, where x ≥ 2 guanosine residues and y 
is 1–7 nucleotides (N). They can occur in both RNA and 
DNA, and intramolecularly from a single strand of nucleic 
acid, or with multiple, typically 2 or 4 strands. Arrange-
ments can vary in the nature of their stacking, forming par-
allel, antiparallel, and various hybrid formations, and while 
DNA G4Qs in nature can display a variety of these forms, 
RNA structures tend to be largely parallel (Zhang et al. 

2010). Throughout the human genome, there are estimates 
of > 700,000 potential G4Q sequences (Hansel-Hertsch 
et al. 2017). Interestingly, these sequences show a high pre-
dominance in promoter regions, telomeres, and untranslated 
regions in mRNA (Hansel-Hertsch et al. 2017; Huppert and 
Balasubramanian 2005; Rhodes and Lipps 2015; Rigo et al. 
2017). They are also found in the promoter regions and 
untranslated terminal regions (UTRs) of viruses (Fleming 
et al. 2016; Frasson et al. 2020; Lavezzo et al. 2018; Meier-
Stephenson et al. 2021; Metifiot et al. 2014; Perrone et al. 
2017). Their cross-species presence at these key regulation 
areas suggests a likely functional role in the DNA/RNA pro-
cessing. Indeed, a growing body of evidence clearly links 
key cellular functions with these G4Q structures, in includ-
ing transcription, translation, immunoglobulin class switch, 
and genome stabilization (Da Ros et al. 2021; Dalloul et al. 
2018; Lerner et al. 2020; Siddiqui-Jain et al. 2002b; Wolfe 
et al. 2014). G4Qs have therefore become of great inter-
est to the drug development realm for being able to target 
the respective downstream processes directed by these 
G4Qs (Asamitsu et al. 2019; Balasubramanian et al. 2011; 
McLuckie et al. 2013; Ohnmacht et al. 2015; Tauchi et al. 
2006; Xu et al. 2017).

Current G4Q small-molecule binders and dyes appear 
to either sit atop the G4Q barrel or intercalate with the 
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common G4Q core (Amato et al. 2018, 2017; Giancola 
and Pagano 2013; Phan et al. 2005; Sun et al. 2019). While 
varying affinities have been found for such molecules, there 
remains the challenge of improving selectivity to minimize 
off-target effects in the host cell. The very nature and selec-
tivity of cellular proteins that interact with G4Qs imply that 
selectivity must be attainable. Determining the features of 
G4Q-binding proteins will be helpful in eliciting the details 
necessary to rationally design selective binders.

This review aims to assess the binding interactions of 
known G4-binding proteins (G4BPs) with their respective 
G4-quadruplexes, highlighting the commonalities in their 
interaction and subsequently features that would appear to 
make them selective.

G4‑quadruplexes (G4Qs): form and stability

G4Q formation kinetics and stability remain a topic of much 
research (Grün and Schwalbe 2022; Laouer et al. 2021; 
Lemkul 2019; Nguyen et al. 2020; Robinson et al. 2021; 
Rocca et al. 2020; Spiegel et al. 2020; Wu et al. 2020). While 
readily formed in vitro with temperature manipulations, the 
conditions under which G4Qs form in vivo are incompletely 
understood. The conformational energy landscapes are pre-
sumed to have many potential folding intermediates with 
favorable minima en route to the quadruplex form (Grün 
and Schwalbe 2022; Rocca et al. 2020). Once formed, the 
thermodynamic stability of the structure (of an intramolecu-
lar three-tetrad G4Q, for this example) is approximately as 
stable as the helical duplex DNA of similar length (Lane 
et al. 2008). The conformational forms a G4Q can assume 
(Fig. 1B) have been shown to influence thermodynamic sta-
bility, and while predominant forms are likely for certain 
G-rich sequences, there are also examples of mixed forms 

occurring from the same sequence (Chen and Yang 2012; 
Hatzakis et al. 2010; Lim et al. 2010). Even a shift along a 
longer G-rich stretch that changes only loop length can also 
influence G4Q stability (Hatzakis et al. 2010). Collectively, 
this suggests on ongoing flux and equilibrium among forms, 
rather than a fixed state. In comparing RNA and DNA G4Qs, 
there appears to be slightly greater thermodynamic stability 
of the RNA G4Q versus its DNA counterpart, likely owing 
to the additional hydrogen-bonding network enabled by the 
ribose hydroxyl groups, but always within the same order 
of magnitude (Arora and Maiti 2009; Joachimi et al. 2009; 
Zhang et al. 2010).

Formation and degradation of G4Qs have been shown 
in vitro to be dependent on a number of intrinsic factors 
including loop length, leading nucleic acids and incorpo-
rated ions (Bhattacharyya et al. 2016; Chen et al. 2021; Gué-
din et al. 2010; Hazel et al. 2004; Piazza et al. 2015). While 
it is possible that in vivo G4Qs are influenced by the same 
factors, there is the of course the additional interplay with 
many cellular proteins, namely, G4-binding proteins whose 
roles and influences are still being defined.

G4‑binding proteins (G4BPs)

There are several ways in which to categorize G4BP: one 
of which is by their influence on the G4s with which they 
interact, i.e., stabilizing versus destabilizing, but while there 
are a plethora of studies describing G4Q-G4BP interactions, 
the functional verdict remains to be determined for many 
pairings (Sun et al. 2019). Thus, this review has been organ-
ized by sites of binding, namely, G4BPs targeting telomeric, 
promoter, or RNA G4Qs. While the action of a G4BP may 
again be varied among groupings, the nature of the initial 
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Fig. 1   Schematic of G4-quadruplexes (G4Qs), showing the G-tetrad’s 
planar orientation (A), formed by Hoogsteen bonds and stabilized 
by a metal ion, typically potassium (K +), which can stack upon one 
another in various orientations (B). These structures interact with var-

ious cellular proteins, which may bind in a number of different man-
ners (C), including top-stacking (i), groove-binding (ii), and loop-
binding (iii)
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physical interactions is presumed to have commonalities and 
is so described where able.

A preliminary note on G4BP‑G4Q‑binding modes

There are limited high-resolution structures of G4BPs inter-
acting with G4Qs available, but some generalizations appear 
to be evolving, as will hopefully become apparent in this 
review. To highlight these binding modes up front for pur-
poses of providing examples below, binding can occur at the 
following sites: (i) top-stacking with the upper G-quartets 
(i.e., atop the G4Q “barrel”), (ii) groove-binding (i.e., between 
the spaces of the loops), (iii) loop-binding (i.e., binding with 
the protruding loop nucleotides alone), or a combination of 
those modes (Fig. 1C). While only one to two concrete exam-
ples exist for each, others may become apparent as further 
biophysical and structural data become available supporting 
a particular mode. It is also possible that similar protein func-
tionalities may support a particular binding mode (i.e., heli-
cases may act through a stabilizing top-stacking interaction).

