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Abstract

Purpose: Radiotherapy (RT) is a mainstay of cancer care and accumulating evidence suggests 

the potential for synergism with components of the immune response. However, little data 

describes the tumor immune contexture in relation to RT-sensitivity. To address this challenge, 

we employed the radiation sensitivity index (RSI) gene signature to estimate the RT-sensitivity of 

>10,000 primary tumors and characterized their immune microenvironments in relation to the RSI.
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Material and Methods: We analyzed gene expression profiles of 10,469 primary tumors 

(31 types) within a prospective tissue collection protocol. The RT-sensitivity of each tumor 

was estimated by the RSI and respective distributions were characterized. The tumor biology 

measured by the RSI was evaluated by differentially expressed genes (DEGs) combined with 

single sample gene set enrichment analysis (ssGSEA). Differences in the expression of immune 

regulatory molecules were assessed and deconvolution algorithms were used to estimate immune 

cell infiltrates in relation to the RSI. A subset (n=2,368) of tumors underwent DNA sequencing for 

mutational frequency characterization.

Results: We identified a wide range of RSI values within and across various tumor types, with 

several demonstrating non-unimodal distributions (e.g. colon, renal, lung, prostate, esophagus, 

pancreas and PAM50 breast subtypes; p <0.05). Across all tumors types, stratifying RSI at a tumor 

type-specific median, identified 7,148 DEGs, of which 146 were coordinate in direction. Network 

topology analysis demonstrates RSI measures a coordinated STAT1, IRF1, and CCL4/MIP-1β 
transcriptional network. Tumors with an estimated high sensitivity to RT demonstrated distinct 

enrichment of interferon-associated signaling pathways and immune cell infiltrates (e.g. CD8+ 

T cells, activated natural killer cells, M1-macrophages; q < 0.05), which was in the context of 

diverse expression patterns of various immunoregulatory molecules.

Conclusion: This analysis describes the immune microenvironments of patient tumors in 

relation to the RSI gene expression signature.

Introduction

There is an appreciable spectrum of in vitro sensitivity to radiation across various cancer 

cell types that is regulated by the underlying molecular repertoire1 and capacity to utilize 

available nutrients.2 However, in a tumor comprised of diverse cellular architecture, which 

is constantly evolving, the response to radiation is more complex. Despite acknowledged 

variations in radiosensitivity in the preclinical and clinical setting, the field of radiation 

oncology currently does not individualize radiation dose prescription based on the biology of 

a patient’s tumor.

To better understand the diversity of radiosensitivity in cancer and to identify conserved 

radiation response modifiers, we previously modeled the response of 48 genetically 

annotated human cancer cell lines to radiation. By integrating the basal transcriptome, TP53 
and RAS isoform mutational status, tissue of origin, and clonogenic survival following a 

radiation dose of 2 Gy (SF2), we identified an interaction network of 474 genes, which 

includes regulators of DNA damage repair (DDR) (e.g. ATM, XRCC6), oxidative stress 

(e.g. PRDX1, TXN), as well as ten dominant signaling hubs: AR, JUN, STAT1, PKCB, 

RELA, ABL1, SUMO1, PAK2, HDAC1 and IRF1.3 From this network the radiosensitivity 

index (RSI) was derived by training a multi-gene algorithm to predict SF2 in the 48 

cancer cell lines. Notably, the RSI is agnostic to cancer type and has been independently 

validated as a biomarker of radioresponsiveness across multiple human tumor types by 

several investigators.4–7 Also, the RSI has been proposed as a measurable tumor feature to 

guide radiotherapy dose selection in patients via integration into the genomically-adjusted 

radiation dose (GARD).8,9
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The clinical utility of harnessing a patient’s own immune system has emerged as a new 

pillar of anti-tumor therapy and various strategies are being investigated to modulate the 

host immune response, including the use of radiotherapy.10,11 Indeed, emerging pre-clinical 

work has shown that irradiated tumors may act as adjuvants for the immune system, by 

facilitating local tumor control and by provoking regression of tumor deposits at distant 

sites via the abscopal effect.12 In addition to the potential systemic effects, radiation 

significantly alters the tumor antigen landscape, recruits anti-tumor T-cells, and instigates 

diverse inflammatory milieus.13 Still, the relationship between radiation and the immune 

response remains complex with contextual dependencies, and the optimal way to integrate 

radiation and immune-based therapies still remain uncertain.

To begin to address this question, we performed a systematic multi-tier analysis on a cohort 

of 10,469 transcriptionally profiled, prospectively collected tumor samples representing 

31 tumor types. These analyses underscore the heterogeneity in tumor radiosensitivity 

and provide a framework to explore how this is related to individual tumor immune 

microenvironments.

Methods

Patient tumor cohorts.

