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and SARS-CoV-2. 

• Highly selective to SARS-CoV-2 in 
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• Innovative, green, and cost-effective 
method to prepare an optical nano- 
probe for the SARS-CoV-2 detection.  
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A B S T R A C T   

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant 
mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/ 
antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses 
stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to over-
expression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in 
the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and eval-
uation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized 
with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus 
officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation 
revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells 
(MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through 
various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic 
nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic 
NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), 
along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, 
they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell 
lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.   

1. Introduction 

The convergence between chemistry, nanoscience, and biotech-
nology leads to the developing of new methods/technologies for 
advanced creations (Akça et al., 2021; Karaman, 2021, 2022; Deng et al., 
2022). These technologies are based on the innovative findings of the 
scientists based on their fundamental knowledge; however, sometimes, 
these innovative findings lead to unwanted effects with negative impacts 
(Liu et al., 2022; Nosrati et al., 2022; Shokri et al., 2022). One of the 
unwanted effects with negative implications on biomedical engineering 
science is the cytotoxicity of the developed new (nano)materials. In this 
case, several research groups were focused on reducing the cytotoxicity, 
but the mechanism of this cytotoxicity is what ought to be addressed 
(Huang et al., 2021; Saadati et al., 2021; Seidi et al., 2021). Nanoghosts 
(NGs) (Toledano Furman et al., 2013; Krishnamurthy et al., 2016) are 
novel and promising alternatives to targeted delivery systems, which are 
grounded based on the reconstruction of the human bone 
marrow-derived mesenchymal stem cells (MSCs) cytoplasmic mem-
branes (Akhavan et al., 2013b), mainly for tumor sites targeting (Brown, 
2013; Kaneti et al., 2016). The concept of MSCs-based nano-carriers is of 
great importance in view of the chemistry and morphology lenses. In 
these carriers, the ’ghost’ cells are prepared by removing organelles and 
cytoplasm of MSC, with the NGs size of ~200 nm. The outstanding 
feature is their extraordinary biocompatibility and their considerable 
loading capacity compared to the other vesicle-derived types of carriers 
(Lupu-Haber et al., 2019; Hwang et al., 2020). However, since para-
mount problems are mainly because by the genetic alterations and 
restructured natural organs, the use of such cellular-derived compounds 
could cause secondary health risks to humans and the environment in 
the not-too-distant future. For this reason, an inspirational approach 
may exploit the characteristics of cells and natural organs − , the mission 
of synthetic precursors with multifunctional features (Mitra et al., 2017; 
Teplensky et al., 2017). Also, this is an important factor in developing 
the (nano)structures with fully modifiable features; therefore, 
mimicking the structures of the NGs in the laboratory is considered one 
of the priorities for the next generation of translational medicine. 

The art of selective morphological synthesis is a specialty in 
advanced chemistry (Akhavan, 2010; Akhavan et al., 2016b; Ahmadi 
et al., 2020; Kiani et al., 2020b), wherein the inspiration from nature 
may provide discerning morphological syntheses, as most of the surface 
and bulk properties of these nano-carriers can be imitated (Kholafa-
zad-Kordasht et al., 2021; Kordasht et al., 2021; Mobed et al., 2021; 
Sardaremelli et al., 2021). The noticeable primary feature of NGs is their 
hollow bulk structure; the structure of the empty space experiences more 

than 80% of the bulk. Thus, structures with high and regular porosity 
could be a good candidate to imitate the bulk morphology of NGs. On the 
other hand, for their significant biocompatibility, the successful and 
relatively strong superficial interactions of these NGs with animal/hu-
man cells are not principally guest-host grounded. In order to attain such 
interactive mimicry, lipid receptors or structures are additionally 
needed, but that option dramatically increases the cost of preparation, 
thus limiting the commercialization of such nano-carriers. 

Despite extensive research on this class of synthetic vesicle-derived 
membranes, no applicable and systematic protocol exists to compete 
with naturally extracted NGs. Also, there have been no attempts made to 
design and synthesize fully inorganic nanostructure with the behavior 
similar to MSCs, rendering the deployment of NGs and MSCs very crit-
ical. It should be noted that inorganic nanostructures are considered the 
next-gold standard materials due to their significant stability, tunable 
surface, bulk structure, and modifiable features. Therefore, replacing the 
most precious biological-based materials, including the MSCs, with fully 
inorganic NGs is of great importance. 