G4BPs targeting telomeres

One of the first G4Q-forming sequences identified was in the 
human telomere (Wang and Patel 1993). Telomeres are the 
terminal segments of chromosomal DNA and have a highly 
G-rich 3′-overhang region containing hexameric repeats of 
TTA​GGG​ (Brázda et al. 2014; O'Sullivan and Karlseder 
2010). Functionally, telomeres play a critical role in genome 
stability, degrading with each cycle of replication. They are 
maintained by a number of proteins to ensure the process 
occurs in a well-regulated manner. Many of these proteins 
have been identified as G4Q-binding proteins, acting on the 
telomeric G4Qs in various ways, anchoring, degrading, sta-
bilizing (Brázda et al. 2014). Some of these proteins known 
to bind the G4Qs in this region are Protection of telom-
eres 1 (POT1) protein, Replication protein A (RPA), human 
CTC1–STN1–TEN1 (CST), Breast cancer type 1 suscepti-
bility protein (BRCA1), heterogeneous nuclear ribonucleo-
protein A1 (hnRNP A1), Bloom and Werner’s syndrome 
proteins, and Preimplantation factor-1 (Pif1).

Protection of telomeres 1 (POT1)

POT1 protein is one of the six members of the telomere 
shelterin complex, which collectively prevent the telo-
meric overhang from being recognized as chromosomal 
damage (O'Sullivan and Karlseder 2010). Studies using 
single-molecule fluorescence resonance energy transfer 
(smFRET) were able to show that a monomer of POT1 binds 
the G4Q specifically, approaching it from the 3′-5′ direc-
tion, initiating unfolding of the G4Q (Hwang et al. 2012). 

It is subsequently followed by binding of a second mono-
mer to complete the process in four sequential steps with 
the two monomers. Upon binding of the enhancer protein, 
tripeptidyl-peptidase 1 (TPP1), the POT1-TPP1 complex 
is thought to promote a sliding activity that unfolds then 
refolds the G-quadruplex(Hwang et al. 2012). Considered 
analogous to the POT1-TPP1 complex is the telomeric end 
binding protein in Oxytricha nova (Xin et al. 2007), and 
its NMR-derived structure is highlighted in Fig. 2 (Horvath 
and Schultz 2001). The crystal structure contains both an 
unwound strand of telomeric DNA and an intact G4Q at the 
border of the crystals’ unit cell. The G4Q, as the authors also 
highlight, appears to be interacting only minimally and may 
actually be an artifact of crystal packing, but several resi-
dues do appear to have the potential, including Lys105 and 
Asn139 interacting with the phosphate backbone of G4Q 
while Tyr142 reaches into the groove to interact with several 
of the guanosines (Fig. 2B) (Horvath and Schultz 2001). 
Interestingly, the POT1 G4Q binding has been shown to be 
selective to antiparallel G4Qs, while parallel G4Qs are unaf-
fected (Ray et al. 2014). If in fact groove-binding is its main 
mode of interaction with a G4Q, this could be supported 
by components of steric hindrance among the various G4Q 
folding forms (examples in Fig. 1).

Replication protein A (RPA)

RPA protein is the most abundant single-stranded DNA 
(ssDNA)–binding protein in human cells (Prakash and Borg-
stahl 2012). It is a trimeric protein complex with multiple 
DNA-binding domains, mainly in its first subunit, and is 
heavily involved in DNA replication, repair, and recombina-
tion (Oakley and Patrick 2010; Prakash and Borgstahl 2012; 
Qureshi et al. 2012). Similar to POT1, RPA acts to unfold 
telomeric G4Qs. Unlike POT1, it approaches from the 5′-3′ 
direction and is also able to unfold both parallel and antipar-
allel G4Qs (Ray et al. 2014). Crystal structures exist for the 
ssDNA complex, but not yet with the G4Q (Bochkarev et al. 
1997; Bochkareva et al. 2001, 2002).

Human CST (CTC1–STN1–TEN1)

Human CST is a trimeric complex that plays a number of 
roles that aid in replication, largely at the replication fork, 
but also has critical actions at the telomeres, ensuring their 
stability (Bhattacharjee et al. 2017). CST binds telomeric 
G4Qs, unwinds them, and facilitates the production of the 
complementary C-rich strand in a process known as C-strand 
fill-in (Bhattacharjee et al. 2017). More specifically, the 
CTC1 is the subunit containing the DNA-binding domain, 
whereby the TAGG of the repeats is found to be tightly asso-
ciated with the protein in its unwound form, per cryo-EM 
studies (Lim et al. 2020).
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Breast cancer type 1 susceptibility protein (BRCA1)

BRCA1 is a tumor suppressor protein, whereby functional 
dysregulation from mutations confer a high risk of breast 
and ovarian cancers (Ford et al. 1994). The exact mecha-
nism of tumor suppression is not fully known, but is heavily 
involved in DNA repair, cell cycle regulation, and, more 
recently, regulation of telomeres (Ballal et al. 2009). The lat-
ter function has since been supplemented with in vitro data 
showing binding to G4Qs (Brázda et al. 2016). Thus, there 
is also a good case for BRCA1 as a direct G4BP; however, 
further structural data describing this interaction is needed.

Heterogeneous nuclear ribonucleoprotein A1 
(hnRNP A1) and Unwinding Protein 1 (UP1)

hnRNP A1 is a ribonucleoprotein involved in RNA trans-
port, alternative splicing, microRNA biogenesis, and tran-
scriptional control (Hudson et al. 2014). The protein has 
two nucleic acid–binding sites capable of interacting with 
RNA or DNA. UP1 is the proteolytic cleavage product of 
hnRNP A1 that retains those two binding domains. These 
two proteins are able to unfold G4Qs to facilitate telomer-
ase binding at the telomeres to enable telomere lengthening 
(Hudson et al. 2014). With focus on the UP1, mutational 
studies on the hexameric repeat region shows a consensus 
binding sequence of d(nYAGn), where Y is either a thymine 
or cytosine residue (Ding et al. 1999; Myers et al. 2003). 

Crystal structures have been solved of UP1 bound to RNA 
(Morgan et al. 2015) and ssDNA (Ding et al. 1999), both 
highlighting the dimerization of the UP1 molecules creat-
ing linear channels for the nucleic acids in an antiparallel 
fashion. How the protein initially binds the telomeric G4Q 
is not yet clear, but in vitro studies show the UP1 is able 
to degrade G4Qs and its affinity for single stranded linear 
nucleic acid far outweighs the structured form, likely adding 
an energy-favorable driver to its unfolding.

The hnRNP is also able to bind and unfold G4Qs in pro-
moter regions, including the KRAS promoter G4Q and the 
TRA2β promoter. The KRAS gene is central to cell-growth 
signaling pathways, and the presence of the G4Q in its pro-
moter acts as a repressor (Xodo et al. 2008). The hnRNP 
binding and unfolding enable the transcription to resume, 
which in the case of some cancers, like pancreatic adeno-
carcinoma, has detrimental effects (Xodo et al. 2008). Inter-
estingly, researchers have developed a potential therapeutic 
G4Q decoys to bind this and other G4BPs that may act on 
this G4Q (Cogoi et al. 2009; Podbevšek and Plavec 2016). 
Another G4Q promoter target of hnRNP A1 is the TRA2β4 
exon 2, regulating alternative splicing of exon 2, whereby 
G4Q binding and subsequent unfolding facilitates inclusion 
of the exon 2 (Nishikawa et al. 2019). Binding and func-
tional studies are available on these, but there are no detailed 
interaction studies as of yet.