Patients were consented to the Total Cancer Care™, a prospective tissue collection protocol 

at (IRB-approved, Liberty IRB #12.11.0023), a prospective tissue collection protocol at 

Moffitt Cancer Center and Research Institute.14 Pathology quality control evaluation of 

macrodissected tumors was performed, which included measurements of percent tumor, 

stroma and necrosis to ensure sample integrity. Tumor samples were profiled for gene 

expression using the custom Rosetta/Merck HuRSTA_2a520709 Affymetrix gene expression 

microarray platform (GEO: GPL15048). CEL files (Affymetrix GeneChip probe data file 

format) were normalized against the median CEL file using IRON,15 which yields Log2 

intensity values per probeset. Principal component analysis (PCA) of all samples revealed 

the first component was highly correlated to RIN (RNA integrity number) value. A partial 

least squares (PLS) model was trained upon samples for which RIN values were available 

and this was used to re-estimate the quality of RNA of all samples; the first component 

was then removed to correct the signals for RNA quality. We identified 10,469 unique fresh 

frozen macrodissected primary tumors (see Supplemental Table 1) for the related analyses; 

patient demographics, including age at diagnosis and sex grouping for each tumor type are 

shown in Supplemental Table 2. Two publicly available datasets were used for additional 

analysis: breast cancer (GSE1456)16 and lung adenocarcinoma (GSE68465)17.

t-SNE: Using the 10,469 samples, we first filtered the 60,607 probesets to those having a 

standard deviation (across the cohort) > 2, yielding 1,399 probesets. The NIPALS algorithm 

(R/nipals package v0.5) was used to compute the first 50 principal components of the 

expression data. Rtsne (v0.15) was used with perplexity=100 to generate a two-dimensional 

mapping from these principal components.

Calculation of RSI: RSI was calculated as previously described3 by first rank-ordering 

the ten signature genes in each sample and then applying the linear equation (RSI) 
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with predetermined coefficients. The following 10 probesets, corresponding to the 

originally defined HG-U133plus2 probesets, were used: merck-NM_007313_s_at (ABL1), 

merck-NM_000044_a_at (AR), merck-NM_004964_at (HDAC1), merck-NM_002198_at 

(IRF1), merck-NM_002228_at (JUN), merck-BQ646444_a_at (PAK2, CDK1), merck2-

X06318_at (PRKCB), merck2-BC069248_at (RELA), merck-NM_139266_at (STAT1), 

merck-NM_001005782_s_at (SUMO1). RSI provides a continuous score, with a higher 

score estimating more radioresistance.

RSIlo vs. RSIhi.

For probesets that were differentially expressed (DE) between RSIlo and RSIhi within each 

tumor type, samples were ranked by RSI score and divided into RSIlo and RSIhi groups 

at the median RSI value. A probeset was determined to be DE within a tumor type if the 

following criteria were met: (i) probeset must not be annotated as antisense; (ii) one of the 

two group averages must be > 5; (iii) |log2 ratio| ≥ ~0.585 (1.5-fold); (iv) two-tailed t-test ≤ 

0.01; and (v) Hellinger distance ≥ 0.25.

Violin Plots: Plots were generated using R (3.6.0) using an in-house custom code (https://

github.com/steveneschrich/densityplots). The violin plots represent the smoothed density 

with nrd0 bandwidth kernel.

ESTIMATE: The ESTIMATE algorithm18 was used to estimate stromal and immune cell 

fractions, as well as tumor purity, from bulk gene expression of the primary tumor (Estimate 

R package v1.0.13). Gene expression probeset identifiers were mapped to Entrez GeneIDs 

and, as defined in the Estimate package, the data were filtered to only the common genes. 

A single probeset was selected per gene by choosing the probeset having the highest median 

expression across all tumors. This resulting dataset was used in the estimate function to 

produce immune scores for each tumor.

Immunophenotype: Based on the characterization of immune escape-related genes 

described by Charoentong et al.,19 we extracted the gene expression corresponding to 

genes detailed in the three categories: Immunostimulator, Immunoinhibitor and Major 

histocompatibility complex (MHC). We calculated the log2 ratio as the difference in log2 

expression of median RSIlo tumors vs median RSIhi tumors for each gene and tissue type 

combination. ComplexHeatmap20 version 2.8.0 was used to visualize these log2 ratios, using 

the column grouping from Charoentong et al., clustering genes within groups and row 

ordering (tumor type) from decreasing median immune score.

CIBERSORT: The HuRSTA array was reduced to the LM22 signature genes defined by 

the CIBERSORT algorithm21 by choosing a representative probeset that detects the gene and 

has the highest median expression among matching probesets. The CIBERSORT web tool 

(https://cibersort.stanford.edu/index.php) was accessed on 2017–05-19 to generate signature 

scores (using quantile normalization).

