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Abstract

Background—Prostate cancer patients experience heterogeneous outcomes after radical 

prostatectomy. Genomic studies including The Cancer Genome Atlas (TCGA) have reported 

molecular signatures of prostate cancer, but few studies have assessed the prognostic effects of 

DNA methylation profiles.

Methods—We conducted the largest methylome subtyping analysis for primary prostate tumors 

to date, using methylome data from three patient populations: TCGA, a prostate cancer cohort 

study conducted at the Fred Hutchinson Cancer Research Center (FH), and the Canadian 
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International Cancer Genome Consortium (ICGC) cohort. Four subtypes were detected in the 

TCGA dataset, then independently assigned to FH and ICGC cohort data. The identified 

methylation subtypes were assessed for association with cancer prognosis in the above three 

patient populations.

Results—Using a set of hypermethylated CpG sites, four methylation subtypes were identified 

in TCGA. Compared to Subtype 1, Subtype 4 had a hazard ratio (HR) of 2.09 (p=0.029) for 

biochemical recurrence (BCR) in TCGA patients. HRs of 2.76 (p=0.002) for recurrence and 

9.73 (p=0.002) for metastatic-lethal (metastasis or prostate cancer-specific death) outcomes were 

observed in the FH cohort. A similar pattern of association was noted in the Canadian ICGC 

cohort, though HRs were not statistically significant.

Conclusions—A hypermethylated subtype was associated with an increased hazard of 

recurrence and mortality in three studies with prostate tumor methylome data. Further molecular 

work is needed to understand the effect of methylation subtypes on cancer prognosis.

Impact—This study identified a DNA methylation subtype that was associated with worse 

prostate cancer prognosis after radical prostatectomy.
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Introduction

Prostate cancer accounts for over a quarter of all incident cancer diagnoses in U.S. men 

and ranks second as a cause of cancer-related deaths (1). The majority of prostate cancer 

patients present with localized disease at diagnosis. Some have indolent disease that can be 

cured or safely observed under active surveillance, while others may have highly variable 

clinical outcomes after radiotherapy or surgery – a portion of these will eventually relapse, 

with some developing metastasis that ultimately leads to prostate-cancer specific death. A 

critical unmet clinical need is to identify aggressive prostate cancers that confer a high risk 

for relapse and metastasis after primary treatment.

Existing risk stratification systems using clinical factors (Gleason score, prostate-specific 

antigen (PSA) levels, and TNM stage) have not been able to completely predict adverse 

outcomes (2–4). Over the past decade both genetic and genomic efforts have characterized 

molecular events contributing to prostate cancer initiation and progression (5–9). Somatic 

mutations in prostate cancer are less common than in other adult solid tumors (5). A varying 

degree of copy number aberrations has been observed, with higher burdens of aberrations 

and instability in aggressive cancers (6,10–12). The most common molecular alteration is 

the TMPRSS2-ERG gene fusion (13), though its clinical implication is not clear.

In addition to genetic alterations, epigenetic alterations play a crucial role in prostate 

cancer development. To date, most studies of DNA methylation and prostate cancer 

progression have been limited to candidate genes in relation to biochemical recurrence (14–

19). More recently, genome-wide methylation studies for discovering prognostic markers 

have been conducted by arrays or pyrosequencing methods (20,21). Among recent studies, 

Wang et al. Page 2

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TCGA confirmed substantial heterogeneity in DNA methylation and detected widespread 

changes in hyper- or hypo-methylation in 333 primary prostate tumors when compared 

to adjacent benign tissue obtained from radical prostatectomies (5,22,23). Using a set of 

hypermethylated CpG sites, TCGA defined four distinct epigenetic groups, one of which 

was exclusively associated with ERG fusion positive tumors. The clinical implications of 

these epigenetic subgroups have yet to be determined, in part due to the short follow-up for 

patients in TCGA not yielding an adequate number of adverse outcomes. This limitation 

also applies to characterizing the clinical significance of other molecular subtypes (24), 

since a disease with a long natural history like prostate cancer generally requires a long 

follow-up period to observe recurrence and mortality endpoints.