Regarding hnRNP’s role in binding RNA G4Qs, 
hnRNP A1 was shown to be involved in mRNA transport, 

Fig. 2   Example of groove-
binding mode—telomeric end-
binding protein of Oxytricha 
nova (OnTEBP), a protozoan 
analogue of human POT1 
protein (PDB 1JB7) broad-view 
(A) and close-up (B), show-
ing the Tyr142 in proximity to 
several of the G4Q guanosines 
and residues Lys105 and 
Asn139 nearer to the phosphate 
backbone facilitating H-bonding 
opportunities
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chaperoning the RNA into the cytoplasm and present near 
translation (von Hacht et al. 2014). This information was 
determined from pull-down studies using the matrix metal-
loproteinase MT3-MMP (also known as MMP16) and the 
actin-related protein 2 (ARPC2) and confirmed with func-
tional and mutational studies (Serikawa et al. 2018; von 
Hacht et al. 2014).

Bloom protein (BLM)

BLM is a highly conserved RecQ-like helicase that has func-
tions in DNA repair and telomeric stability. The helicase 
acts in a 3′-5′ direction, functioning on the leading strand of 
replication (Sauer and Paeschke 2017). Unfolding is medi-
ated by two domains, the RecQ C-terminal domain (RQC) 
and HRDC, which bind and unfold in sequential steps. The 
process is not necessarily direct, and there can be refolding 
and unfolding transitions throughout the process (Chatterjee 
et al. 2014). Unfolding of the G4Q appears to be made easier 
with a longer trailing segment, at least 6–8-nt long on the 
3′ end, likely implying binding, or alternatively favorable 
positioning of the BLM helicase (Budhathoki et al. 2014). 
It has also been shown that unlike many other helicases, the 
BLM does not appear to need adenosine triphosphate (ATP) 
to facilitate its unfolding (Budhathoki et al. 2014).

Werner’s syndrome protein (WRN)

WRN is another RecQ-like helicase and a counterpart of 
BLM. It exerts its helicase function on the lagging strand of 
replication (Sauer and Paeschke 2017). Binding and unwind-
ing are similarly facilitated by the RQC and HDRC domains, 
which are conserved throughout this family of helicases 
(Chatterjee et al. 2014; Lerner and Sale 2019).

Preimplantation factor‑1 (Pif1)

Pif1 is a highly conserved helicase across many domains 
of life and has roles in maintaining genome stability (Pae-
schke et al. 2013; Zhou et al. 2014). It acts to unwind G4Qs, 
including telomeric G4Qs, moving in a 5′-3′ direction. 
There has been some conflicting evidence in the literature 
regarding the nature of this enzyme’s helicase functioning, 
including its ability to rapidly unfold the G4Q but not the 
dsDNA beyond or that unwinding is slow, but that it does 
both (Byrd and Raney 2015; Hou et al. 2015; Zhou et al. 
2014). A fairly recent study highlights the importance of 
experimental conditions and shows that while the enzyme 
is ATP-dependent, some G4Q unwinding can occur in the 
absence of ATP, perhaps due to transient folding and unfold-
ing of a less stable G4Q (Byrd et al. 2018). This allows 
the Pif1 to bind the ssDNA can be trapped by the helicase, 
creating a longer ssDNA overhang that allows more Pif1 

enzymes to bind. After a multistep G4Q unwinding, Pif1 
is able to proceed with downstream dsDNA unwinding, the 
rate of which is dependent on the rate of the G4Q unfolding 
(Byrd et al. 2018; Zhou et al. 2014). There are crystal struc-
tures available for Pif1 bound to short DNA oligomers and to 
dsDNA (Su et al. 2019), but none yet incorporating a G4Q.

G4BPs targeting promoters

Gene promoter regions are another site of G4Q formation 
and subsequent site of G4Q-binding protein recruitment. 
The most well-studied are those preceding oncogenes, in 
particular the c-MYC promoter. The c-MYC promoter and 
related oncogene is considered one of the master regula-
tors in cancer biogenesis where overexpression upregulates 
many aspects of cellular growth and metabolism (Chen et al. 
2018a; Dang 2012; Miller et al. 2012). Unsurprisingly, there 
are a number of proteins that bind and regulate this pro-
moter, described in various reviews (Dang 2012; Miller 
et al. 2012; Wang et al. 2021). Those known specifically to 
bind G4Qs will be highlighted here, recognizing that this 
list may not be exhaustive. In addition to the c-MYC pro-
moter, many other promoters containing G4Qs have been 
identified, some acted upon by the same G4BPs highlighted 
above. Evidence for the functional roles of G4Qs in these 
sites is evolving alongside the structural data, as our under-
standing increases regarding their roles in human diseases. 
The G4BPs described here are the DEAH box protein 36 
(DHX36), non-metastatic factor (NM23-H2), nucleolin, 
MYC-associated zinc finger (MAZ), Specificity protein 1 
(Sp1), Yin Yang 1 (YY1), poly (ADP-ribose) polymerase 1 
(PARP1), and the transcriptional helicases, and xeroderma 
pigmentosum type B and D (XPB and XPD).

D‑E‑A‑H box protein 36 (DHX36; also known as G4 
resolvase 1 (G4R1), MLE‑like protein 1 (MLEL1), 
and RNA helicase associated with AU‑rich elements 
(RHAU))

DHX36 is a helicase belonging to the DEAH box family 
of enzymes and has been shown to bind and unwind both 
DNA- and RNA-G4Qs (Creacy et al. 2008; Lattmann et al. 
2010). Its most well-characterized roles relating to G4Qs 
are in resolving the G4Qs in RNA, hence one of its aliases; 
however, there are also studies describing their role in DNA 
including in the telomeres (Booy et al. 2012; Lattmann et al. 
2011; Sexton and Collins 2011) and in promoter regions 
(Huang et al. 2012).

A co-crystal structure of bovine DHX36 with the c-MYC 
promoter region G4Q provides insight into this interaction, 
supporting prior structural data and revealing new infor-
mation about its binding mode and action (Fig. 3A; PDB 
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5VHE) (Chen et al. 2018b). First, the helicase is comprised 
of two RecA-like domains that together create a small posi-
tively charged channel big enough to accommodate a single 
strand of DNA. A further C-terminal domain consists of the 
oligosaccharide-binding domain (OB) and the G4Q-binding 
helix, or DHX36-specific motif (DSM). The DSM helix sits 
atop the G4Q’s 5′ face, while the OB domain contacts both 
the G4Q side and trailing single-stranded 3′-terminal DNA. 
Independent crystallography and NMR studies show that 
the quadruplex forms a stable, 3-tetrad structure in solu-
tion (Fig. 3D) (Ambrus et al. 2005; Heddi et al. 2020; Phan 
et al. 2004). In the co-crystal structure, however, the 3′-most 
guanosine trio has been “tugged” downward, resulting in the 
upper tetrad being formed with neighboring thymine and 
adenosine as the DNA strand is pulled into the cavity—a 
description and schematic best viewed in the original paper 
(Chen et al. 2018b). This allows one to envision the further 
collapse of the G4Q as more of the nucleotides are pulled 
through, linearizing the structure.