Immune cell infiltrate normalized content abundance: Immune cell infiltrate 

composition proportions from CIBERSORT were extracted in relative mode, where the 
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proportions are relative to the total immune cell fraction of the tumor. To normalize the 

content across tumors, we scaled the ESTIMATE immune scores so the lowest immune 

score was 0 (rather than negative) and analyzed multiple immune cell infiltrate fractions by 

this adjusted immune score, as described previously.22

Immune cell infiltrate enrichment: RSI was dichotomized into RSI_HIGH and 

RSI_LOW by tumor subtype using the median RSI for that type. Each immune cell 

type derived from CIBERSORT was likewise dichotomized using the same approach into 

immune cell type_HIGH and immune cell type_LOW. A Fisher exact test was performed 

for each comparison of dichotomized RSI and immune cell type counts to determine 

the independence of the variables. The q value package (2.16.0) was used to compute 

FDR q values to correct for multiple testing. The immune cell infiltrates were classified 

as composing adaptive and innate cell types based on current literature and PCA. The 

enrichment heatmap was generated using ComplexHeatmap (2.0.0).20 Each cell represents 

the proportion of samples with immune cell type_HIGH in either RSI_LO (top row) or 

RSI_HI (bottom row). The percentage of tumor types with a significant q value (q<0.05) of 

differences between immune cell type_HIGH in RSI_LOW vs. RSI_HIGH is noted.

ssGSEA: Single-sample GSEA was used to evaluate the MSigDB Hallmarks Genesets.23 

The GSVA24 package (R package GSVA, v1.32.0) was used to calculate ssGSEA scores. 

ssGSEA scores were combined by tumor type using the median score.

Metacore pathway.

Probesets that were identified as DE in ≥ 6 tumor types and that had no conflicting direction 

of change (197 probesets, 146 genes) were used as seeds for MetaCore (Clarivate Analytics) 

literature network generation. Networks were generated using the Build Network-Shortest 

Paths method with the following non-default settings: (i) do not show disconnected seed 

nodes; (ii) do not show shortest path edges only; and (iii) use only Phosphorylation, 

Dephosphorylation, and Transcription Regulation interaction types of known Activation / 

Inhibition status. The resulting interaction network was exported and further filtered to 

contain only nodes and edges consistent with the observed RSIlo vs. RSIhi directions of 

change, which were then visualized using Cytoscape v3.3.25 Major nodes were identified 

as nodes in the network with the largest degree, or the largest number of connected edges 

(incoming or outgoing).

Interferon-RSI-Immune Cell Type Comparison.

We performed two tests of proportions (RSI and IFNα) with specific Immune Cell (IC) 

hi/lo categorizations using Fisher exact tests, dichotomizing all variables at the median (e.g., 

RSI hi/lo, IFNα hi/lo and IC hi/lo). Multiple testing corrections were applied using p.adjust 

(FDR option). ComplexHeatmap was used with a custom code for showing significance (q < 

0.05, Fisher Exact Test).

DNA sequencing and analysis

Sequencing analysis are described in detail as previous.26 Briefly, coding regions of 1,321 

genes were targeted with SureSelect (Agilent Technologies, Santa Clara, CA) custom 
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capture and sequenced on GAIIx sequencing instruments (Illumina, Inc., San Diego, CA) 

in paired-end 90bp configuration. Sequence reads were aligned to the reference human 

genome with the Burrows-Wheeler Aligner (BWA),27 and duplicate identification, insertion/

deletion realignment, quality score recalibration, and variant identification were performed 

with PICARD (http://picard.sourceforge.net/) and the Genome Analysis ToolKit (GATK).28 

Genotypes were determined with GATK UnifiedGenotyper and refined using Variant 

Quality Score Recalibration. Variants were filtered based on quality (highest sensitivity 

tranche were excluded) and population frequency (variant observed in 1000 Genomes 

Project or NHLBI Exome Sequencing Project or at >1% in 238 normal samples from our 

institutional cohort were excluded). Sequence variants were annotated to determine genic 

context (ie, non-synonymous, splicing) using ANNOVAR.29

Statistics: Statistical analyses with Student’s t-test, Mann-Whitney U test, and linear 

regression were performed using R 3.6.0. The RSI distribution across all tumor types and for 

each specific tumor type was tested for being unimodal using Hartigan’s dip test (R package 

diptest, v0.75–7) and visualized using ggplot2 (3.2.1) and ggpubr (v0.2.3). RSI and Immune 

score were compared using Pearson’s (r) and Spearman’s (ρ) correlation and visualized 

using ggpubr (v0.2.3).

Results

Characterization of the spectrum of intrinsic radiation sensitivity within and across tumor 
types with the RSI.