In a serendipitous manner and prompted by our prior experience, we 
realized an unprecedented synthesis of a synthetic NG based on calcium 
and zinc by deploying the high gravity technique. The primary aim of 
this study was to use calcium- and zinc-based nanostructures for smart 
therapeutics/gene delivery applications and sensing abilities. However, 
after random morphological investigations, we envisioned that the 
present material could be the first inorganic NG synthesized in the 
laboratory. Therefore, a variety of physical, chemical, and biological 
measurements were deployed to characterize the synthesized inorganic 
NG (Scheme 1) to optimize smart cargo delivery applications and bio-
sensing abilities. Additionally, the synthesized NGs were assessed to 
develop very light, inexpensive, and practical nanobiosensors. 

2. Materials and methods 

2.1. Synthesis of CaZnO-based NGs 

In order to achieve highly stable, mono-dispersed CaZnO-based NGs 
with a reduced time of reaction and the reduced temperature, the 
modified rotating packed bed (RPB) system was used based on our 
previous explorations (Ghadiri et al., 2020; Rabiee et al., 2020a, 2021c; 
Rabiee et al., 2020f; Bagherzadeh et al., 2021). In this approach, 1:4 
stoichiometric amounts of calcium chloride hexahydrate and the zinc 
acetate di-hydrate were reacted together and then poured into the in-
ternal space of the modified RPB system. Next, the extracted solution 
(20 mL) from the leaves of Rosmarinus officinalis in the water/ethanol 
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(1:1) was added to the reaction space. 
Based on our previous know-how (Rabiee et al., 2021a, 2021b), the 

higher rotation of the internal circulation space leads to decreased 
temperature and time of reaction but optimizing the rotation speed is of 
great importance. In this experiment, 1400 rpm was selected as the 
optimized rotation speed, which steers to the high-gravity factor equal 
to 182. The temperature is the other crucial parameter that needs to be 
optimized. The aim of using the RPB system is to deploy lower 
temperatures. 

Due to the unprecedented nature of the synthesis of this type of 
nanomaterial, therefore, there is no scale available as guidance to 
compare the optimized temperature. Thus, the morphology of the syn-
thesized CaZnO-based NGs is the yardstick for optimizing the physical 
and chemical parameters. After several explorations, the temperature of 
165 ◦C was applied in this context. Notably, before any reaction on the 
internal space of the RPB, the space should be degassed with a flow of 
oxygen for an hour. 

2.2. Nanomaterial fabrication for biosensor assay 

An amount of 6 mg of as-prepared tetramesitylporphyrin (H2TMP) 
was fully dispersed into 15 mL of DMF, and the slurry was treated with 
ultrasonic in the dark for 30 min. Subsequently, 10 mg of CaZnO NG was 
introduced into the reactional mixture to produce an adequate nano-
material for biosensor assay. Finally, the reactional mixture was 
magnetically stirred for 24 h in a dark place at ambient temperature. 

2.3. Cell evaluations 

This is an important step in providing repeatable cell evaluation 
experiments to make the study suitable for pre-clinical and industrial 
applications. In addition, all the samples should be sterilized by using 
ultraviolet exposure before any cellular and molecules studies. In this 
study, the cytocompatibility investigations were conducted using the 
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) 
assay at 24 and 48 h. 

In order to evaluate a complete cellular experiment, four different 
cell lines of HEK-293 (ATCC CRL-1721™), PC12 (ATCC CRL-1721™), 
HepG2 (ATCC HB 8065), and HeLa (ATCC CCL-2) were applied for a full 
investigation. In each well, 1 × 105 cells were cultured with assistance 
from Dulbecco’s Modified Eagle’s Medium, which included 100 IU/mL 
streptomycin, 10% fetal bovine serum, and 100 IU/mL penicillin, were 
incubated at 37 ◦C at 5% CO2. After completing each time point, the 
MTT solution (100 μL, 5 mg/mL in PBS) was added to each well, fol-
lowed by further incubations and removal of the medium; ensued, for-
mazan precipitates were dissolved in DMSO. The results were evaluated 
by Elisa reader (ELX808, BioTek) at 570 nm. 