Focusing on the DSM helix and G4Q interaction in more 
detail (Fig. 3B), the G4Q-facing residues of the DSM create 

a hydrophobic surface with its Ile65, Trp68, Tyr69, and 
Ala70, enabling stacking with the bases of the upper G4Q 
tetrad. This binding mode is akin to many small-molecule 
G4Q binders that have been studied (Collie et al. 2012; 
Medeiros-Silva et al. 2017; Nielsen et al. 2014; Ohnmacht 
et al. 2015; Read et al. 2001). An arginine (Arg63) of the 
helix reaches over to bind one of the phosphate-backbone 
oxygen. Studies looking at the dissociation constants, Kd, of 
full-length versus truncated DHX36 in combination with the 
G4Q report Kd values of < 10 pM and 310 nM, respectively 
(Booy et al. 2012; Giri et al. 2011; Lattmann et al. 2010). 
This suggests that at the very least the DSM alone is not 
the sole contributor to the binding. Indeed, as the co-crystal 
structure highlights, the OB domain is also involved in this 
interaction. It contains two loops—one interacts with the 
sugar phosphate backbone of the G4Q, forming extensive 
hydrogen bonds (largely with residues Lys860, Asn851, 
Gly853 and Lys 855; Fig. 3C), and the second loop interacts 
with the trailing 3′-strand (Chen et al. 2018b). One question 
that arises is whether the helicase “processes” all single-
stranded DNA in this manner or whether it uses the G4Q as a 

Fig. 3   Example of top-stacking—DHX36 with c-MYC promoter 
region G4Q. A High-level orientation of the structural arrangement 
showing the DSM helix sitting atop the G4Q, the lateral OB domain 
loop contacting the G4Q from the side, while the G4Q is pulled 
through the RecA-like domains (see text; PDB 5VHE); B DSM helix 
showing the Tyr69 oriented parallel with an upper guanosine from the 
tetrad facilitating π-π stacking. Other hydrophobic residues make up 

the remainder of the downward facing helical residues (Ile65, Trp68, 
and Ala70); C OB domain showing the proximity for the extensive 
hydrogen-bonding network between the phosphate backbone of the 
G4Q and Lys860, Asn851, Gly853, and Lys 855. D Independent 
study of the DHX36 DSM domain with c-MYC showing similar top-
stacking binding mode (PDB 6Q6R)
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recognition signal to then attach to the strand and unwind it. 
Certainly, the Kd of the interaction where a G4Q that is being 
pulled through a full-length DHX36 helicase will likely be 
much tighter than that of the helix and G4Q in solution, but 
it does not give us the initial binding drive, but rather an 
averaged of what is likely a favorable overall action.

In another study, DHX36 is shown to interact with the 
Yin Yang 1 (YY1) gene, a gene that encodes for a multi-
functional protein involved in tumorigenesis (Gordon et al. 
2006). A G4Q exists in both the promoter of the YY1 gene 
and in the 5′-UTR of the mRNA it produces (Huang et al. 
2012). Interestingly in their study, DHX36 was found to bind 
only to the DNA G4Q and not the RNA, despite both being 
parallel quadruplexes. This could imply a selectivity that is 
based on the deoxyribose chain. An alternative interpreta-
tion could be the need for trailing 3′-tail to facilitate binding 
of which was not included in the comparator RNA in this 
study (Huang et al. 2012). Other studies have also shown 
DHX36 to selectively bind parallel DNA G4Qs (Heddi et al. 
2020; Tippana et al. 2019, 2016), but also that the single-
stranded tail plays an important role in that binding (Yangy-
uoru et al. 2018). This, coupled with the co-crystal structure 
above showing OB domain binding to the ssDNA, further 
supports this (Fig. 3C).

A more recent and important study involving DHX36 
and synthetic G4Qs nicely employs small-molecule Förster 
resonance energy transfer (smFRET) and computational 
modeling to describe the process of G4Q unwinding in both 
DNA and RNA, which has distinct differences (Tippana 
et al. 2019). Again, while the DHX36 binding to G4Q DNA 
facilitates unfolding independent of ATP, in a presumed 
“tugging” and G4Q rearrangement, DHX36 binding to RNA 
G4Qs enable a stably unfolded state, which is followed by 
repetitive cycling of refolding in an ATP-dependent manner. 
The work was also complemented by mutational studies that 
show rapid dissociation of the complex with ATP hydrolysis 
when the DSM helix was mutated. This was in contrast to 
mutations in the sites responsible for binding the 3′-trail-
ing strand (the RecA2 and OB domains), which resulted 
in erratic DHX36 motions that was unable to facilitate the 
G4Q refolding, but that maintained binding (Tippana et al. 
2019). Another interesting distinction the authors also note 
with one of their mutations, Y69A in the DSM helix, is that 
the DNA G4Q readily washed off in one of its processing 
steps, while the same mutant RNA G4Q held fast (Tippana 
et al. 2019). This could imply additional stabilizing bonds 
with the hydroxyl groups in backbone of the RNA, or at the 
very least, an altered binding mode.

Non‑metastatic factor (NM23‑H2)

Non-metastatic factor (NM23-H2; nucleoside diphosphate 
kinase) is a transcriptional factor that binds the nuclease 

hypersensitive element (NHE) in the c-MYC promoter that 
acts as a transcriptional silencer (Sengupta et al. 2019). 
Using chromatin immunoprecipitation, reporter assays, 
and FRET studies, NM23-H2 has been shown to bind and 
resolve this G4Q enabling transcription to proceed (Thakur 
et al. 2009). Importantly, NM23-H2 is also one of several 
G4BPs that contains an arginine-glycine-glycine (RGG) 
motif that is presumed to play a role in G4Q recognition 
and/or binding (see “Commonalities amongst G4BPs linked 
to binding modes”).

Nucleolin

Nucleolin is a multifunctional phosphoprotein found 
throughout the cell, but in high abundance in the nucleolus, 
for which it is named. Its many roles include ribosomal bio-
genesis, chromatin remodeling, transcription, and apoptosis 
(Ginisty et al. 1999; Mongelard and Bouvet 2007; Tajrishi 
et al. 2011). It is also well-known to bind G4Qs, includ-
ing the c-MYC promoter G4Q, where binding, unlike with 
NM23-H2, stabilizes the G4Q leading to reduced transcrip-
tion (González et al. 2009). Nucleolin binding has been 
shown in vitro with the G4Qs of the bcl-2, hTERT, VEGF, 
RET, PDGF-A, and c-kit promoters but the functional sig-
nificance of these interactions has not yet been elucidated 
(González et al. 2009; Lago et al. 2017). It has also been 
shown to bind the hexanucleotide repeat expansion (HRE) 
of the C9orf72 gene that is linked to the neurodegenerative 
diseases, amyotrophic lateral sclerosis (ALS), and fronto-
temporal dementia (FTD) (Haeusler et al. 2014). Where 
normally the nucleolin binds these repeats (typically 2–8 
repeats of GGG​GCC​), in those affected, repeats can number 
in the thousands resulting in nucleolar dysfunction (Haeusler 
et al. 2014).