The ‘omics’ era offers many insights into tumor biology and provides a means to classify 

tumor types based on similar or dissimilar attributes. In this regard, we performed multi-

dimensional reduction analysis with the t-distributed stochastic neighbor embedding (t-

SNE) method on the bulk transcriptome of 10,469 non-metastatic, primary macrodissected 

tumors. We identified the vast majority of 31 individual tumor types cluster based on their 

underlying gene expression programs (Figure 1).

To estimate the radiosensitivity of human tumors, we used the cancer-type agnostic RSI 

signature. With this approach, we identified a spectrum of RSI values within and across the 

31 tumor types (Figure 2a). Stratification of breast cancers into PAM50 subtypes revealed 

normallike tumors have a higher median RSI compared to luminal A and B types (P < 

0.001). In contrast, no statistical differences in the median RSI are noted between the broad 

histologic subtypes of lung cancer (P = 0.096). Evaluation of interquartile range (IQR) 

ratios for the RSI reveal that tumors originating from the renal pelvis, liver, gastrointestinal 

tract, bladder and lung have the greatest dispersion (median ratio ≥ 1.5), whereas tumors 

considered more radioresistant (e.g. gliomas, sarcomas) have more uniformly distributed 

RSI values (Supplemental Table 3). As a whole, the RSI distribution among all tumor types 

is not unimodal based on Hartigan’s dip test statistic, which likely reflects the underlying 

diversity of tumor types grouped together. Separately, several tumor types display non-

unimodal distributions in RSI, including kidney, colorectal, prostate, esophagus, pancreas, 

stomach, and lung and breast subtypes (Figure 2b). Importantly, the median RSI value 
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(dashed line) varies across different tumor types, suggesting dichotomization into radiation 

sensitive (RSIlo) and resistant (RSIhi) tumors may differ based on tumor type.

The RSI measures coordinated biology across several tumor types

In addition to heterogeneity in the RSI across and within tumor types, there are also 

overlapping RSI values (continuous scale) between tumor types. We hypothesized that 

comparable RSI values, despite different tumor types, may be related to similar underlying 

biology. To begin to explore the biologic discriminators, we evaluated differentially 

expressed genes (DEGs) between RSIlo and RSIhi tumors (based on tumor type median RSI) 

for each tumor type (Supplemental Table 4). Across all tumor types there were 7,184 DEGs 

between the RSI groups. Interestingly, prostate, neuroendocrine or non-PAM50 subtyped 

breast tumors have ≤ 2 RSI-influenced DEGs, whereas PAM50 breast tumor subtypes, 

except luminal variants, have >150 DEGs between the RSI groupings. Furthermore, 

neuroendocrine tumors stratified by site of origin unmasked additional RSI-related DEGs, 

underscoring the contribution of the microenvironment.

Next, we investigated whether the RSI is associated with a conserved transcriptional 

program in tumors. We identified 209 unique probesets (155 genes) that are differentially 

expressed between RSIlo and RSIhi tumors in at least six tumor types, and of these, 

146 genes were concordant in their direction of expression (Figure 2c and Supplemental 

Table 5). Network topology analyses with the 146 conserved genes identified an expansive 

interacting network with STAT1, IRF1, and CCL4/MIP-1β as major upregulated nodes in 

RSIlo tumors (Figure 2d), suggesting these may act as central regulators of the biology 

measured by the RSI.

The RSI describes distinct tumor immune microenvironments

Prior data by Strom et al. hints at a relationship between the RSI and a 12-chemokine 

gene signature30, thus combining these findings with our network analysis suggests the 

measurement of RSI in tumors may be partially related to the immune microenvironment. 

To evaluate this relationship further, we inferred the presence of immune cell infiltrates in 

each tumor by the ESTIMATE algorithm. Similar to the variance observed with the RSI, 

ESTIMATE-derived approximations of immune cell infiltrates identified a wide range across 

and within tumor types (Figure 3a). Next, we again classified each tumor sample within 

a given tumor type as radiosensitive (RSIlo) or radioresistant (RSIhi) based on the median 

RSI value within a given tumor type. Integration of the RSI and immune score revealed 

most RSIlo tumors are characterized by increased immune cell infiltration across most tumor 

types (Figure 3b). However, among all tumors, we identified a weak negative correlation 

between the RSI and immune score when assessed as continuous variables (Pearson’s r = 

−0.28; Spearman’s ρ = 0.27, P <0.001). Also, the strength and direction of the correlation 

varied based on tumor type. Figure 3c highlights select tumor types with the highest (e.g. 

melanoma [MELA] r = - 0.47, ρ = - 0.48) and lowest correlations (e.g. pancreas [PANC] r = 