To delineate epigenetic subtypes and determine their clinical significance, we analyzed 

methylome data from three large primary prostate cancer patient populations who underwent 

radical prostatectomy (RP), all with clinical information for evaluating outcomes. We 

performed unsupervised clustering in one of the largest fresh-frozen prostate cancer 

methylome datasets currently available - the TCGA-PRAD, which includes ~500 samples; 

and we characterized the risk of recurrence associated with the derived subtypes using the 

recently curated TCGA clinical data (25). We then applied the classification rule to the 

other two tumor datasets and tested the resulting subtype associations with clinical factors, 

recurrence, and mortality.

Materials and Methods

Study participants and data collection

This study includes patients from three cohorts who had localized prostate cancer and 

treated with RP. CONSORT diagrams for these three cohorts are shown in Supplementary 

Figure 1.

TCGA-PRAD—The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) 

dataset includes matched primary tumor and normal (adjacent) specimens from prostate 

cancer patients who underwent RP as primary therapy (5). All patients provided written 

informed consent and specimens were approved for collection and distribution by local 

Institutional Review boards (5). DNA methylation data generated using the Infinium 

HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA) and RNA-seq data from 

freshly frozen tumor tissue were downloaded using the TCGAbiolinks R package (v3.1.4) 

(26); and the HTSeq count gene expression data was log2(count +1) transformed. Tissue 

images were centrally reviewed by genitourinary pathologists to determine Gleason score. 

For clinical data, we used the TCGA Pan-Cancer Clinical Data Resource, which includes 

a progression-free interval (PFI) outcome (27). Prognosis outcomes after RP include non-

recurrence (n=387), recurrence only (n=80), and the metastatic-lethal event, that a patient 

either had metastasis or died from prostate cancer (n=8). There were 475 tumors from 

patients of Caucasian, African American, and Asian ancestry that had methylation and 

clinical information available for this analysis.

Fred Hutch cohort—The Fred Hutch (FH) cohort has been previously described in detail 

(26,27). Briefly, it includes patients with newly diagnosed prostate cancer in 1993–1996 
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and 2002–2005 who enrolled in population-based studies in King County, WA, and who 

were identified using the Seattle-Puget Sound Surveillance, Epidemiology, and End Results 

(SEER) cancer registry. Our study was restricted to 458 men who had RP as the primary 

therapy for clinically localized adenocarcinoma of the prostate and had genome-wide 

methylation data and clinical data available. Gleason grade, diagnostic PSA and pathologic 

tumor stage were collected and centrally coded by Puget Sound SEER (20,30). Pathological 

stage data were used to define two stage groups: localized stage (pT2, N0/NX, M0); regional 

stage (pT3-pT4 and/or N1, M0). Time to recurrence or censoring was determined using 

data from follow-up surveys and review of medical records (n=445). There were 13 patients 

who did not complete surveys or died of prostate cancer (n=13) prior to mailing of the 

surveys. Their recurrence time was imputed by a linear regression model including curative 

therapy and Gleason score and the model was trained to account for the fact that BCR 

occurs before metastasis or death from prostate cancer. Prognosis outcomes after RP include 

non-recurrence (n=315), recurrence only (n=114), and metastatic-lethal events (n=29). 

DNA methylation data were measured using the Infinium HumanMethylation450 BeadChip 

(Illumina, San Diego, CA, USA) (29) on tumor samples from FFPE blocks and have been 

deposited to dbGaP (Accession: phs001921.v1.p1). More information about clinical and 

genomics data collection and quality control procedures have been described previously 

(20,30). The Fred Hutchinson Cancer Research Center Institutional Review Board approved 

the study, and all participants provided written informed consent statements.

