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Abstract

Camptothecin is a chemotherapeutic drug widely used to treat various cancers. Ophiorrhiza pumila is an ideal plant model for the
study of camptothecin production, with various advantages for studying camptothecin biosynthesis and regulation. The DNA-binding
WRKY transcription factors have a key regulatory role in secondary metabolite biosynthesis in plants. However, little is currently
known about their involvement in camptothecin biosynthesis in O. pumila. We identified 46 OpWRKY genes unevenly distributed
on the 11 chromosomes of O. pumila. Phylogenetic and multiple sequence alignment analyses divided the OpWRKY proteins into
three subfamilies. Based on spatial expression and co-expression, we targeted the candidate gene OpWRKY6. Overexpression of
OpWRKY6 significantly reduced the accumulation of camptothecin compared with the control. Conversely, camptothecin accumu-
lation increased in OpWRKY6 knockout lines. Further biochemical assays showed that OpWRKY6 negatively regulates camptothecin
biosynthesis from both the iridoid and shikimate pathways by directly downregulating the gene expression of OpGES, Op10HGO,
Op7DLH, and OpTDC. Our data provide direct evidence for the involvement of WRKYs in the regulation of camptothecin biosynthesis
and offer valuable information for enriching the production of camptothecin in plant systems.

Introduction
As the leading cause of death globally, cancer can
cause nearly 10 million deaths in a year, posing a
severe threat to human health [1]. Treatment options
for cancer include surgery, anti-cancer medicines, and
radiation therapy, administered alone or in combina-
tion [2]. Camptothecin exhibits remarkable antitumor
activity by inhibiting topoisomerase I enzyme, and its
two derivatives (topotecan and irinotecan) are widely
used as anti-cancer chemotherapeutic drugs [2, 3].
As a naturally occurring plant monoterpene indole
alkaloid (MIA), camptothecin accumulates in various
distantly related plants, including Camptotheca acuminata
(Nyssaceae), Nothapodytes nimmoniana (Icacinaceae), and
Ophiorrhiza pumila (Rubiaceae) [4–6]. Compared with
woody camptothecin-producing plants, O. pumila has the
advantages of a short growth cycle, high camptothecin
content, and easy genetic transformation, which render
it an ideal model plant for the study of camptothecin
biosynthesis and regulation [1, 7].

Similar to other MIAs, camptothecin in O. pumila is
synthesized from the important precursor strictosidine
supplied by tryptamine in the shikimate pathway and
secologain in the iridoid pathway (Fig. 1) [6, 8, 9]. In the
shikimate pathway, tryptophan decarboxylase (OpTDC)
catalyzes tryptamine production from tryptophan [10].
The iridoid pathway includes nine consecutive enzymatic
steps initiated by geranyl diphosphate synthase (GPPS)
and ending with the reduction of loganin to secologanin
catalyzed by secologanin synthase (OpSLS) [11–13]. Stric-
tosidine synthase (OpSTR) then catalyzes the formation
of strictosidine from tryptamine and secologanin. Finally,
strictosidine is converted to camptothecin through vari-
ous biochemical reactions such as oxidation, reduction,
cyclization, and isomerization [14]. Interestingly, the
biosynthesis of strictosidine in O. pumila is distinct from
that in C. acuminata [9, 15], in which strictosidinic acid
serves as the final precursor. Still, the transcriptional
regulation of camptothecin biosynthesis remains largely
unknown in the camptothecin-producing plant O. pumila.
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Figure 1. The putative camptothecin biosynthetic pathway in O. pumila. The three dashed arrows indicate that the camptothecin biosynthetic pathway
in camptothecin-producing plants is still unknown.

As a large family of transcription factors (TFs), the
WRKYs have been reported to participate in various
plant developmental and physiological processes and
responses [16, 17]. The name WRKY refers to a highly
conserved domain with nearly 60 amino acids that
contains the signature WRKYGQK sequence and a non-
typical zinc-finger-like motif (C2H2 or C2HC) [18, 19].
Several variants of the WRKYGQK motif have been
reported, including WRKYGEK and WRKYGKK. Also,
atypical WRKY motifs have been suggested, containing
the consensus sequence W(R/K)(K/R)Y [20]. WRKY
proteins were initially classified into three groups based
on the number of WRKY domains and the type of
zinc finger [18]. WRKY group I proteins contain two
WRKYGQK motifs and a C2H2 zinc finger, whereas
group III proteins contain one WRKYGQK motif and a
C2HC zinc finger [19, 21]. Group II proteins contain one
WRKY domain and a C2H2-type zinc finger, and they
can be further classified into five subgroups according
to the presence of short conserved structural motifs [22].
Recently, WRKY proteins have been found to regulate the
biosynthesis of plant secondary metabolites, including
various alkaloids. Their mode of action lies in their