Regarding the nature of its binding, nucleolin has been 
shown to have a preference for parallel G4Qs over anti-par-
allel ones (González et al. 2009). Further insights into its 
binding with the c-MYC G4Q are gained from the studies 
looking at loop length mutational analysis (González et al. 
2009; Lago et al. 2017). Here, a series of G4Qs with vary-
ing loop lengths reveal that while the shorter loop lengths 
create a more stable G4Q, nucleolin prefers to bind G4Qs 
with somewhat lower stability, and in particular those with 
at least one long loop (3–7 nt) (Lago et al. 2017).

Nucleolin, like NM23-H2, is also an RGG-motif-contain-
ing G4BP. Nucleolin was actually the first protein to have 
this identified whereby a repeating RGG motif (9 repeats) 
is found in the protein’s C-terminal region (Hanakahi et al. 
1999). There is also an additional RNA recognition motif 
(RRM) upstream of this repeating unit that was known to 
bind single-stranded DNA, but also more recently shown to 
independently bind G4Q DNA (Hanakahi et al. 1997, 1999). 
Together, the two regions within nucleolin are hypothesized 
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to be able to help fold and stabilize the G4Q. The existence 
of this common RGG motif in other enzymes known to bind 
G4Qs, namely, hnRNP A1 (Ding et al. 1999) and NM23-H2 
(Dexheimer et al. 2009), has laid highlight to these motifs as 
recognition domains; however, the specifics of their inter-
action has yet to be fully elucidated (see “Commonalities 
amongst G4BPs linked to binding modes”).

MYC‑associated zinc finger (MAZ)

MAZ is a six zinc finger protein essential to transcription 
and chromosomal organization (Xiao et  al. 2021). For 
each of these functions, MAZ binds G-rich, G4Q forming 
regions. In the C-MYC promoter, a G4Q represses transcrip-
tion and can be unwound by the MAZ protein to derepress 
it (Siddiqui-Jain et al. 2002a). Similarly, in the HRAS pro-
moter, there are two upstream quadruplexes that maintain 
transcriptional repression, which when bound and unwound 
by MAZ are able to proceed with their downstream process-
ing (Cogoi et al. 2014; Membrino et al. 2011). MAZ can 
also bind and unwind the Pur-1 G4Q of the IDDM2 locus 
to enable transcription (Lew et al. 2000). Interestingly, this 
G4Q-unwinding action of MAZ is unique thus far to this 
zinc finger protein, as other zinc finger proteins do not yet 
claim this action against G4Qs.

Furthermore, MAZ has also been shown to bind the 
upstream G4Q of the KRAS promoter enabling transcrip-
tion. This insight has led to unique approach of developing 
G4Q-decoys for the zinc finger in pancreatic cancer cells 
(Cogoi et al. 2010, 2013). Despite its many roles, a structural 
representation of MAZ with one of its G4Qs has yet to be 
documented.

Specificity protein 1 (Sp1)

Specificity protein 1 (Sp1) is a ubiquitous transcription 
factor and member of the Krüppel-like family, which are 
a group of transcriptional regulators containing a triple 
zinc finger motif (Black et al. 2001; Vizcaino et al. 2015). 
Binding sites are variable including GC-boxes and G-rich 
quadruplex forming regions (Raiber et al. 2012). In vitro 
evidence exists suggesting that all three of the zinc fingers 
contribute to the DNA interaction, which has been a notable 
feature of zinc finger proteins that has also been useful in the 
design of synthetic zinc fingers (Al-Naama et al. 2020; Eom 
et al. 2016; Jamieson et al. 2003; Razin et al. 2012; Yokono 
et al. 1998). These manipulable features are for its interac-
tion with linear DNA, however, as little structural data exists 
with Sp1 in combination with the G4Q form as of yet. It is 
beyond the scope of this review, but it may be interesting 
to review the details of prior such zinc finger interaction 
studies to determine whether the experimental conditions 
of each would have supported the formation of G4Qs and 

thus have the potential to infer results on these structures. Of 
the promoter regions Sp1 is known to interact and regulate, 
those containing G4Qs at the site of Sp1 binding are c-KIT 
(Da Ros et al. 2021), HRAS (Cogoi et al. 2014; Membrino 
et al. 2011), and VEGF (Yokono et al. 1998). In the case of 
HRAS, Sp1 binding to its G4Q promoter acts as a transcrip-
tional repressor and seems to also require MAZ (another 
G4Q-binding zinc finger protein, noted above) for its action 
(Membrino et al. 2011).

Yin Yang 1 (YY1)

Yin Yang 1 is yet another zinc finger protein recently found 
to target G4Qs (Li et al. 2021). Interestingly, it itself is under 
the control of a G4Q (see section on DHX36) (Huang et al. 
2012). This zinc finger protein has integral roles in tran-
scription, acting as a regulator of promoter-enhancer loops 
(Gordon et al. 2006; Li et al. 2021; Weintraub et al. 2017). 
A recent study nicely employs a mix of proximity ligation 
assays and chromatin immunoprecipitation assays to show 
how YY1 can bind two sites of DNA G4Qs and through 
dimerization bring the two pieces of DNA together, support-
ing its role in the positioning of promoter and enhancer sites 
(Li et al. 2021). Regarding its mode of binding, it was noted 
that using the G4Q stabilizers, TMPyP4 and pyridostatin, 
G4Q-binding and promoter-enhancer loop formation was 
greatly reduced, supporting the likely possibility that there 
are at least some shared points of contact in their respective 
interactions (Li et al. 2021).

Poly (ADP‑ribose) polymerase 1 (PARP1)

PARP1 is a ubiquitous nuclear zinc protein that has a high 
affinity for damaged DNA and has key roles in chromatin 
remodeling and gene expression. It has been shown in vitro 
to bind the G4Qs in the promoter regions of oncogenes 
c-KIT, c-MYC, and KRAS (Cogoi et al. 2010; Edwards 
et al. 2020; Fekete et al. 2012; Soldatenkov et al. 2008). 
Functionally, binding at c-KIT results in catalytic activa-
tion of PARP1 (Soldatenkov et al. 2008). Evidence of gene 
activation upon PARP1 binding also exists for the G4Q 
upstream from KRAS (Cogoi et al. 2010). Furthermore, 
studies examining PARP1’s specificity for certain G4Qs 
revealed the preference for parallel G4Qs, as evidenced by 
lack of binding to the hybrid G4Q-forming hTEL promoter 
region (Edwards et al. 2020). The same group considered 
the loop specificity as part of the incorporation, revealing 
that while a shorter loop enabled the G4Q bind with greater 
affinity to PARP1, the pentanucleotide loop in its original 
form (CGAGC) was required for activation of PARP1, indi-
cating a role and incorporation of this lateral G4Q loop into 
the overall functional binding epitope (Edwards et al. 2020). 
There are X-ray- and NMR-based models of the PARP1 
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protein in combination with helical DNA and strand breaks 
(Ali et al. 2012; Bilokapic et al. 2020; Eustermann et al. 
2015; Langelier et al. 2011, 2012; Patel et al. 2014), but 
none yet exists of PARP1 in complex with a quadruplex. 
Speculation would lead one to believe the same region 
would be responsible, but how the protein conforms to do 
so is still unknown.