Canadian ICGC cohort—The Canadian ICGC cohort includes intermediate-risk patients 

with pathologically confirmed localized prostate cancer as described previously (23). All 

patients (n=236) were defined as N0M0 and treated with RP. Fresh-frozen RP samples 

were stored at the University Health Network (UHN) Pathology BioBank and the Centre 

Hospitalier Universitaire de Qubec-Universit Laval (CHUQ) Genito-Urinary BioBank prior 

to analysis. All participants provided written informed consent statements, and tumor tissues 

were utilized based on UHN Research Ethics Board-approved study protocols (UHN 06–

0822-CE, UHN 11–0024-CE and CHUQ 2012–913:H12–03–192). Prognosis outcomes after 

RP include non-recurrence (n=171), recurrence only (n=42), and metastatic-lethal events 

(n=23). Gleason scores were evaluated by two genitourinary pathologists using hematoxylin 

and eosin-stained slides (23). Serum PSA levels were measured at the time of diagnosis.

DNA methylation assays and pre-processing

Level 3 TCGA-PRAD data contain β-values, where the β-value is the ratio of the methylated 

signal over the total signal. Probes that had a common SNP within 10 bp of the interrogated 

CpG site, were located within 15bp of a repetitive element, aligned to multiple sites on the 

human genome, or had detection p-values greater than 0.05 for a specific data point were 

masked (5).

Methylome data from the FH cohort were profiled using the Infinium 

HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA). We excluded four low 

quality samples that clustered together with low signal intensities. None of the samples was 

found to have at least 5% of probes with a detection p-value greater than 0.05. We also 

excluded non-CpG sites and CpG sites that had a detection p-value greater than 0.05 in 
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at least 10% of samples, CpG sites in any SNP or within 10 base pairs of a SNP with 

a minor allele frequency greater than 1% in any 1000 Genomes population, or CpG sites 

classified as cross-reactive probes. We then performed background correction and applied 

Noob normalization method (31) on the methylation data.

Global DNA methylation for the Canadian ICGC cohort was evaluated using Illumina 

Infinium HumanMethylation450 BeadChip kits as described previously (23). The raw 

methylation microarray data were preprocessed using the dasen method from the R 

package wateRmelon (32). Methylation intensities were filtered based on the detectability 

over noise level. Probe positions and chromosome locations were annotated using the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 package (version 0.6.0). All methylation 

data processing was performed using the R language (version 4.0.5) (33).

Tumor clustering

The TCGA tumors were clustered based on the following criteria for selecting informative 

hypermethylated CpG sites: 1) having low mean methylation in adjacent benign samples 

<0.1; 2) uncorrelated with ABSOLUTE (34) tumor purity estimates based on copy number 

changes; 3) having β-values greater than 0.3 in at least 5% of tumors, a criterion 

commonly used to detect reliable methylation sites and guard against measurement errors in 

methylation array; 4) among the top 5,000 most variable probes in tumors; 5) showing 

differential variability between ~500 primary prostate tumors and 50 adjacent benign 

prostate samples by the Levene test (with a family-wise error rate <0.05 by Bonferroni 

correction); and 6) mean methylation <0.1 in adjacent benign samples. These criteria were 

motivated by the TCGA clustering analysis (5), but made more stringent by requiring lower 

methylation in adjacent benign samples and significantly increased variability in tumor 

samples. The final set contained 1306 CpG sites (Supplementary Table 1). Hierarchical 

clustering was performed using the function eclust in the R package factoextra (v1.0.7) (35) 

based on these CpGs with dichotomized β-values (> 0.3 vs. ≤ 0.3). Binary distance metric 

and the agglomeration method of “ward.D2” (36) were used when performing hierarchical 

clustering. In the FH and Canadian ICGC studies, dichotomized β-values for the same set of 

probes were used.