2.4. Investigation of the ssDNA and NGs interactions 

An aliquot of 55 μL of the NGs-porphyrin at 5 g/L and 24 μL of DNA 
were incubated for 20 min at 37 ◦C to analyze the possible interaction 
between the ssDNA and synthesized NGs. Also, the host-guest molecules 
were prepared using different concentrations. Then, these complexes 
were centrifuged at 14,000 rpm for 10 min for purification. The pre-
cipitates were further dissolved in ultrapure water and washed with 
ultrapure water in abundance. 

2.5. pCRISPR and ssDNA biosensor assay 

In order to investigate the biosensor assay of the pCRISPR and 
ssDNA, two different cell lines of PC12 and HEK-293 were cultured 
under the aforementioned conditions. The cells/well population was 
adjusted the same as the cytocompatibility experiments. After a day (24 
h), the release of the hydrogen peroxide was investigated based on the 
oxidation of the porphyrin (degradation of the porphyrin) upon the 
hydrogen peroxide release. 

2.6. Synthesis of NGs in assistance of radiofrequency 

The same device of RPB was used for the synthesis in this step, with 
some modifications. In this case, the RPB system was coupled with an 
sXc1800 exposure unit (Zurich, Switzerland) (Schuderer et al., 2004; 
Gerner et al., 2010). This device has two completely different wave-
guides that enables to apply different RF exposures. In addition, it is 
equipped to modulate GSM 1800 MHz fields in a sinus manner. All of the 
other conditions remained unchanged. 

2.7. Optical detection of recombinant SARS-CoV-2 spike antigen 

The targeted antigen, SARS-CoV-2 spike antigen, was diluted serially 
with varying concentrations ranging from 10 to 1000 ng/mL and 
appropriate concentrations (different ratios of the nano-probe and the 
RSCSA of the prepared modified NGs added to the solutions. The solu-
tions were incubated for 15 min at room temperature, and the fluores-
cent spectroscopy examined the color change to evaluate the RSCSA 
concentration. 

3. Results and discussion 

The original inorganic NG, CaZnO blended with Rosmarinus offici-
nalis, was characterized using different analytical techniques such as 
transmission electron microscopy (TEM; ZEISS) and field-emission 
scanning-electron-spectroscopy (FESEM; Mira-3 TESCAN), atomic 
force microscopy (AFM), and x-ray diffraction (XRD) (Fig. 1). 

These CaZnO NGs displayed an array of inorganic nanosystems with 
a predictable sequence based on the morphological analysis. A little 

Scheme 1. Schematic illustration of the synthesized CaZnO-based NGs and their porphyrin-adorned surface for biosensor and drug delivery applications.  
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aggregation was observed by observing the arrays on the FESEM (Fig. 1a 
and b); however, based on our prior experience, more aggregations were 
expected in the presence of Rosmarinus officinalis. Therefore, it has been 
concluded that the leaf extract constituents not only could serve as a 
stabilizing agent (Akhavan et al., 2012b) but, being crystallizable inside 
the structure of the synthesized NGs, can reduce the aggregations and 
mimic the predictable array of the previous corroborating report 
(Akhavan et al., 2014). This is the first time observation for a leaf ex-
tract’s effect on the crystallization of an inorganic nanostructure. 
Therefore, the exact mechanism is unknown, and only the observations 
are reported in this work. 

The TEM images (Fig. 1c and d) showed that the NGs structures bear 
a resemblance to the nature-inspired NGs extracted from the living cells, 
thus affirming the conceptual synthesis of the first fully inorganic NG 
equivalent. In addition, the rode-like structure of these NGs is in good 
agreement with the predictable arrays on the FESEM. Again, these im-
ages confirmed the hypothesis of mimicking the MSCs structures using 
fully inorganic nanostructure, but with superior and modifiable features, 
which will be presented later. 

In order to prove the crystallinity and the exact structure of the 
CaZnO NGs, a PXRD analysis was conducted. Based on the results 
(Fig. 1e), the 2θ degrees related to the presence of ZnO and Ca on the 
structure and attributed to the (101), (100), (102), (110), (002), (103), 
and (112) planes of the ZnO composition (Rabiee et al., 2020b). In 
addition, some of the diffraction patterns were broadened due to the 
presence of calcium and leaf extract (Kiani et al., 2020a). 