ability to bind the W-box in the promoters of their target
genes [23–25]. For example, HpWRKY44 was reported to
regulate betalain biosynthesis in Hylocereus polyrhizus
fruit by transcriptionally activating cytochrome P450-
like (HpCytP4501) expression [26]. CjWRKY1 acts as a
transcriptional activator and positively regulates the
biosynthesis of benzylisoquinoline alkaloids [27]. Both
CrWRKY1 in Catharanthus roseus and OpWRKY2 in O.
pumila positively regulate monoterpenoid indole alkaloid
biosynthesis by directly affecting the expression of the
TDC biosynthetic gene [7, 16]. OpWRKY1 was shown to
act as a negative regulator of camptothecin production
in O. pumila hairy roots. Developmental changes in O.
pumila hairy roots caused by overexpression of OpWRKY3
resulted in increased accumulation of camptothecin,
also promoting the transcription of OpCPR [28, 29]. In
general, the WRKY transcription factors play an essential
role in regulating the biosynthesis of specialized metabo-
lites.

With the mining of large-scale genome data, genome-
wide identification and characterization of the WRKY
transcription factors have been performed in a variety
of plants, including Arabidopsis thaliana [21], Oryza sativa
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Figure 2. Chromosome-level analyses of the OpWRKY gene family in the O. pumila genome assembly. a. Chromosomal locations of OpWRKY genes and
their synteny are illustrated by the circos diagram. Colored lines indicate similarity. b–e. Synteny analysis of WRKY genes between O. pumila and A.
thaliana, O. sativa, V. vinifera and C. eugenioides, respectively.

[30], Glycine max [31], Populus trichocarpa [32], Vitis vinifera
[33], Pyrus bretschneideri [34], Moringa oleifera [35], and
Santalum album [36]. However, there is little information
on the identification of WRKY transcription factors and
the functional characterization of camptothecin biosyn-
thesis regulation in camptothecin-producing medicinal
plants. The recent high-quality genome assembly of O.
pumila provides an opportunity for genome-wide identi-
fication, characterization, and investigation of physiolog-
ical functions of WRKY genes [1].

Here, forty-six OpWRKY genes were identified in the
O. pumila genome, and their chromosomal locations,
collinearity, classification, evolution, and expression
patterns were analyzed. Based on our biochemical
assays, OpWRKY6 was characterized as a negative
regulator of OpGES, Op10HGO, Op7DLH, and OpTDC genes.
OpWRKY6 binds to their promoters and simultane-
ously regulates the iridoid and shikimate pathways
to reduce camptothecin production. Our identification
and characterization of WRKY TFs in O. pumila and the
functional characterization of OpWRKY6 as a regulator
of camptothecin production provide novel insights and
tools for re-engineering medicinal species enriched in
valuable natural products.

Results
Identification and characterization of WRKY
genes in the O. pumila genome
To identify candidate WRKY genes, an HMM search
was performed against the O. pumila genome using the
WRKY domain (PF03106), and 46 OpWRKY genes were
obtained. OpWRKY1–3 were reported previously, and
OpWRKY4–46 were named based on their positions on
the O. pumila genome sequence (Table S1). Using the

online CDD and SMART programs, the integrity of the
WRKY domain was confirmed. Further characterization
included analysis of subcellular localizations, amino acid
lengths, molecular weights (MWs), and isoelectric points
(pIs) (Table S1). Subcellular localization predictions
indicated that all 46 proteins were found in the nucleus.
Protein sequence lengths ranged from 195 (OpWRKY46)
to 785 (OpWRKY41) amino acids, corresponding to
MWs between 21.84 kDa (OpWRKY46) and 86.03 kDa
(OpWRKY41), with an average of 44.08 kDa. The pIs varied
from 4.77 (OpWRKY32) to 9.66 (OpWRKY33). All the data
suggested a high variability among WRKY genes in the O.
pumila genome. In addition, the number of WRKY family
members in this study was much higher than that of
WRKY members annotated in a previous transcriptome
sequencing (Table S1 and S2). The present study provides
a more comprehensive analysis of candidate OpWRKY
genes.

As illustrated in Fig. 2a, 46 OpWRKY genes were dis-
proportionately distributed across the 11 chromosomes
of O. pumila. For example, OpWRKY genes were most
abundant on Chr 9, with 9 genes, and least abundant on
Chr 3, with only one gene (Fig. S1). Syntenic blocks within
the O. pumila genome were examined to identify rela-
tionships among the OpWRKY genes and potential gene
duplication events (Fig. 2a). Seven OpWRKY gene pairs
were found in the O. pumila genome and were located
on different chromosomes, indicating that segmental
duplications in these regions probably contributed to
expansion of the OpWRKY family.