Statistical analysis

CpGs with different variability between tumor samples and benign samples were detected by 

the Levene method implemented in R package Lawstat (v3.4) (37). Hierarchical clustering 

of TCGA samples was performed by the R package factoextra (v1.0.7) (35). The heatmap of 

TCGA methylation data was visualized using the R package ComplexHeatmap (v2.6.2) 

(38). The two-dimensional t-distributed stochastic neighbor embedding (tsne) plot was 

visualized using the R package Rtsne (v0.15) (39). Assignment of validation samples (FH 

and ICGC) to the subtypes was determined by the k-Nearest Neighbor Classification (KNN) 
method, in which k=21 was determined by the square root of the number of complete cases, 

which is rounded to the nearest odd integer (40). The binary distance metric was used for 

cluster assignment. In survival analysis, deaths due to other causes than prostate cancer 

have been accounted for using the cumulative incidence function plots and cause-specific 

hazard regression (41,42) . Cause-specific Cox proportional hazards regression was used 
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to compute hazard ratios (HRs), 95% confidence intervals (CIs), and p-values. Cumulative 

incidence functions (CIFs) were plotted to evaluate associations between subtypes and 

prostate cancer recurrence or metastatic-lethal events, as implemented in the R package 

cmprsk (v2.2–10) (43). Pathway analysis was done by the gometh function of the R package 

missMethyl (v1.24.0) (44). Logistic regression models were used to construct the prediction 

models with predictors including age, race, Gleason score, methylation subtypes, diagnostic 

PSA level, and tumor stage. The area under curve measure (AUC) of the receiver operating 

characteristic (ROC) performance measure was computed for prediction models. The ROC 

analysis was carried out using the R package pROC (v1.17.0.1) (45).

Results

Characteristics of primary cancer patients in the three studies

Table 1 shows the demographic and clinical characteristics of the three primary prostate 

cancer datasets analyzed for methylation subtypes. Prostate cancer patients from TCGA 

were older and had more aggressive disease with a higher PSA, a higher tumor grade and a 

higher T category when compared to FH, and Canadian ICGC studies. On the other hand, 

the ICGC cohort has fewer patients with Gleason ≤6 and fewer patients with PSA≥20.

Clustering TCGA primary prostate tumor samples by cancer-specific methylation

CpGs with increased variability in TCGA primary tumors relative to adjacent benign 

samples were selected for clustering analysis. Among 216,605 CpGs passing quality control 

filters, the volcano plot shows that over 95% of the differential variability CpGs are 

hypervariable, and 20,446 CpGs show statistically significant increased variability (family 

wise error rate <0.05 for Levene test, red dots in Figure 1A). Aforementioned filters were 

applied to identify cancer-specific methylation and to limit the impact of tumor purity on 

clustering. The final set of 1,306 CpGs (Supplementary Table 1) was used in hierarchical 

clustering. The vast majority of these CpGs do not fall into copy number alteration (CNA) 

regions previously reported for the prostate cancer genome (6,11,12), therefore the subtypes 

defined by these CpGs are unlikely to reflect prostate cancer genomic instability due to 

copy number changes. Four subtypes were identified using the selected 1,306 CpGs (Figure 

1b); mean beta values were 0.128, 0.127, 0.277, 0.249, respectively, from Subtype 1 to 

Subtype 4. The main differences are between Subtype 1–2 versus 3–4. Subtypes 1 and 2 

had relatively smaller methylation differences with a subset of CpGs showing differences 

between these groups (Supplementary Table 1). A similar pattern was seen for Subtypes 3 

and 4. In Figure 1c, the two-dimensional tSNE plot shows that samples in Subtype 1 are 

surrounded by the other three subtypes; there is a clear separation of Subtypes 3 and 4 

relative to Subtypes 1 and 2, with the latter two subtypes slightly overlapping. The heatmaps 

of assigned subtypes for FH cohort and Canadian ICGC cohort are shown in Supplementary 

Figure 2.