Next, the AFM study was conducted to ensure the surface 
morphology of the synthesized NGs, nano-arrays with the roughness in 
the range of 12.98 nm–38.54 nm, with a predictable pattern were dis-
cerned. All these corroborating results showed a nano-array and maybe 
hollow structure (due to the presence of leaf extract in the crystallization 
process). One of the important parameters regarding using different 
nanomaterials for biomedical applications is their ability to interact with 
the cells/nuclei positively and inhibit negative interactions with the 
cells/nuclei and/or tissues. 

The MSCs-based NGs could move inside the tissues/organs and/or 
cells without any negative interactions; therefore, the inorganic-based 
NGs have at least non-negative interactions. Also, one of the 

modifiable features of the synthesized NGs compared to the MSCs is 
their activity toward different pathogens, bacteria, and viruses. There-
fore, investigating the possible interactions and their effect on destroy-
ing those biological threats is of great importance. Antibacterial activity 
of the synthesized NGs was investigated against two different colonies of 
Bacillus cereus and Pseudomonas aeruginosa (Fig. 2) to determine the 
positive interactions with the cells, and the results showed considerable 
antibacterial activity compared to the used leaf extracts. It should be 
noted that this positive interaction with the bacterial strains makes them 
suitable for potential biomedical applications both in vitro and in vivo. It 
was previously shown that nanomaterials could show antibacterial ef-
fects through the following known mechanisms: generation of reactive 
oxygen species by the nanomaterials during the respiration/metabolic 
activity of bacteria (Akhavan and Ghaderi, 2012; Rabiee et al., 2020d, 
2021d), catalytic charge transferring (Akhavan and Ghaderi, 2009), 
metallic ion release (Akhavan, 2009; Nikfarjam et al., 2021; Truong 
et al., 2021), wrapping/trapping the bacteria within the aggregated 
nanomaterials (Akhavan et al., 2011; Rabiee et al., 2020e), membrane 
disruption by the extremely sharp edges of nanomaterials (Akhavan and 
Ghaderi, 2010), DNA/RNA damaging (Akhavan et al., 2013a), and 
nanobubble generation and explosion (Jannesari et al., 2020). 

In this work, the antibacterial activity of the CaZnO-based NGs can 
be ascribed to their sharp edges (visible in TEM images) and their ag-
gregation (observable in SEM images), their potential capability for the 
metal oxide-based catalytic reactions, and also Zn ion release. 

In view of the presence of porphyrin on the surface of the CaZnO- 
based NGs, a significant fluorescence effect was expected (Rabiee 
et al., 2020h), which was evaluated with hydrogen peroxide. This 
reactant leads to the deformation of the porphyrin nanostructure and 
decay in the fluorescence emission spectra. The changes were consid-
ered in the range of 0–200 μM of hydrogen peroxide (Fig. 3A), thus 
enabling them for appropriate biosensor applications. 

One of the significant challenges in bioinorganic chemistry is the 
safer synthesis and generation of biocompatible nanostructures (Akha-
van et al., 2012a, 2015, 2016a). Hence, these CaZnO-based NGs were 
evaluated by MTT assay on the HEK-293, HeLa, HepG2, and PC12 cell 
lines after 24 h of treatment (Figs. 3B), 48 (Fig. 3C), and 72 (Fig. 3D); all 
cell viability results indicate that the CaZnO-based NGs have suitable 

Fig. 1. FESEM (A and B), TEM (C and D), XRD (E), and AFM (F) images of the synthesized CaZnO NGs.  
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cell viability on < 1 μg/mL. The higher concentrations (up to 50 μg/mL) 
showed minimal and controlled cytotoxicity, with the median relative 
cell viability of 64%. These results point toward that the synthesized 
NGs have acceptable biocompatibility for further biomedical appliances 
relative to the existing literature (Farjadian et al., 2018; Ghadiri et al., 
2020). The synthesized NGs were used to detect the release of H2O2, 
which was assessed on the HEK-293 and HeLa cell lines; 12-myristate 
13-acetate (PMA) was utilized as the stimulus agent to measure the 
H2O2 release. PMA can stimulate a series of signaling pathways, which 
results in the release of H2O2 from living cells in a non-controlled way. 