Four comparative syntenic maps of O. pumila were
constructed at the genome-wide level with four rep-
resentative species, including one monocot (O. sativa)
and three dicots (Arabidopsis, V. vinifera, and Coffea
eugenioides) (Fig. 2b–e). A total of 40 OpWRKY genes

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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Figure 3. Protein sequence alignment of all OpWRKYs in O. pumila. The conserved WRKY domains are underlined, and the conserved zinc finger
domains are highlighted in black boxes with asterisks.

showed syntenic relationships with those in C. euge-
nioides, followed by Arabidopsis (34), V. vinifera (18), and
O. sativa (15) (Table S3). There were 53, 22, 19, and
63 orthologous pairs between the other four species
(Arabidopsis, O. sativa, V. vinifera, and C. eugenioides).
Collinear pairs were identified with the four other species
(with 6 OpWRKY genes, OpWRKY1, 3, 22, 34, 35, and 44),
suggesting that these orthologous pairs may have existed
before the ancestral divergence.

Classification and phylogenetic relationships of
OpWRKY genes
Multiple sequence alignments were performed to iden-
tify the structural features of the OpWRKY proteins.
The majority of the 46 OpWRKY proteins (36/46,
78.3%) contained a single conserved WRKY domain,
and the remaining 10 proteins (21.7%) contained two
conserved WRKY domains (Fig. 3 and Table S4). In the
WRKY domains, the WRKYGQK motif was relatively

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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conserved across all OpWRKY family members, but
five OpWRKYs differed at one residue, resulting in
a WRKYGKK domain, similar to reports from other
species such as tomato [37], Sesamum indicum [38], and
Cucumis sativus [39]. All OpWRKY proteins had the C-
X4–7-C-X22–23-H motif, forming C2HC or C2H2 zinc-finger
structures.

The conserved WRKY domains from OpWRKYs and
AtWRKYs were used to construct a phylogenetic tree
and were classified into three groups (Fig. S2) [18]. Ten
members belonged to Group I and contained two WRKY
domains. Group II consisted of 31 OpWRKY proteins and
was further divided into 5 subgroups, containing 2, 5, 14,
4, and 6 members in subgroups IIa–IIe, respectively. Five

members of group III were found in the O. pumila genome,
all of which contained a WRKYGQK domain and a C2HC-
type zinc finger motif.

Gene structure and conserved motif analysis of
OpWRKY genes
Ten conserved motifs in the WRKY proteins of O. pumila
were identified and are shown in Table S5. Motifs 1 and
2 were widely distributed in all OpWRKY proteins, cor-
responding to the conserved WRKY domain. Motifs 3, 4,
and 9 were only found in the type I group. Motifs 6, 7,
and 8, were only detected in group II; motifs 6 and 8 were
only found in IIa and IIb; and motif 7 was only detected
in IIc (Fig. 4b). The majority of proteins that belong to

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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the same class based on similar motif compositions may
have similar functions.

Exon-intron organization analysis of OpWRKY genes
was also performed. The number of exons in the
OpWRKYs ranged from one to six. Among the 46 OpWRKY
genes, the majority (56.5%) were spliced with three exons
and two introns (Fig. 4c). OpWRKY genes with similar
structures clustered together, such as subgroup IId and
group III with three exons and two introns or subgroup IIa
with five exons and four introns. Group I and subgroup
IIb contained 4–6 exons, subgroup IIc contained 2–4
exons, and subgroup IIe contained 3 exons, except for
OpWRKY32 (Fig. 4c). These results demonstrated that
OpWRKYs exhibited diverse intron/exon structures.

In addition, cis-acting elements were analyzed in
a 3000-bp regulatory region upstream of the ATG
(promoter). Hormone-responsive (556), light-responsive
(499), and stress-responsive (289) boxes were found in the
promoter regions of OpWRKY genes (Table S6). Hormone-
related elements for methyl jasmonate (MeJA) (186),
abscisic acid (ABA) (155), ethylene (81), gibberellin (GA)
(57), salicylic acid (SA) (50), and auxin (29) were also
detected in the promoters of the OpWRKY genes. A num-
ber of stress-related promoter regions were identified
in OpWRKY genes, including anaerobic induction (122),
wound induction (57), drought (55), low-temperature (30),
and defense (25) boxes. Meristem-related (49), circadian-
related (19), and endosperm expression (13) cis-acting
elements were also identified in the OpWRKY promoters.
These results suggest that various cis-acting promoter
elements may regulate OpWRKY genes during growth
and stress responses.