−0.09, ρ = −0.05) between the RSI and immune score; a full composite of correlations for all 

tumor types is shown in Supplemental Figure 1.
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The above data suggests dichotomizing the RSI by tumor type-specific median values 

enriches for an interconnected STAT1, IRF1, and CCL4/MIP-1β signaling network which 

may instigate certain immune infiltrate patterns in RSIlo tumors. Various factors are known 

to regulate the tumor immune contexture, which may include immune checkpoint molecules 

major histocompatibility complex (MHC) repertoires, or mutational landscapes.31–33 To 

gain a better understanding of the immunologic environment in RSIlo vs RSIhi tumors, we 

first used the immunophenotype classification specified by Charoentong et al. to describe 

a catalog of molecules involved in tumor immune escape.19 Cluster analysis identified 

variation in expression differences in both immunostimulatory (e.g. ICOS, CD27, NKG2D, 
4–1BB) and immunoinhibitory (e.g. IDO1, TIGIT, PD-L1, CTLA-4, LAG3) molecule 

classes across tumor types in relation with the RSI (Figure 3d). We also directly examined 

whether established immune checkpoint molecules (e.g. PD-L1, PD-1, CD47 and CTLA-4) 

and T cell receptor subunits (e.g. CD8A and CD8B) are associated with RSI (Supplemental 

Table 6, Supplemental Figure 2).

Previous investigations have identified certain mutational profiles may correlate with 

radiosensitivity1,34 and immune response, therefore we performed targeted sequencing of 

a subset of tumors (n=2,368) across all tumor types and found that mutation frequency 

(both non-synonymous and synonymous) only weakly correlated with the RSI (r = −0.07; 

P = 0.001), immune score (r = −0.01; P = 0.54) and individual immune cell subtypes 

(Supplemental Table 7).

Due to the diversity in immune molecule expression differences between RSIlo and RSIhi 

tumors, we next employed single sample gene set enrichment analysis (ssGSEA) using 

the immune-related MSigDB hallmark gene sets to evaluate associated inflammatory 

pathways.23 This revealed that RSIlo vs RSIhi tumors are enriched in various inflammatory 

pathways, which were mostly manifest in tumor types classified as also having the highest 

immune scores. The predominant pathways enriched in RSIlo versus RSIhi tumors were the 

Type I (α) and II (γ) interferon (IFN) modules (Figure 4a).

The ESTIMATE-derived immune score provides a generic readout of immune cell presence, 

and does not elucidate the composition or functional state of the immune infiltrate. 

To evaluate the immune repertoire further we utilized the CIBERSORT deconvolution 

algorithm to infer the presence of 22 distinct immune cell subtypes within each tumor. 

We found that immune cells involved in the adaptive or innate responses were differentially 

enriched between RSIlo and RSIhi tumors within each tumor type. A common pattern of 

enrichment was seen in RSIlo vs RSIhi tumors for CD4+ memory T cells (Mem CD4+), 

CD8+ T cells (CD8+ T), follicular helper T cells (Tfh), activated natural killer (NK) cells 

(NK+) and M1-polarized macrophages (M1) (Figure 4b; q-value < 0.05). This was further 

evaluated for NK+, CD8+ T and M1 cells as a continuous measure (Supplemental Figure 

3). This additional level of immune cell characterization also demonstrates differences 

in immune cell subtypes between RSI groupings even in tumors with lower immune 

scores, suggesting these relationships may persist in both ‘hot’ and ‘cold’ immune 

microenvironments.
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In certain tumor microenvironments IFN signaling may have opposing functions 

within different cellular compartments. For instance, type I IFN signaling in immune 

cells is beneficial for radiation-mediated tumor control,35 but may also create an 

immunosuppressive environment following radiotherapy.36 In tumor cells, intact type I IFN 

signaling has been shown to reduce the anti-tumor immune response following radiation,37 

and in some cancer cell lines it reduces radiation-mediated DNA damage.38 Due to these 

paradoxical relationships, we further explored how IFNα and RSI were related to the 

presence of immune cell types. We found several tumor types had significant differences (q 

< 0.05) in both IFNα and RSI in relation to specific immune cell types, both independently 

and cooperatively (Figure 4c). For example, M1, CD8+ T and Mem CD4+ cells show 

cooperative behavior between IFNα and RSI in lung cancer types (LUSC, LU_NOS, and 

LUAD). We also found comparable trends in independent patient cohorts with breast cancer 

and lung adenocarcinoma (Supplemental Figure 4). Similarly, these observed relationships 

persisted despite the overall immune cell infiltrate level.

Discussion

In addition to broad categorization, tumor profiling has also provided a basis for 

targeted therapy selection (e.g., kinase inhibitors, immune checkpoint blockade) for several 

malignancies.39,40 In contrast, radiation dose selection is not currently informed by tumor 

biology, but is rather guided by clinicopathologic features and empirically derived tolerances 

of surrounding normal tissue. Further, although substantial experimental and clinical 

evidence suggest tumors in the same anatomic location and of similar histological subtype 

may vary in their response to radiation, uniform dosing schemes are generally employed in 

clinic. In this study we employed multi-tier computational analyses to characterize several 

important tumor features that may impact future efforts to personalize radiotherapy and 

strategically integrate immunotherapies.