Transcriptional helicases xeroderma pigmentosum 
type B and D (XPB and XPD)

XPB and XPD are both helicase components of the tran-
scription factor II human (TFIIH) complex, an eleven-
subunit transcriptional complex that plays a central role in 
transcription and nucleotide excision repair (NER) (Drapkin 
et al. 1994; Gray et al. 2014). The XPD helicase has been 
shown to unwind G4Qs in a 5′-3′ direction in an ATP-
dependent manner; the XPB helicase acts in a 3′-5′ direction 
has been shown only to bind, but not unwind the G4Q (Gray 
et al. 2014). While there is a crystal structure available of 
the XPD Arch domain with the protein MAT1 (Peissert et al. 
2020), there is no complex with DNA.

G4BPs involved in DNA replication

Fanconi Anemia Complementation group J (FANCJ, 
also known as BRIP1 or BACH1)

FANCJ belongs to the XPD-like group of helicases and 
facilitates a number of processes including DNA replica-
tion, homologous recombination (HR), and interstrand DNA 
crosslink (ICL) repair (Wu and Spies 2016). Its actions on 
DNA replication are facilitated through the binding and 
unwinding of G4Q DNA in the 5′-3′ direction. The helicase 
appears to be critical to the process, such that in its absence, 
DNA replication persistently stalls at the G4Q site (Castillo 
Bosch et al. 2014). FANCJ has been shown to unwind both 
intramolecular and intermolecular G-quadruplexes in vitro 
(Bharti et al. 2013). While it is unclear how broad the scope 
of G4Q binding may be for this helicase, binding studies 
have been performed using the telomeric G4Q ((TTA​GGG​
)n) and a panel of uni-, bi-, and tetramolecular G4Qs (Bharti 
et al. 2013; Lowran et al. 2020). The key residues of FANCJ 
involved in the interaction are the alanine-alanine-lysine-
glutamine (AAKQ) motif. Furthermore, recent results sug-
gest the AAKQ interaction may be with the TTA loop region 
of the G4Q (Lowran et al. 2020).

There is a homologous G4BP found in Caenorhabditis 
elegans known as Dog-1 that supports the FANCJ helicase 
results, but also noted here because it was also one of the 
first helicases shown to interact with G4Qs in vivo (Cheung 
et  al. 2002; Kruisselbrink et  al. 2008). It similarly has 

critical roles in DNA repair, namely, ICL, and like FANCJ, 
its actions on G4Qs are in the 5′-3′ direction. From the 
above-noted mutational studies, there also does not appear 
to be a specific sequence or G4Q form this enzyme preferen-
tially binds, fitting with a non-specific DNA G4Q helicase.

G4BPs targeting RNA

RNA G4Qs, like their DNA counterparts, also play roles 
in critical cellular processes, including termination of tran-
scription, telomerase activity, alternative splicing, and regu-
lation of translation (Kharel et al. 2020; Lyu et al. 2021; 
Song et al. 2016). Structurally, RNA G4Qs are similar to 
those of DNA, but are much more thermodynamically sta-
ble, owing to the more extensive network of hydrogen bond-
ing afforded from the ribose C2′ hydroxyl groups (Arora and 
Maiti 2009; Joachimi et al. 2009; Zhang et al. 2011, 2010)
(noted above). Another feature of naturally occurring RNA 
G4Qs is that they are essentially all parallel G4Qs (with few 
exceptions (Xiao et al. 2017)). That being said, the structural 
similarities between RNA and DNA G4Qs still hold, it is not 
surprising to find that many of the proteins able to bind DNA 
G4Qs are also able to bind RNA G4Qs. Of those G4BPs 
already described above, those with identified binding and/
or roles in both include one of the most well-studied RNA 
G4BPs, DHX36, and nucleolin and the hnRNPs. Other RNA 
G4BPs include DHX9, the heterogeneous nuclear ribonu-
cleoproteins (hnRNP), serine/arginine-rich splicing factors 
(SRSF), the AF4(ALL1-fused gene from chromosome 4)/
FMR2(fragile X mental retardation 2) (AFF) family of pro-
teins and, of course, ribosomal proteins.

D‑E‑A‑H box protein 9 (DHX9; also known as nuclear 
DNA helicase II (NDH II) and RNA helicase A (RHA))

DHX9 is an ATP-dependent helicase, similar to DHX36 
described above, belonging to the SF2 superfamily of heli-
cases (Chakraborty and Grosse 2011). It also has the abil-
ity to unwind G4Qs, with a preference for RNA substrates 
(Murat et al. 2018). A transcriptome-wide analysis reveals 
the importance of DHX9 (and DHX36) in the translational 
control of many transcripts, whereby the G4Qs will cause 
ribosomal queuing and potential alternate translations if 
not unwound (Murat et al. 2018). While DHX36 has the 
DSM helix providing the top-stacking interaction, DHX9 
does not have a similar motif. It does contain an RGG box 
motif in its C-terminus, however, which may be able to 
facilitate G4Q binding as has been seen in several other 
G4BPs (Chakraborty and Grosse 2011). DHX36 also has 
an RGG-box region in its N-terminus, but this region does 
not appear to have interaction with the G4Q (Fig. 2), though 
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the N-terminal region is often truncated in many studies on 
the enzyme (Chen et al. 2018b).

Serine/arginine‑rich splicing factors (SRSF)

SRSFs are a highly conserved family of RNA binding pro-
teins involved in alternative and constitutive splicing, mRNA 
transport, translation, mRNA decay, and genome stabilization 
(Long and Caceres 2008). They contain an N-terminal RNA 
recognition motif (RRM) and C-terminal arginine-serine 
(RS)-domains that appears to have a strong regulatory role in 
the proteins’ functioning, whereby phosphorylation of these 
domains can enhance binding to other RS-containing splic-
ing proteins bringing them together (Lin and Fu 2007; Long 
and Caceres 2008). SRSF was originally identified to bind 
G4Q RNA from pull-down studies (noted above in hnRNP 
section) using MMP16 and ARPC2 (Serikawa et al. 2018; 
von Hacht et al. 2014). Further structural information is not 
yet available, nor whether G4Q-binding plays a specific role 
in the functional aspects of these groups of proteins.

Fragile X Mental Retardation Protein (FMRP)

Fragile X Mental Retardation Protein (FMRP) is an RNA 
regulatory protein belonging to the AF4 (ALL1-fused gene 
from chromosome 4)/FMR2(fragile X mental retardation 2) 
(AFF) family of proteins that chaperones mRNA from the 
nucleus and has roles in transcriptional control. Its malfunc-
tion is linked to several human disorders, including Fragile X 
syndrome and autism (Darnell et al. 2001; Phan et al. 2011). 
FMRP binds G4Qs via its RGG motif and this alone appears 
to be necessary, at least for binding to sequence clone 1 (sc1) 
RNA, per extensive mutational studies [sc1 was selected 
from a pool of random RNA oligomers (sc’s) to bind FMRP] 
(Darnell et al. 2001). Both crystal structure and NMR data 
are available on this motif’s interaction with the G4Q in sc1, 
which shows the RGG motif forming a β-turn with 13 of the 
peptide’s amino acids and fitting nicely into the junction 
at the base of the G4Q and the duplex RNA (Fig. 4—PDB 
5DE5) (Phan et al. 2011; Vasilyev et al. 2015). In this struc-
ture, the RGG motif bound to two consecutive G-C base 
pairs of the duplex, with its Arg8, Arg10 and Gly11 and the 
type I β-turn (with intramolecular hydrogen bond between 
Gly12 and Arg15) extends upward towards the G4Q. Its fur-
thest most reaching residue, Arg15 however, only interacts 
with the G7 and A17 nucleotides, neither of which are part 
of the specific G4Q structure (Fig. 4). Just the same, it is 
speculated that the stabilization afforded through this loop 
binding in the junction between the duplex and G4Q may be 
a driver of stability (Vasilyev et al. 2015).