Co-expression network analysis of OpWRKY
genes
Using the expression data, we performed hierarchical
clustering and generated heat maps to visualize the
expression of OpWRKYs and camptothecin biosynthesis
genes in different tissues (Fig. S3). As illustrated in
Fig. S3a, some OpWRKY genes had higher transcript
accumulation in one or more tissues. For example,
OpWRKY3, OpWRKY6, OpWRKY9, OpWRKY10, OpWRKY14,
OpWRKY20, OpWRKY23, OpWRKY24, OpWRKY38,
OpWRKY40, and OpWRKY45 showed the highest expres-
sion levels in the root, consistent with most camp-
tothecin biosynthesis genes (Fig. S3b). In addition, the
expression levels of ten OpWRKY genes (OpWRKY2, 7, 12,
13, 16, 26, 32, 39, 42, and 43) were higher in leaves than
in stems and roots. These results indicated that OpWRKY
genes have diverse tissue-specific expression patterns,
suggesting a non-specific tissue-dependent role.

A co-expression network was constructed between
OpWRKYs and nine important camptothecin biosyn-
thesis genes. As illustrated in Fig. 5, twenty OpWRKYs
were strongly correlated with camptothecin biosynthesis
genes. OpWRKY6 and OpWRKY40 were strongly positively
correlated with 5 and 6 camptothecin biosynthesis
genes, respectively. In addition, OpWRKY15 was strongly
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represent camptothecin biosynthetic pathway genes and OpWRKY
genes, respectively. Larger circles indicate higher expression levels of
OpWRKY genes in roots compared with leaves. Edges are drawn when
the linear correlation coefficient is >0.8 with p-value <0.05.

negatively correlated with five camptothecin biosynthe-
sis genes. Furthermore, the transcript level of OpWRKY6
was much higher in roots than in leaves compared with
other OpWRKY genes. Overall, this result showed that
OpWRKY6 may be involved in regulating camptothecin
and its precursor biosynthesis.

Next, OpWRKY6 with a 705-bp open reading frame
(ORF) encoding 234 amino acids was isolated and
functionally characterized. Protein sequence analy-
ses showed that OpWRKY6 shared 68.84%, 58.10%,
and 53.27% identity with PtWRKY43 (AZQ19338.1),
PaWRKY19 (TKS06231.1), and TcWRKY56 (EOX95854.1),
respectively. A phylogenetic tree was constructed,
showing that OpWRKY6 clustered with AtWRKY43 in
group IIc (Fig. S4) and contained a single conserved
WRKY domain (Fig. S5). A subcellular localization assay
of OpWRKY6-YFP fusion protein indicated that it was
exclusively localized to nuclei in Nicotiana benthamiana
leaf cells. By contrast, the control transformed with pHB-
YFP showed fluorescence distributed throughout the
cell (Fig. S6). These results demonstrated that OpWRKY6
regulates transcription as a TF in the nucleus.

OpWRKY6 negatively regulates camptothecin
production in O. pumila
OpWRKY6 overexpression (OE) transgenic hairy root
lines were generated to examine the involvement of
OpWRKY6 in camptothecin biosynthesis regulation.
Thirteen independent positive transgenic lines were
verified by genomic PCR, and the positive rate for the

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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OpWRKY6-OE lines was 52.4% (Fig. 6a). The OpWRKY6
transcript levels were 2.9- to 169.6-fold higher in the
OpWRKY6-OE lines than in the empty vector (EV) control
lines, and three OpWRKY6-OE lines (OE-2, OE-9, and OE-
32) with different higher expression levels were selected
for further analysis (Fig. 6b). Compared with the control
lines, OpWRKY6-OE transgenic hairy roots showed no
significant differences in phenotype or biomass (Fig. S7).
HPLC analysis indicated that the concentration of
camptothecin in OpWRKY6-OE transgenic hairy roots was
clearly decreased (Fig. 6c). Moreover, the camptothecin
production of transgenic hairy roots and medium was
significantly lower in the overexpression lines (Fig. 6d).

The expression levels of 12 camptothecin biosynthesis
genes were analyzed in the transgenic lines. The camp-
tothecin biosynthesis-related genes Op10HGO, OpGES,
OpG10H, and Op7DLH showed a significant decrease
in expression (qPCR analysis) in the OpWRKY6-OE
transgenic lines (Fig. 6e). In addition, the transcript levels
of OpIO, OpSLS, and OpTDC were lower in OpWRKY6-OE9
and OE32 transgenic lines. Notably, the transcript levels
of 12 camptothecin biosynthesis-related genes were
significantly lower in the OpWRKY6-OE32 transgenic
line compared with the other two lines. These qPCR
results demonstrated that OpWRKY6 may control the
biosynthesis of camptothecin, probably mainly by

affecting the expression of OpGES, Op10HGO, Op7DLH,
and OpTDC.