Table 2 shows the top 20 CpGs that were associated with the 4 Subtypes using the ANOVA 

test. Nearly all of them were linked to prostate cancer development in the literature, 

including ESR1 – a gene encoding estrogen receptor 1. Most of them had low methylation in 

Subtypes 1 and 2, but hypermethylation in Subtypes 3 and 4, consistent with the hierarchical 
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clustering process. Notably, pathway analysis of the 1,306 CpGs showed that the leading 

enriched pathway is “neuroactive ligand-receptor interaction”, which was previous identified 

by gene expression data in prostate cancer (46).

Tables 3 and 4 show the characteristics of the four subtypes in TCGA patients and FH 

patients. Consistently in both study cohorts, Subtypes 3 and 4 are more likely to include 

older men, men having higher Gleason scores, higher PSA levels, and presenting with later-

stage disease at diagnosis (Tables 3 and 4). Consistent with the previous paper clustering 

TCGA-PRAD samples (5), there is a cluster with a substantially higher proportion of 

patients with the TMPRSS2-ERG fusion transcript (Subtype 2, 88%). Subtype 3 also has a 

higher portion of patients with the fusion transcript than Subtypes 1 and 4, with Subtype 4 

having the lowest frequency of the fusion transcript (6% in TCGA and 11% in FH).

Methylation subtypes predict recurrence and metastasis outcomes

The association of the four methylation subtypes with cancer recurrence was assessed using 

cause-specific proportional hazards models (Table 5 and Supplementary Table 2). Patients 

with metastasis or prostate cancer death were also compared to patients without recurrence 

whenever such data were available. A base (minimally adjusted) model was first assessed 

with age and race to predict BCR; Gleason score was additionally adjusted for to evaluate 

whether the subtypes were an independent prognostic factor (Supplementary Table 2). In 

TCGA data, Subtypes 2–4 showed increasing hazards for cancer progression relative to 

Subtype 1, reaching a hazard ratio of 2.09 (p-value=0.029) for Subtype 4 in the base 

model (Table5). Adjusting for Gleason score, stage and PSA increased p-values for the 

associations, to a different degree for the four subtypes in TCGA, e.g., the p-value for 

Subtype 4 increased to 0.28 (HR=1.47). The association between methylation subtypes and 

the metastatic-lethal outcome was not assessed because there is a limited number of TCGA 

patients developed metastatic-lethal event (n=8).

Using the KNN method, samples from independent datasets (FH and Canadian ICGC) were 

assigned to the four subtypes using the classification rule developed in TCGA, and were 

then evaluated in relation to cancer recurrence or metastatic/death events. Due to quality 

control criteria, a small number of CpGs among the 1,306 CpGs used for clustering were 

missing in the FH cohort (90 missing CpGs) and the Canadian ICGC cohort (14 missing 

CpGs), and were therefore omitted when computing distances. The fractions of the four 

subtypes were similar in TCGA and FH (Table 1), though FH has fewer Subtype 4 samples; 

there were proportionally less Subtype 1 and more Subtype 3 samples in the Canadian 

ICGC cohort, which may reflect its intermediate-risk patient population. Consistent with the 

TCGA associations, FH patients in Subtypes 2–4 showed increasing HRs (Table 5), reaching 

2.76 for Subtype 4 (p-value=0.002) in the base model. The association with metastatic-lethal 

prostate cancer as compared to no recurrence was even more pronounced, with patients in 

Subtype 4 showing a HR=9.73 in the base model (p-value=0.002). Adjusting for Gleason 

score, PSA, and tumor stage diminished the significance, yet the association of Subtype 4 

with metastatic-lethal prostate cancer remained significant (p-value=0.043, HR=5.90). The 

BCR association results in the Canada ICGC cohort are not significant for either of the 

subtypes, nor the associations with metastasis/death events. In Supplementary Table 2, the 
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associations between subtypes and prognosis were also assessed when adjusting for age and 

Gleason score, Subtype 4 remained significantly associated with metastatic-lethal prostate 

cancer in the FH cohort. The global association of 4 subtypes with prognosis outcomes are 

statistically significant for the FH cohort. A similar trend of hazard ratios was observed for 

stratified analysis in the three risk groups, though with less significance (Supplementary 

Table 3).