Ribosomal proteins

G4Qs are found in the 5′-UTR of many mRNAs. From the 
MMP16 and ARPC2 pulldown studies described above, 
ribosomal proteins were identified from both the 60S and 
40S subunits (von Hacht et al. 2014). G4Qs in the 5′-UTRs 
are thought to act as more of a translational regulator, slow-
ing down protein translation while the ribosome waits for a 
helicase to unwind the structure (Bugaut and Balasubrama-
nian 2012; Huppert et al. 2008). It may be possible that the 
recognition of the G4Qs by ribosomal proteins plays further 
roles, but this has yet to be determined.

G4BPs that degrade G4 DNA

Research on G4BPs with the ability to degrade G4 DNA 
remains an evolving field, however, the two of which we 
have the most information are the human nuclease, GQN1 
(G quartet nuclease 1) and the Saccharomyces cerevisiae 
Mre11 protein (ScMre11p) (Ghosal and Muniyappa 2005, 
2007; Sun et al. 2001). These proteins are nucleases that 
appear to use the G4 as an anchor for cleavage of the G4 
DNA at a site nearby, degrading the single strand.

GQN1 cuts the single-stranded DNA region 2–5 nt 5′ of 
the barrel formed by stacked G-quartets and is independent 
of the upstream sequence. The nuclease does not degrade 
duplex or single-stranded DNA or G4 RNA (Sun et  al. 
2001). Another nuclease is the Saccharomyces cerevisiae 
Mre11 protein (ScMre11p), which also shows high binding 
affinity for G4 DNA over single- or double-stranded DNA. 
In this case, the binding of ScMre11p to G4 DNA facili-
tates endonucleolytic cleavage at G residues that flank the 
G-quartets (Ghosal and Muniyappa 2005, 2007).

90◦

G4Q

duplex

Fig. 4   FMRP’s 13-amino acid β turn folding into the groove at the 
junction of duplex and G4Q DNA (PDB 5DE5). The uppermost 
amino acid, Arg15, interacts with G7 and A17 nucleotides, which are 
not part of the G4Q structure. Binding is thought to promote stabili-
zation of the G4Q (see text)
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There are currently no enzymes known to be able to 
degrade the G4Q structure in its wound form.

Commonalities amongst G4BPs linked 
to binding modes

The different functions G4BPs have are likely dictated 
or a least heavily linked to the binding mode the protein 
assumes in interacting with a G4Q. G4BPs that unwind a 
multitude of different G4Qs, such as DHX36, cannot be 
too selective toward G4Qs. Thus, a top-stacking binding 
mode would appear to be more practical—stabilizing the 
stacked column of G4-tetrads while another part of protein 
unwinds the G4Q like a spool (Fig. 3).

A subset of G4BPs are the groove-binders, such as 
nucleolin or FMRP, whereby the presence of an RGG 
motif, shown to fold into a β-loop, is able to fit into a grove 
of the G4Q and act as a stabilizer (Masuzawa and Oyoshi 
2020; Vasilyev et al. 2015). The presence of the RGG 
motif alone is not enough to define its function, however, 
as other G4BPs contain this region (i.e., hnRNP A1 and 
NM23-H2) and these proteins have differing roles from 
stabilizing to unwinding (Dexheimer et al. 2009; Ding 
et al. 1999; Huang et al. 2018; Thandapani et al. 2013). 
From the stabilization perspective, there at least appears 
to be some support in the FMRP data (Fig. 4; Phan et al. 
2011; Vasilyev et al. 2015)). Given the abundant links with 
the repeating RGG-motif in many highly regulatory pro-
teins, there is much still to explore with how this contrib-
utes to the interaction and functioning around the G4Q.

A comment on zinc finger protein binding

Zinc finger proteins (ZFP) are an interesting subset of 
G4BPs that warrant highlighting separately. There are cur-
rently no experimentally derived high-resolution structures 
of a ZFP bound to a G4Q. There is one very nice combi-
nation biophysics-computational modelling study of a syn-
thetic ZFP, Gq1, a zinc finger protein originally derived from 
a phage display library coupled with a systematic series of 
biophysical binding assays (Isalan et al. 2001; Ladame et al. 
2006; Patel et al. 2004). In the study, researchers compared 
binding of Gq1 and the yeast zinc finger homologue, Zif268 
to telomeric G4Q or Zif268’s (duplex) dsDNA binding 
sequence. In particular, they systematically swapped out 
the “fingers” of one for the other to determine which had 
the greatest effects on G4Q affinity and selectivity. Their 
results showed that any one finger of Gq1 could be replaced 
with the corresponding finger of Zif268, without losing 
quadruplex affinity or duplex discrimination, but when two 
fingers were exchanged, where one was the second finger, 
both tenfold reductions in binding and loss of G4Q-duplex 

discrimination resulted (Ladame et al. 2006). The modelling 
studies go on to support the biophysical data, providing a 
resultant lowest energy coordinate file, whose arrangement 
is outlined in Fig. 5. Here, the model supports more of the 
loop-binding mode of interaction. The first of the “fingers” 
binds with two of the three protruding nucleotides (T12 and 
A13), while the second “finger” binds the third loop nucleo-
tide (T11) and simultaneously holds the phosphate backbone 
(Fig. 5A, B). The third “finger” focusses on the neighbor-
ing loop, extensively binding the phosphate backbone of the 
outpouching loop (Fig. 5C).

This work provides us with some of the first supporting 
data for how this class of proteins may in fact interact with 
these structures.

G4Q loops affording the basis for selectivity?

With its many critical cellular roles, it would follow logically 
that G4Qs must have some degree of selectivity to bind the 
correct G4BPs. This concept has been demonstrated in many 
studies of G4Q-G4BP interactions (Heddi et al. 2020; Huang 
et al. 2012; Lago et al. 2017). With the barrel core is similar 
amongst G4Qs, it is the orientation and length of the loops 
that make one G4Q different from the next and likely the 
mechanism by which selectivity is afforded.

G4Q stability is inversely linked to loop length—the 
shorter the loop, the more stable the G4Q. Guedin et al. 
performed a nice systematic assessment of this whereby 
they studied the melting temperatures (Tm) of a large panel 
of G4Q with varying loop lengths, showing that a length 
greater than 9 nt had a destabilizing effect on the structure, 
especially if multiple longer length loops were incorpo-
rated (Guédin et al. 2010). The c-MYC promoter G4Q is an 
example of a highly stable, short loop-length G4Q, while 
the TRA2β has a single 8-nt loop (Table 1). It is possible 
that only some types of helicases are able to overcome a 
more stably-folded G4Q and be identified as a binding pro-
tein, such as that of the DHX36 helicase and its action on 
the c-MYC, whereby crystal structure evidence suggests it 
pulls the G4Q through its RecA-like channel (Fig. 3A; PDB 
5VHE) (Chen et al. 2018b).