To further elucidate the function of the OpWRKY6
TF in camptothecin biosynthesis, we attempted to
knock out OpWRKY6 of O. pumila using the CRISPR/Cas9
system. Sixty-nine independent lines were generated,
with 18 positive lines (20.3% positive rate) (Fig. S8). Three
independent lines were selected (KO-19, KO-32, and KO-
37). The sequencing chromatograms suggested that the
transgenic KO-32 line was homozygous, with mutations
in both alleles at the same DNA locus (Fig. 7a). The KO-19
line was found to have biallelic mutations (two distinct
variations), and the KO-37 line had a heterozygous
mutation (wild-type/single mutation). The expression of
OpWRKY6 was significantly lower in the transgenic KO-19
line, slightly lower in the KO-32 line, and not significantly
different from the control in the KO-37 line (Fig. 7b).
The phenotypes and biomass of OpWRKY6-KO transgenic
hairy roots were not significantly different from those of
the wild-type control (Fig. S9). HPLC analysis indicated
that the content and production of camptothecin were
significantly higher in the OpWRKY6-KO lines compared
with the control (Fig. 7c, d). The increased accumulation
of camptothecin in the knockout lines was consistent
with the upregulation of OpGES, Op10HGO, Op7DLH,
OpLAMT, OpSLS, and OpTDC (Fig. 7e). These results

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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Figure 7. Knockout of OpWRKY6 in O. pumila hairy roots. a. Genomic OpWRKY6 DNA sequences from different OpWRKY6-KO lines were detected by
DNA sequencing. b. The expression levels of OpWRKY6 in the OpWRKY6-KO lines. c, d. The content (c) and production (d) of camptothecin in the
OpWRKY6-KO lines. e. The expression levels of camptothecin biosynthesis genes in the OpWRKY6-KO lines. All data represent the means ± SD of three
biological replicates. Student’s t-test: ∗p < 0.05; ∗∗p < 0.01.

demonstrated that OpWRKY6 was a TF that negatively
regulated camptothecin biosynthesis.

OpWRKY6 acts as a negative regulator of
camptothecin biosynthesis genes
Dual-luciferase assays were performed to verify that
OpWRKY6 negatively regulates camptothecin biosynthe-
sis genes. proOpGES, proOpG10H, proOp10HGO, proOp7DLH,
proOpLAMT, proOpSLS, proOpCPR, proOpTDC, and proOpSTR
promoter regions were used to drive the luciferase (LUC)
gene as fusion reporters. Overexpression of OpWRKY6
under the control of the 35S promoter was used as an
effector (Fig. 8a). OpWRKY6 repressed the promoters of
OpGES, Op10HGO, Op7DLH, and OpTDC compared with
controls as measured by changes in LUC luminescence
(Fig. 8b). These results showed that OpWRKY6 transcrip-
tionally downregulates these four camptothecin biosyn-
thesis genes.

The promoter sequences of camptothecin biosynthesis-
related genes were analyzed to better understand
the OpWRKY6 mode of action. The OpGES promoter
contained two W-box cis-elements, W1 and W2, that
were 1563 and 441 bp upstream of the translation start
site (ATG), respectively (Fig. 9a). The Op10HGO promoter
contained five W-boxes, W1–W5, which were 741, 673,
614, 605, and 60 bp upstream of the ATG, respectively
(Fig. 9b). Three W-boxes (W1, W2, and W3) were found in

the promoter region of Op7DLH (Fig. 9c), whereas a single
W-box was identified in the OpTDC promoter (Fig. 9d).
In all cases, OpWRKY6 was able to bind the W-box in
the promoter region, but not the mutant W-box, and the
empty vector served as a negative control. Consequently,
our results revealed that OpWRKY6 negatively regulates
camptothecin biosynthesis by directly binding to W-
boxes in the promoter regions of OpGES, Op10HGO,
Op7DLH, and OpTDC, thereby repressing their expression
(Fig. 10).

Discussion
WRKY proteins are a class of transcriptional regulators
found in higher plants [25]. To date, systematic and com-
prehensive genome-wide analyses of the WRKY family
have been performed in a variety of plants [17]. However,
systematic identification and functional characteriza-
tion of WRKY proteins have rarely been performed in
camptothecin-producing plants. The genome of O. pumila
has been published, providing useful tools for genome-
wide analysis of the OpWRKY gene family [1]. In the
present study, we identified 46 OpWRKY genes based on
the O. pumila genome sequence, similar to the 47 WRKY
genes in Ricinus communis [40], 49 in Coffea canephora [41],
and 45 in Hordeum vulgare [42]. By contrast, more WRKY
members were reported in Glycine max, Malus domestica,
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Figure 8. Dual-luciferase (Dual-LUC) assays showed the suppression effect of OpWRKY6 on the promoters of camptothecin biosynthesis genes.
a. Schematic diagrams of the effector and reporter plasmids used in Dual-LUC assays. REN, Renilla luciferase internal reference gene. LUC, firef ly
luciferase reporter gene. b. Dual-LUC assay in N. benthamiana leaf cells using the constructs shown in (a). The empty vector pHB-YFP was used as the
control. The relative LUC activity was normalized to the reference Renilla (REN) luciferase. Error bars indicate the SD (n = 3). Student’s t-test: ∗p < 0.05.