Figure 2 shows the cumulative incidence function plots for the four subtypes in TCGA 

and FH, accounting for deaths due to other reasons and separated by BCR events and 

metastasis/death events. From Subtype 1 to Subtype 4, the gradual increase of hazards for 

cancer recurrence and for metastasis/death events was more evidently seen with statistical 

significance in the FH cohort than in TCGA patients, due to a larger number of events 

in the FH cohort. Adding the 4 subtypes to a logistic regression model with age, Gleason 

score, PSA, and stage for predicting metastatic-lethal prostate cancer increased the AUC 

for ROC from 0.8 to 0.831, though the increment is borderline statistically significant 

(p=0.12, Supplementary Figure 3). Similarly, adding the 4 subtypes to a logistic regression 

model with age, Gleason score, PSA, and stage for predicting BCR outcomes increased 

the AUC for ROC from 0.721 to 0.733, with a p-value of 0.12. This is largely due to the 

observation that among the 4 subtypes, subtype 4 is the one that is significantly associated 

with prognosis, less so for subtype 2 and 3.

Discussion

Using a set of differentially-variable hypermethylated CpG sites, we have identified four 

subtypes of primary prostate tumors from patients with localized disease at diagnosis and 

had been treated with RP, which predict gradually worsening prognosis from Subtype 1 to 

4, i.e., increased hazard of biochemical relapse and eventual metastasis and cancer-specific 

mortality. The subtypes were detected in the TCGA dataset using a clustering algorithm, 

then the classification rule was independently applied to the FH and Canadian ICGC studies. 

One of the most striking findings is that, when compared to the first subtype and adjusting 

for age and race, the fourth subtype had a HR of 2.09 for recurrence (p=0.029) and of 6.05 

for metastatic-lethal outcomes (p=0.13) in the TCGA dataset; a HR of 2.76 for recurrence 

(p=0.002) and a HR of 9.73 for metastatic-lethal outcomes (p=0.002) in the FH dataset. 

Though these results failed to replicate in the ICGC cohort, the consistency across three 

studies of an increased risk of recurrence and cancer-specific mortality supports the clinical 

significance of Subtype 4.

Nearly all previous methylation studies for prostate cancer prognosis were supervised 

analysis comparing methylation between prognosis groups (14–19,21). To our knowledge, 

this study is the only analysis that used an unsupervised clustering algorithm to define 

methylation subtypes first, then identified subtype-prognosis associations. The association 

between subtype 4 and prognosis was validated in the Fred Hutch cohort. We suspect that 

the inconsistency in the Canadian ICGC dataset is driven by cohort heterogeneity and the 

potential batch effects from different methylation experiments. TCGA patients typically 

presents more aggressive diseases because of the large tumor size TCGA needed to perform 

multi-omics analyses. The Fred Hutch cohort contains patients with less aggressive disease 
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presentations drawn from a SEER population. The ICGC cohort is an intermediate risk 

group with fewer patients with Gleason score ≤ 6, and fewer patients with high PSA 

>20, and so there might be fewer high-risk patients that can be identified to have adverse 

outcomes (Tables 1 and 5). For example, there were only two metastasis/death events in 

Subtype 4 in the ICGC cohort. It is also possible that the relatively small proportion of 

patients assigned to Subtype 1, which was the basis of the comparison, affected our ability to 

detect a significant association.