The results showed that after the addition of 100 ng/mL of PMA, the 

fluorescence emission starts to decay considerably on both the HEK-293 
(Fig. 3E) and HeLa (Fig. 3F) cell lines; this concentration is equivalent to 
the addition of 22 μM and 30 μM of hydrogen peroxide on the HEK-293 
and HeLa cell lines, respectively. Further, the addition of PMA up to 290 
ng/mL led to an increase in the slope of fluorescence emission decay. 
Therefore, it can be concluded that these modified NGs can detect low 
concentrations of released hydrogen peroxides from living cells. 

Although the synthesis of these NGs with the assistance of 1,800 MHz 
fields has not revealed different structural characteristics based on the 
crystal structures, a considerable change in the bulk structure was 
observed. Thus, if we succeed in synthesizing the inorganic-based NGs, 

Fig. 2. Antibacterial activity of the synthesized NGs compared to the leaf extracts against (a) Bacillus cereus and (b) Pseudomonas aeruginosa bacterial strains.  

Fig. 3. (a) Relative cell viability of the synthesized NGs with different concentrations on the HEK-293, HeLa, HepG2, and PC12 cell lines after 24 h. (b), 48 h (c) and 
72 h of treatment; (d) Fluorescence emission spectra of the synthesized NGs-porphyrin in the presence of different concentrations of hydrogen peroxide. (e, f) 
Fluorescence emission spectra of the synthesized NGs-porphyrin in the presence of different concentrations of PMA added to the HEK-293 cell line (e) and HeLa cell 
line (f). 
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with the same significant biological results and mimicking those from 
the MSCs-based NGs, the biochemical characteristics should improve by 
applying the high fields, thus enhancing the porosity as well as the 
surface morphology. Based on the FESEM images (Fig. 4A, B, C, and D), 
the morphology of the synthesized NGs completely changed after as-
sembly with the assistance of 1,800 MHz; morphology changed to the 
hollow-nanotube structures, resembling the MSCs-based NGs. 

In addition, the TEM images (Fig. 4E and F) showed very interesting 
morphology comprising double-aligned hollow-nanotube-like structures 
with a little aggregation of nanoparticles. These images confirmed the 
successful synthesis of fully inorganic NGs, like the MSCs-based NGs. 
Interestingly, the MTT assay showed higher cellular viability compared 
to the traditional synthesis method, and in most of the cases, after 24, 
48, and 72 h of treatment, the cell viabilities were more than 90% 
(Fig. 4G, H and I), being similar to the MSCs-based NGs as well. The 
incorporation of the porphyrin on the surface of the final NGs was 
conducted, and the fluorescence spectra showed more homogenous and 
trending emissions (Fig. 3J and K); emission spectra are more homog-
enous and in expectable trend than the old one (before using 1,800 MHz 
field). 

In order to analyze the pCRISPR and ssDNA interactions with the 

NGs, these genetic materials were exposed to varying concentrations of 
NGs. Quenching of the fluorescence emission of the NGs-porphyrin was 
expected because of the presence of similar interaction of the Zn(Ca)– 
O–P bonds as recently shown by Yu et al. in the presence of Zr-MOF and 
ssDNA (Yu et al., 2020a). The results of the fluorescence emission 
spectra revealed that after loading the ssDNA on the NGs-porphyrin, the 
fluorescence emission decayed significantly (Fig. 5A). By increasing the 
ratio of ssDNA to NGs-porphyrin up to 40, the fluorescence emission 
spectrum decayed almost wholly, indicating the successful interaction 
between the NGs-porphyrin and the ssDNA. However, by doing this 
experiment with the pCRISPR, the fluorescence emission spectra did not 
show a significant decrease (Fig. 5B), presumably due to the lack of O–P 
bonds on the surface of the pCRISPR. The surface morphology of the 
fully quenched NGs-porphyrin showed little tubular structure for the 
ssDNA (Fig. 5C and D); however, these cleared after loading of the 
pCRISPR (Fig. 5E and F). This may be because of the size and surface 
morphology of the pCRISPR, which could cover the NGs completely. 

TEM analysis confirmed our hypothesis and revealed that there are 
more tubular and NGs structures for the ssDNA than the pCRISPR 
(Fig. 5G–J). Notably, these unprecedented results will open a promising 
and novel avenue in chemistry, materials science, and biotechnology. 