First, we used the RSI to estimate radiosensitivity in over 10,000 primary tumor samples. 

Interestingly, though t-SNE analysis demonstrated clustering of tumor types by their 

transcriptomes, the RSI values varied considerably within and between these tumor types. 

This suggests composite transcriptomes may regulate higher order tumor type-specific 

biology, which has been previously described in subtype analyses,41–43 but only partially 

contribute to the dynamics of radiation response. Characterization of the RSI dispersion 

by IQR and dip statistics demonstrated that many clinically-defined radioresistant tumors 

(e.g. glioma, sarcoma, melanoma) have less dispersion and more unimodality. Though 

there may be variability of biology within these unimodal distributions, tumor types with 

greater dispersion and non-unimodal RSI distributions imply a higher probability of biologic 

subtypes with differential responses to radiation. To further underscore this diversity, 

visualization of the RSI distributions shows the most sensitive tumors in one tumor type 

overlap with the most resistant tumors of another type, and vice versa. Since the RSI is 

measured on a continuous scale and is a readout of a multi-gene interacting network, similar 

RSI values or ranges among tumors may imply comparable dominant underlying biology.

Cell autonomous radiosensitivity is influenced by complex interactions between intrinsic 

polygenic traits. This was elegantly demonstrated by in vitro studies in over 500 tumor cell 
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lines where DDR and genomic stability emerged as major regulators of radiosensitivity at 

varying doses.1 However, tumor radiosensitivity is also governed by the other ‘hallmarks’ 

of cancer, including tumor microenvironment dynamics, utilization of nutrients and diverse 

cellular composites. Similar to these interconnected features, the RSI network also unifies 

various biologic components of DDR, stress adaptation and cell signaling. Notably, the 

10 major genes of the RSI signature are represented by 5 transcription factor complexes, 

3 kinases and 2 regulators of reversible post-translational modifications. Thus, the RSI 

represents an element of the radiation response, which may begin at the membrane-

cytoplasmic interface and propagate to the nucleus to regulate broad transcription programs. 

This work demonstrates the RSI measures a coordinated biology characterized by the 

predominance of a STAT1, IRF1, and CCL4/MIP-1β signaling network in tumors classified 

as radiosensitive.

The connection of the RSI with an immune associated signaling network in patient tumors 

is supported by prior studies showing partial associations with a 12-chemokine panel30 as 

well as inflammatory subgroups.30,44 Though the measurement of the RSI may be related 

to immune signaling, correlations are weakly moderate, suggesting the RSI is not solely a 

measure of immune activity. The strength of this RSI-immune relationship varies by tumor 

type with only 20–30% of variance explained even in the highest correlated tumor types (e.g. 

thyroid, cervical, skin, head and neck).

To explore this further, we characterized components of the immune contexture in each 

tumor and evaluated how this was related to the RSI. When looking across all tumor types, 

integrating the ESTIMATE immune score with an approximation of radiation sensitivity by 

RSIlo and RSIhi groupings, we identified most tumor types with high immune cell presence 

are also characterized as RSIlo. This may suggest tumors with high immune cell content 

are more sensitive to radiation by the fact that a major compartment of RSIlo tumors are 

enriched with leukocytes, which are known to be highly radiosensitive. Although, emerging 

data demonstrates differential radiation sensitivity between lymphoid and myeloid lineages 

in patients45 and Arina et al. have elegantly demonstrated pre-existent resident T cells 

are resistant to radiation doses used in clinic.46 Our analysis of immune cell subtypes 

demonstrates that over a third of tumor types were enriched with CD8+ T, M1 and NK+ cells 

in RSIlo vs RSIhi tumors. Thus, it is possible the RSI metric may partly reflect the diversity 

in abundance of the radiation-sensitive CD8+ T cells vs -resistant macrophage lineages in 

patient tumors, which also varies on organ microenvironment.