O. sativa, Arabidopsis, and V. vinifera (Table S7). Out of the
46 OpWRKY genes, only 14 were found in the genome
data and not in the transcriptome data of O. pumila roots
and hairy roots (Table S1 and S2). This difference can
be explained by low gene expression or by the pres-
ence of pseudogenes. Conversely, two OpWRKY genes
(OpWRKY12 and 21) were found only in the transcrip-
tome data [7], possibly caused by alternative splicing or
incomplete genome assembly. In addition, only 34 WRKY
genes were identified in a previous O. pumila genome
using the blast_rbh.py script. Our comprehensive anal-
ysis of the OpWRKY gene family therefore provides more
meaningful data for exploring the characteristics and
functions of WRKY family members.

WRKYs can be classified into three groups based on
the motif features of the zinc finger and the number of
WRKY domains. Our data show that the 46 OpWRKYs
are divided into three distinct groups, among which 31

OpWRKYs were assigned to group II, accounting for the
largest proportion (67.4%). These results were similar
to reports from A. thaliana [18], cucumber [39], and C.
canephora [41]. In cucumber, 41 of 61 CsWRKY proteins
were assigned to group II, and in C. canephora, 34 (69.39%)
CcWRKY proteins belonged to group II. Moreover,
variations in the conserved WRKYGKK motif were
observed in OpWRKY16, OpWRKY27, OpWRKY28, OpWR
KY30, and OpWRKY43 proteins from the WRKY IIc
subgroup. Similar cases have been found in other plant
species such as C. sativus (CsWRKY10 and CsWRKY47),
Ananas comosus (AcWRKY14, AcWRKY23, AcWRKY27,
and AcWRKY43), and M. oleifera (MoWRKY24) [35, 39,
43]. Because changes in the WRKYGQK pattern may
influence normal interactions of OpWRKYs with target
genes, the binding specificities and functions of these
five OpWRKY proteins may warrant further study. In
addition, OpWRKY genes with similar gene structures

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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Figure 9. OpWRKY6 protein could directly bind to the W-box in the promoters of four camptothecin biosynthesis genes, as shown by yeast one-hybrid
(Y1H) assays. a–d. Schematic diagrams of the OpGES, Op10HGO, Op7DLH, and OpTDC promoters. The positions of potential W-boxes are shown as red
triangles. Y1H assays were repeated three times.

and motif compositions always clustered in the same
class, such as groups IId and III that contained three
exons and two introns (Fig. 4). These points supported
the phylogenetic results based on motif compositions,
conserved protein architecture, and similarity in gene
structures.

WRKY TFs have been found to play important roles
in plant development and defense response. In A.
thaliana, AtWRKY41 is an important regulator of abscisic
acid insensitive 3 (ABI3) expression, conferring reduced
primary seed dormancy [44]. Three WRKY transcription
factors (AtWRKY46, AtWRKY54, and AtWRKY70) have
been reported to participate in BR-regulated plant growth
by cooperating with BES1 to regulate BR signaling [45]. In
this study, the tissue expression profiles of OpWRKYs
showed that most OpWRKY genes had diverse tissue-
specific expression patterns; for example, OpWRKY6
was highly expressed in roots. In addition, hormone-
responsive (556), light-responsive (499), and stress-
responsive (289) boxes were found in the promoter
regions of OpWRKY genes (Table S6). These findings
revealed that the OpWRKY genes may be regulated by
various cis-acting elements in their promoters during
growth and stress responses.

Emerging experimental data demonstrate that WRKY
transcription factors can regulate a variety of plant
secondary metabolites, including terpenoids, phenyl-
propanoids, and alkaloids [25]. In Artemisia annua,
AaWRKY9 was reported to positively regulate the expres-
sion of AaDBR2 and AaGSW1 and increase artemisinin
accumulation [46]. SlWRKY73 activates the expression
of three monoterpene synthase genes in Solanum lycop-
ersicum [47]. In H. polyrhizus, HpWRKY44 transcriptionally
activates HpCYP450-like1, which regulates betalain
biosynthesis [26]. In C. roseus, CrWRKY1 was shown to
regulate the monoterpenoid indole alkaloid pathway
by activating the central pathway gene CrTDC [16].
In O. pumila, we reported the involvement of three
Group III WRKY TFs in the regulation of camptothecin
biosynthesis. Analysis of OpWRKY3 transgenic hairy
roots indicated that OpWRKY3 regulated camptothecin
production by affecting the development of hairy
roots [28]. OpWRKY1 negatively regulates camptothecin
biosynthesis by binding to the OpCPR promoter, whereas
OpWRKY2 acts as a positive regulator of camptothecin
biosynthesis by activating the expression of OpTDC.
However, other WRKY subfamilies with important roles
in camptothecin biosynthesis have not been reported.