In TCGA, Subtypes 3 and 4 had higher Gleason scores, though adjusting for Gleason score 

did not remove the association between subtypes and outcomes. In the only prospective 

cohort study (FH), Subtype 4 contained 24 (86%) patients with Gleason score <= 7 (3+4), 

yet showed a 5 to 10 fold increase in the risk for metastasis and death. Indeed, when the 

four subtypes were added to a prediction model with age, Gleason score, PSA and tumor 

stage, the AUC for ROC increased from 0.8 to 0.831 (p-value=0.12) in the FH dataset 

(Supplementary Figure 3). These results suggest that the methylation subtypes may be an 

independent predictor of prognosis, likely occurring earlier in the carcinogenesis pathway 

than before the pathologic indicators at diagnosis such as grade and stage.

An interesting observation is that Subtype 4 had the lowest proportion of tumors with 

the TMPRSS2-ERG fusion (6% in TCGA and 9% in FH, Tables 3 and 4). Since much 

higher proportions of the fusion were found in TCGA (31%) and FH (42%), Subtypes 

3 and 4 appear to be distinct subgroups with different genomic features. Despite being 

the most common genomic alteration (~50%) in primary prostate tumors, the clinical 

implication of TMPRSS2-ERG fusion is not clear (47,48). While there is some evidence 

that the TMPRSS2-ERG fusion is associated with shorter survival among men managed 

conservatively or by watchful waiting (49,50), it has not been consistently associated with 

recurrence or survival among men treated with RP (32,51). Our results add to the existing 

knowledge of prostate cancer genomics by identifying a high-risk subtype for adverse cancer 

outcomes that has a low frequency of the TMPRSS2-ERG fusion.

In a similar clinical context, prostate cancer DNA copy number alterations have been shown 

to predict patient outcome after primary treatment (11). Though DNA methylation may be 

intertwined with copy number changes, we found no evidence to support that these subtypes 

are driven by DNA copy number alterations. We examined the overlap of the 1,306 selected 

CpGs and the most recurrently aberrant regions (95 genes) reported in Table 2 of (11), and 

we only found four CpGs among the 1,306 CpGs used for clustering, namely cg10722846, 

cg10795666, cg26559315, and cg26699292, which reside in 4 genes (TRAPPC9, MLNR, 

LYNX1, WWOX). Similar efforts were made for another two larger sets of CNA regions 

reported for the prostate cancer genome (6,12): for CNA segments reported in (6), there 

are 52 CpGs (4%) out of the 1,306 CpGs falling into the reported CNA regions; for CNA 

segments reported in (12), there are 183 CpGs (14%) falling into the reported CNA regions.

As a major strength of our analysis, we were able to perform methylation subtyping 

using three large methylome datasets with well-annotated clinical outcomes, including a 

prospective cohort of prostate cancer cases recruited from a population-based SEER cancer 

registry (FH study). We detected the methylation subtypes in TCGA and evaluated them 
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in two other studies, diminishing potential confounding in the initial TCGA discovery set. 

Another strength of our analysis is that it improves on the initial TCGA clustering (5), since 

we used a subset of differentially variable CpGs that has significantly lower methylation in 

matched adjacent benign samples to define the subtypes.

A limitation of our analysis is that the number of patients with metastatic-lethal endpoints, 

the most clinically relevant outcomes, were limited (8 in TCGA, 29 in FH, 23 in Canada 

ICGC). Though the effect sizes for Subtype 4 were encouraging, the small number of events 

requires interpreting these associations with caution. Future analyses of larger cohorts with 

methylation and survival data will be required to further evaluate the prognostic potential of 

these methylation cluster-defined prostate cancer subtypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
TCGA-PRAD DNA methylation. (a) Volcano plot for testing differentially variable CpGs 

between cancers and normal samples. (b) DNA methylation subtypes. (c) TSNE plot for 

tumor DNA methylation subtypes
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Figure 2. 
Cumulative incidence functions (CIFs) for developing biochemical recurrence (BCR) or 

metastatic–lethal events, after accounting for deaths due to other reasons. (a) TCGA, 

recurrence. (b) TCGA, metastatic-lethal (BCR excluded). (c) FH, recurrence. (d) FH, 

metastatic-lethal (BCR excluded).
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