Recent data support a connection between the DDR and antitumor immunity via conserved 

mechanisms that detect cytosolic nucleic acids to combat foreign pathogens. For example, 

cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) signaling, a major 

regulator of type I IFN production47, influences the radiation response48 and type I IFNs are 

known to stimulate both arms of the immune response49 and are essential for radiation 

efficacy.35,50 Although the signaling effectors MB21D1/cGAS and TMEM173/STING 

failed to meet our statistical criteria for identifying concordant DEGs in a prespecified 

number of tumor types between RSI groups, our analyses revealed that RSIlo vs RSIhi 

tumors are enriched in inflammatory signaling pathways (e.g. type I/II IFN). Associations 

between the RSI, immune cell infiltrates and IFN signaling were most evident in tumors 
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with the highest levels of immune cell infiltration. We also demonstrate significant 

differences (q < 0.05) in both IFNα and RSI in relation to specific immune cell types, both 

independently and cooperatively, despite tumor type (Figure 4c); notably, this cooperative 

biology was most prominent in lung, kidney, melanoma, bladder and certain breast tumor 

subtypes. Although, despite predominant IFN signaling and abundant effector immune cells 

in RSIlo tumors, our analysis on immunoregulatory molecules (Figure 3d), suggests various 

immunostimulatory molecules remain suppressed at the transcript level. These types of 

analyses (e.g. IFNα vs immune cell type vs RSI) neglect known tumor and radiation 

dynamics. The importance of these dynamics are further highlighted by a recent study 

using agent-based modeling, which proposed certain starting tumor microenvironments are 

differentially primed to respond to radiation therapy.51 Specifically, this study suggested that 

fractionated radiation may shift the tumor to an anti-tumor or immunosuppressive ecosystem 

based on the initial proportions of resident immune effector and suppressor cells.

Others have found that IFNα and STAT1 signaling may lead to a radioresistant phenotype 

in some tumors.52,53 Though, it is important to note that IFN-STAT1 signaling has been 

shown to be context dependent,36 at times with opposing effects,54–56 and may be instigated 

by tumor-immune cell interactions or autonomously by tumors cells.57 In some tumors, 

type I IFNs are important for radiation efficacy,35 as is STAT1 signaling.58 Thus, IFN-

STAT1 biology is diverse with end effects having a dependence on acute vs chronic 

stimulation.59 This complex relationship of IFN-STAT1 is reflected in our analyses where 

we identified diversity in immunoregulatory molecules and immune infiltrate composition 

despite predominating type I IFN signaling. Overall, this underscores the balanced immune 

stimulation-inhibition context in different tumor types, which may influence radiation 

response.

The RSI was originally derived from the NCI-60 cell line panel under uniform in vitro 
culture conditions by modeling the relationship between the basal molecular repertoire 

and clonogenic survival following a clinically relevant radiation dose.3 So, how does one 

explain how an experimental system devoid of immune cell activity identifies dominant 

immune signaling pathways in patient tumors? We hypothesize that promiscuous genomic 

instability60 and replication stress manifest in these cell lines may have produced danger 

associated molecular patterns (DAMPS; e.g., cytosolic DNA) provoking an IFN-based stress 

response57 which was identified by in vitro assays of radiosensitivity. The data currently 

supports a model where mislocalized nucleic acids instigate a ‘viral mimicry’ response in 

the context of radiation, leading to IFN signaling via shared STAT1-IRF1 transcriptional 

stress programs.

This study has several limitations. First, the measurement of radiation sensitivity is not 

static, but likely represents the dynamic continuum of cell proliferation-death cycles within 

an evolving tumor microenvironment. Thus, the RSI is a ‘snapshot’ of tumor biology 

which may continue to evolve during radiation treatment. Second, although analyzed tumors 

were prospectively collected, macrodissected, and underwent strenuous pathology quality 

control, there is still chance for sampling bias. Thus, our study did not address intratumor 

heterogeneity of the RSI, nor can it differentiate whether the inferred biology from gene 

expression is from tumor vs non-tumor cells. Future experiments with single-cell RNA 
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sequencing (scRNA-seq) may help elucidate these differences. For example, Jang et al. used 

scRNA-seq in breast cancer cells and identified variation in RSI across individual tumor 

cells, which was associated with differences in mutation burden and alterations in DNA 

repair genes.61 Though, our analysis is based on bulk gene expression, the average biologic 

signal within the tumor is likely a major driver of the microenvironment cues. These findings 

are underscored by the recent work of Dai et al. which found a similar relationship between 

the RSI and immune response,44 which now combined with this work, represents >20,000 

independent tumor samples.

This data suggests radiation sensitivity, estimated by the RSI, may be related to unique 

tumor immune microenvironments that may be leveraged with combinatorial approaches 

using immunotherapeutics. At present, there are limited tumor samples from patients treated 

with both radiation and immunotherapy, therefore future investigations retrieving these types 

of samples will be needed to assess this interaction formally. Last, inference of the tumor 

immune contexture by bulk gene expression analysis may not fully recapitulate the true 

immune microenvironment, thus will require further interrogation of patient tissues coupled 

with mechanistic studies.

At present, radiation therapy is not personalized according to a patient’s tumor biology. 