The loops of G4Q-forming regions have also been shown 
to influence the type of G4Q able to form (i.e., parallel vs 
anti-parallel) (Bugaut and Balasubramanian 2008; Hazel 
et al. 2004; Tippana et al. 2014). G4BPs appear to have 
preference for some arrangements over others. For example, 
DHX36 appears to favor G4Qs with a parallel conformation 
(but able to bind anti-parallel), and if in fact its binding mode 
is from the top of the G4Q barrel, this could be reasoned as a 
less sterically hindered arrangement for this form of binding. 
Conversely, nucleolin while again favoring parallel G4Qs, 
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has a strong preference for long-looped G4Qs, implying a 
side-on interaction with the structure (Lago et al. 2017).

Coupling this discussion are the examples of G4BPs that 
are selective of RNA over DNA and vice versa. For exam-
ple, DHX36’s selective binding of YY1’s promoter G4Q, 
but not its mRNA equivalent, suggesting a G4Q backbone 
interaction is also involved (Huang et al. 2012). It is likely 
that both loops and core G4Q structural features play some 
role in providing the appropriate selectivity and specific-
ity needed for the G4BP interaction and subsequent cellular 
pathway outcome.

Binding versus functioning

Binding of a G4BP to a G4Q does not equate to functioning. 
This is demonstrated importantly with the effects of loop 
modifications on the c-KIT promoter G4Q in complex with 

PARP1 (Edwards et al. 2020). PARP1 affinity for the G4Q 
increased as the loop features were removed, however, the 
complex was no longer able to activate PARP (Edwards et al. 
2020). In this study, there was a clear link with the pentanu-
cleotide loop as playing a role in this interaction, as noted 
above. This also highlights the fact that protein functioning 
in nature and the energetics of an interaction do not always 
hold a linear correlation. This is of course an important dis-
tinction as we try to design functional assays to support our 
biophysical claims in in vivo systems.

Concluding remarks

G4BPs play a central role in many cellular processes, from 
transcription to translation to genomic stabilization. With 
the abundance of G4Q sequences present in the cell, it 
follows that a G4BP must have some selective manner of 
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Fig. 5   Example of loop-binding mode—synthetic zinc finger, Gq1 
targeting a telomeric G4Q. Computationally derived model (PDB 
from Ladame, et al. 2006), showing overall arrangement (center) and 
key residues from A the first “finger,” whereby His125, Arg124, and 
Arg127 interact with the two outward-directed T12 and A13 nucleo-

tides; B the second “finger,” where His153 and Thr156 bind with 
phosphate backbone of G10, while Arg142 wraps under to bind the 
other protruding nucleotide, T11; and C the third “finger,” where the 
Ser175, Arg178, and Thr182 create extensive H-bonds with the phos-
phate backbone of the loop
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Table 1   G4-quadruplex binding proteins (G4BPs)

G4-sequence Function, if known Comments

Telomeric G4BPs
POT1 (TTA​GGG​)n Unfolding of G4 (and refolding with 

POT1-TPP1 complex
Selective to anti-parallel G4Qs

RPA (TTA​GGG​)n Unfolds G4Qs Unfolds both parallel and anti-parallel 
G4Qs

Human CST TTA​GGG​.AAT​CCC​ Unfolds G4Qs Complex of 3 proteins; CTC1 contains 
the DNA-binding site

hnRNP A1 and UP1 (TTA​GGG​)n Unfolds G4Qs Specifically, nYAGn seq
Binds RNA and DNA

BLM (TTA​GGG​)n Unfolds G4Qs (leading strand) in 3′-5′ Needs a ssDNA spacer between G4Q 
and the replication fork to function

Similar to WRN
WRN (TTA​GGG​)n Unfolds G4Qs (lagging strand) in 3′-5′ Similar to BLM
BRCA1 (TTA​GGG​)n Binds G4Qs in vitro
Pif1 (TTA​GGG​)n Unfolds 5′-3′ direction
Replication G4BPs
FANCJ Unfolds G4Qs in 5′-3′ direction unwinds both intramolecular and inter-

molecular G4Qs
Promoter G4BPs
Sp1 G4 (C) G3 (CC) G5 (C) G4 (TCC​CGG​

C) G4 (CGG) (VEGF)
CCC​GGG​CGG​GCG​CGA​GGG​AGG​

GGA​GG (c-KIT)
CGG​GGC​GGG​GCG​GGG​GCG​GGG​

GCG​ (HRAS)

Binds parallel and antiparallel G4Qs

DHX36 Many sequences Unfolds G4Qs in 3′-5′ Strong preference for binding parallel 
DNA and RNA G4Qs over antiparal-
lel; requires trailing 3′ end

Nucleolin TGG​GGA​GGG​TGG​GGA​GGG​TGG​
GGA​AGG (c-MYC)

(GGG​GCC​)n (HRE)

Stabilizes G4Q to suppress transcrip-
tion

Preferentially binds parallel G4Qs but 
can bind both

NM23-H2 TGG​GGA​GGG​TGG​GGA​GGG​TGG​
GGA​AGG (c-MYC)

Unfolds G4Q to enable transcription

MAZ TGG​GGA​GGG​TGG​GGA​GGG​TGG​
GGA​AGG (c-MYC)

ACA​GGG​GTG​TGG​GG (Pur-1)
TCG​GGT​TGC​GGG​CGC​AGG​GCA​

CGG​GCG and CGG​GGC​GGG​GCG​
GGG​GCG​GGG​GCG​ (HRAS)

GGG​AGG​GAG​GGA​AGG​AGG​GAG​
GGA​GGGA (KRAS)

Unfolds G4Qs to enable transcription

PARP1 C3G3CG3CGC​GAG​3AG4AG2 
(c-KIT)

TGG​GGA​GGG​TGG​GGA​GGG​TGG​
GGA​AGG (c-MYC)

GGG​AGG​GAG​GGA​AGG​AGG​GAG​
GGA​GGGA (KRAS)

Recognizes parallel G4Qs; binding with 
c-KIT activates PARP1

XPD/XPB XPD: 5′-3′ direction XPB: 3′-5′ direc-
tion

hnRNP GGG​AGG​GAG​GGA​AGG​AGG​GAG​
GGA​GGGA (KRAS)

GGG​GTG​GGG​CCC​TGC​GAG​GGC​
GGG​ (TRA2β)

Unfolds G4Q
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interacting with its G4Q. Such, binding modes discussed 
here that may afford selectivity are the top-, groove- and 
loop-binding interactions. While only a few high-resolution 
structural examples exist of each, combinations of these 
modes in these interacting species are apparent. As the field 
of G4Q-G4BPs continues to evolve—new binding proteins 
discovered and structures solved, further insights into their 
functions and cellular pathogenesis will be gained.
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