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac099#supplementary-data
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We constructed a co-expression network between
all OpWRKYs and nine key camptothecin biosynthesis
genes. These results indicated that OpWRKY6 showed
strong transcriptional overlap with five camptothecin
biosynthesis genes (Fig. 5). Multiple sequence align-
ment and phylogenetic tree analysis revealed that
OpWRKY6 clustered with AtWRKY43 from group IIc.
OpWRKY6 expression was tightly negatively correlated
with transcript levels of camptothecin biosynthesis
genes and camptothecin production in OpWRKY6-OE
and OpWRKY6-KO transgenic hairy root lines (Fig. 6, 7).
Moreover, based on in vivo and in vitro biochemical
experiments, OpWRKY6 can selectively bind to W-
box promoter elements in four camptothecin biosyn-
thesis genes (OpGES, Op10HGO, Op7DLH, and OpTDC).
These enzymes may control the flow of iridoid and
tryptamine metabolism in camptothecin biosynthesis.
Taken together, our results show that the OpWRKY6 TF
acts as a negative regulator of camptothecin biosynthesis
in O. pumila by directly regulating biosynthesis genes in
the iridoid and shikimate pathways (Fig. 10). Therefore,
our results reveal the molecular mechanism by which
OpWRKY6 regulates camptothecin biosynthesis and
provide a strategy for increasing camptothecin content.

Conclusion
In this work, we first provided a systemic analysis
of OpWRKY genes and then identified 46 OpWRKYs

based on the O. pumila genome sequence. We identified
OpWRKY6 using co-expression network analysis between
all OpWRKYs and camptothecin biosynthesis genes.
OpWRKY6 serves as a negative regulator of camptothecin
biosynthesis by directly binding to and inhibiting the
promoters of OpGES, Op10HGO, Op7DLH, and OpTDC.
This genome-wide diversity analysis of WRKY genes in
O. pumila provides new insights for future functional
characterization of the regulation of plant specialized
metabolites such as monoterpenoid indole alkaloids.

Materials and methods
Identification of candidate OpWRKY genes in the
O. pumila genome
The O. pumila genome was downloaded from the O. pumila
Genome DataBase, and putative OpWRKY TF genes in O.
pumila were identified using HMMER3.2 with the WRKY
domain (Pfam, PF03106). Subsequently, two online pro-
grams, CDD and SMART, were used to manually confirm
whether all candidate OpWRKY proteins contained con-
served WRKY domains. The amino acid lengths, MWs,
and pIs of all OpWRKY proteins were determined using
the ExPASy website, and their subcellular localizations
were predicted with PSORT software [48].

Chromosomal locations of OpWRKYs and gene
duplications in the O. pumila genome
The chromosomal distributions of OpWRKY genes were
displayed using TBtools software. MCScanX and BLASTP
were used to analyze gene duplication events of OpWRKY
genes in the O. pumila genome [49]. The synonymous
relationships between OpWRKY genes and A. thaliana, O.
sativa, C. eugenioides, and V. vinifera WRKY genes were
displayed with the TBtools program.

Protein sequence alignment and phylogenetic
analyses
Protein sequence alignments of all conserved WRKY
domains were performed with Clustal software. WRKY
domain regions of O. pumila and A. thaliana were aligned
after retrieval from the TAIR database. A neighbor-joining
phylogenetic tree was constructed using MEGA 7.0 with
1000 bootstrap replicates [50].

Gene structure and motif composition analysis
The coding sequences (CDSs) of OpWRKYs and their
corresponding genomic sequences were used to pre-
dict exon-intron structures. Exon-intron structures of
OpWRKY genes were visualized using GSDS v2.0 software
[51]. The conserved motifs of OpWRKY proteins were
investigated using the MEME v5.1.1 online program
[52]. A schematic diagram of gene structures and
conserved motifs was displayed and re-edited with
TBtools software.

Promoter cis-acting element analysis
The 3000-bp sequences upstream of the translation start
codons of the OpWRKY genes were submitted to the
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PlantCARE database [53] to analyze the promoter regions.
The binding elements for OpWRKY genes were searched
by analyzing the 3000-bp promoter sequences of 12 genes
encoding key enzymes of the camptothecin biosynthetic
pathway using the PlantPAN 3.0 database [54].