Great strides are currently being made in the field of radiation oncology to address 

this unmet need, as it is becoming more evident the molecular make-up and cellular 

composition of a tumor may influence the diversity of therapeutic responses seen in 

clinic. The genomically-adjusted radiation dose (GARD), is a measurable tumor feature 

that has been proposed to help inform radiation dose selection in patients.8,9 The RSI is a 

major input, and consequently, a readout of the GARD. Here we show the RSI describes 

heterogeneity in radiation sensitivity across various tumor types and measures a coordinated 

biology driven by a STAT1-IRF1 transcriptional program. This RSI transcriptional network 

supercluster infers certain immune cell types populate IFN-rich tumors which are classified 

as radiosensitive. Similar to other previously identified transcriptomic signatures,62 the RSI 

may represent a pan-cancer transcriptional network supercluster which links two assumed 

distinct tumor attributes, radiosensitivity and immune activity, into one coordinated biologic 

readout. The tumor immune contexture is increasingly being identified as a major rheostat of 

patient outcomes in relation to various anti-cancer therapies, thus a deeper understanding of 

the interconnectedness of these features is needed to optimize strategies combining radiation 

and immune-based therapies.
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Figure 1. Tumor types cluster by transcriptional programs.
Multidimensional reduction analysis of transcription data from 10,469 tumors by the t-

distributed stochastic neighbor embedding (t-SNE) method demonstrates distinct clustering 

of tumor types.
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Figure 2. Characterization of tumor radiosensitivity and coordinated biology estimated by the 
RSI.
(a) Violin plots depicting distribution of RSI values across 10,469 primary tumor samples 

representing 31 tumor types. (b) Hartigan’s dip statistic across 31 tumor types to evaluate for 

unimodal distributions of RSI. Analysis demonstrates that several tumor types do not have 

a unimodal distribution of RSI values, which suggests biologic heterogeneity. Dashed line 

on each density plot represents the tumor type-specific median RSI value. (c) Heatmap 

of differentially expressed probesets (n=209, representing 146 unique genes) between 
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radiosensitive (RSIlo) and radioresistant (RSIhi) tumors across six or more of the 31 tumor 

types, which are concordant in direction of expression (up, red; down, blue; no change, 

gray). See Supplemental Table 5 for list of probesets. (d) Differentially expressed probesets 

(146 genes) from Figure 2c were used as seeds for network generation (see Methods). Genes 

upregulated (red), downregulated (green) in RSIlo versus RSIhi tumors are depicted; node 

size indicates degree of edges. Yellow nodes indicate bridging genes.
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Figure 3. Evaluation of the association between immune cell infiltration, regulators of immune 
escape and the RSI.
(a) Violin plots depicting distribution of ESTIMATE-derived immune score values across 

10,469 primary tumor samples representing 31 tumor types. (b) Integration of RSI and 

the immune score where radiosensitive (RSIlo; blue-green) radioresistant (RSIhi; purple) 

categorization is determined by the median RSI value within each tumor type. (c) Scatter 

plots of the RSI and immune score among high correlated and low correlated tumor 

types with Pearson’s correlation coefficient and Spearman’s ρ shown. (d) Heatmap of 
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log2 gene expression differences of markers of immune escape between RSIlo and RSIhi 

tumors. Markers are categorized as defined by Charoentong et al. into immunostimulators, 

immunosuppressors and MHCs (class I, class II, non-classical) and genes were clustered 

within groups and row ordered (tumor type) from decreasing median immune score.
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Figure 4. The RSI describes distinct tumor immune microenvironments.
(a) RSIlo versus RSIhi tumors were compared with single sample gene set enrichment 

analysis (ssGSEA) using the MSigDB hallmark pathway genes related to immune signaling. 

Heatmap intensity depicts the -log p-value of the Fisher exact test multiplied by the 

directionality of expression difference; enriched in RSIlo (red) or RSIhi (blue). Tumor 

types are ordered by the immune score. (b) Tumor types are ordered by immune score 

and normalized CIBERSORT immune cell infiltrate estimates are compared within a given 

tumor type by dichotomizing at the median RSI value to identify RSIlo and RSIhi tumors. 
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Immune cell infiltrates involved in the innate (left panel) and the adaptive (right panel) 
response. Hypothesis tests (Fisher’s exact test) in tumor types between RSIhi and RSIlo 

were performed; a black bar beneath the comparison denotes false-discovery rate adjusted 

q < 0.05. Black bars to the right of heatmap indicate proportion of significant tumor types 

for given immune cell infiltrate enrichment comparison between RSIlo and RSIhi tumors. 

(d) Associations of IFNα and the RSI with immune cell (IC) subtypes as independent or 

coordinated biology. Half-circles represent whether comparison within a tumor type and IC 

subtype are significant (q < 0.05); red (RSI vs IC), blue (IFNα vs IC). Empty circles imply 

no association between variables. Tumor types are ordered by immune score.
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