Co-expression network of OpWRKYs and
camptothecin biosynthesis genes
To obtain candidate OpWRKYs for the regulation of camp-
tothecin biosynthesis, the tissue expression patterns of
all OpWRKYs and camptothecin biosynthesis genes were
used to construct a co-expression network using the PCC
(Partial Correlation Coefficients) method in the R plat-
form between each set of variables to calculate Pearson
correlation coefficients [55]. The correlation network was
displayed using Cytoscape software (version 3.7.2) [56].

Subcellular localization assay
First, Agrobacterium tumefaciens GV3101 strains harboring
the pHB-YFP or pHB-OpWRKY6-YFP plasmids were sepa-
rately infiltrated into leaves of N. benthamiana. Then, the
YFP signals were observed using a confocal laser micro-
scope (Carl Zeiss, Germany) after two days of infiltration.
Nuclei were stained with 20 μg/mL 4, 6-diamidino 2-
phenylindole (DAPI, Sigma) before observation.

Generation of OpWRKY6 transgenic O. pumila
hairy roots
OpWRKY6 overexpression lines of O. pumila hairy roots
were generated using the recombinant pHB-OpWRKY6-
YFP vector. An OpWRKY6 knockout vector was con-
structed using the CRISPR/Cas9 system as reported
previously [13]. The empty pHB-YFP and pCAMBIA1300
vectors were used as controls for overexpression and
knockout of OpWRKY6, respectively. All plasmids were
isolated and transferred into A. tumefaciens strain C58C1,
which was then used to transform O. pumila stems to
generate hairy roots as previously described (Fig. S10)
[15, 28]. Positive transgenic lines (OpWRKY6-OE and
OpWRKY6-KO) were verified by PCR using the relevant
primers (Table S8). PCR products of OpWRKY6-KO lines
were cloned into the pMD19T vector (Takara), and the
plasmids of individual colonies were sequenced by the
Sunya company (Hangzhou, China). Positive transgenic
hairy roots of OpWRKY6-OE and OpWRKY6-KO were
cultured in B5 liquid medium under dark conditions at
25◦C and 120 rpm for 40 days.

RNA extraction and qRT-PCR analysis
Samples of roots, stems, and leaves were collected from
2-month-old sterile O. pumila plants to determine the tis-
sue expression patterns of all OpWRKY genes. Transgenic
hairy roots were collected to analyze the expression of
OpWRKY6, OpTDC, OpGES, OpG10H, Op10HGO, Op7DLH,
OpCPR, Op7DLGT, OpIO, OpIS, OpLAMT, OpSLS and OpSTR
in OpWRKY6-OE and OpWRKY6-KO lines. Total RNA was
isolated from the three different tissues and OpWRKY6-
OE and OpWRKY6-KO transgenic lines, and qRT-PCR was

performed with three biological replicates as described
previously [7]. All gene-specific primers used in this study
are listed in Table S8. The relative gene expression levels
in different samples were calculated relative to that of
OpUBQ (Ubiquitin) using the 2−��Ct method.

Determination of camptothecin in O. pumila
hairy roots
Samples of different hairy root lines (OpWRKY6-OE,
OpWRKY6-KO, and empty vector controls) were freeze-
dried and ground into powder. Extraction of camp-
tothecin from transgenic hairy root lines and their
corresponding media were performed as described
previously [7]. High-performance liquid chromatography
(HPLC) was used to determine the concentration of
camptothecin.

Dual-luciferase assays
The recombinant pHB-OpWRKY6-YFP vector was used
as an effector to determine the regulatory role of the
OpWRKY6 TF in the camptothecin biosynthetic pathway.
For the reporter constructs, the promoters of the OpTDC,
OpGES, OpG10H, OpCPR, Op10HGO, Op7DLH, Op7DLGT,
OpIO, OpIS, OpLAMT, OpSLS, and OpSTR biosynthesis
genes were inserted into the pGREEN0800-LUC vector
and separately transformed into A. tumefaciens GV3101
strains. The empty pHB-YFP vector was used as the
control. Infiltration into leaves of N. benthamiana and
detection of luciferase activities were carried out as
described previously [7]. Three biological replicates were
performed for each combination.

Yeast one-hybrid assays
To explore the regulatory mechanism of OpWRKY6 in
camptothecin biosynthesis, yeast one-hybrid assays
(Y1H) were carried out as described previously [57].
First, the ORF sequence of OpWRKY6 was fused to the
pB42AD effector vector. Three tandem copies of the
W-box or a mutant-W-box from the promoter regions
of camptothecin biosynthesis genes were separately
inserted into the pLacZ reporter vector. Then, EGY48
yeast strains were prepared with different combinations
of effector and reporter constructs and cultured on
selective medium (SD/−Ura/−Trp/+X-gal) for 2 days.
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