Fig. 4. FESEM (a–d), TEM (e and f), Relative cell viability of the synthesized NGs in assistance of 1,800 MHz field with different concentrations on the HEK-293, 
HeLa, HepG2, and PC12 cell lines after 24 h (h), 48 h (i) and 72 h (j) of treatment, Fluorescence emission spectra of the synthesized NGs-porphyrin in assistance of 
1,800 MHz field with different concentrations of H2O2 (g). 
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One of the most critical points is to identify and evaluate the pres-
ence of different concentrations of viral biomarkers (Rabiee et al., 
2021a, 2021b; Rabiee et al., 2021e). Today, the most critical challenge 
for humanity is the identification of varying concentrations of corona-
virus biomarkers, and of the utmost importance is the optical detection 
methods for the surface spike proteins (Rabiee et al., 2020c; Rabiee 
et al., 2020g; Ahmadi et al., 2021). Identifying these surface proteins can 
help prevent unwanted virus mutations and spread. Therefore, in this 
study, the ability of synthesized NGs to identify and evaluate the spike 
protein antigen was considered. 

The results showed that (Fig. 6) by increasing the RSCSA concen-
tration up to 10, the predictable and linear slope of the fluorescence 
decay could be observed, which affirms the successful optical detection 
of the SARS-CoV-2 spike antigen. However, by increasing the concen-
tration to higher than 50, the slope increased considerably, and the 
fluorescence spectra quenched significantly, which could be used to 
detect the high concentrations of the SARS-CoV-2 spike antigen. The 
results showed that the NGs-based probes could detect the trace con-
centrations of the SARS-CoV-2 spike antigen with the limit of detection 
being 10 nM. Interestingly, after the full fluorescence decay procedure, 
TEM was conducted to examine the morphology of the NGs. The results 
showed that the NGs appeared almost with full coverage of the micro-
environments and/or spike antigens; however, the rode-like 
morphology of the NGs remained intact. The size of the rode-like NGs 

decreased after the treatment with the SARS-CoV-2 spike antigen due to 
the electron transfers between the spike antigen, porphyrin ring, and the 
CaZnO-based NGs, which led to chemical oxidation of the NGs and thus 
reducing their size. Therefore, the electron transfer mechanisms were 
accelerated by decorating the surface of the NGs-porphyrin with the 
SARS-CoV-2 spike antigen, which led to the formation of nano-size NGs 
compared to the original form. 

The synthesized NGs under variable conditions, including the syn-
thesis with the assistance of 1,800 MHz, and the functionalized NGs with 
porphyrin were used to examine the ability of drug loading, internali-
zation, and biocompatibility with the HT-29 cell line. In this regard, 
bright-field, Gray-scale, DAPI stained, DOX, and merged images have 
been acquired (Fig. 7), revealing promising results; unmodified and 
newly synthesized NGs exhibited superior drug internalization inside 
HT-29 cells with promising results at the minimum concentration based 
on the literature. After changing the synthesis system (from the normal 
method to using 1,800 MHz), it appears that the HT-29 cells were iso-
lated from each other, which would be because of the presence of more 
rode-like NGs and their sizes. After treatment with porphyrin, the res-
olution of internalization of DOX increased, which is a normal phe-
nomenon because of the optical ability of porphyrin to the cells and its 
fluorescence effect by itself. The drug loading capacity for the NGs, NGs 
with the assistance of 1,800 MHz, and NGs-porphyrin was calculated at 
about 59.2, 55.8, and 61.2%, respectively. 

Fig. 5. Fluorescence emission spectra of the synthesized NGs-porphyrin with the assistance of a 1,800 MHz field in the presence of different concentration ratios of 
ssDNA (A) and pCRISPR (B). FESEM images of the synthesized NGs-porphyrin after full fluorescence decay in the presence of ssDNA (C and D) and pCRISPR (E and F). 
TEM images of the synthesized NGs-porphyrin after full fluorescence decay in the presence of ssDNA (G and H) and pCRISPR (I and J). The scale bars for the TEM 
images are 50 nm. 
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In contrast to the existing literature (Hui et al., 2019; Yu et al., 
2020b; Saeb et al., 2021), this is the first report of an inorganic nano-
material secured without any purification, which is endowed with the 
drug loading capacity and the incredible internalizations into the HT-29 
cells. Some research groups have reported the critical parameters 
regarding the tunability of the nano-carriers before any transfections 
and internalizations (Vivero-Escoto et al., 2009; Du et al., 2011; Man-
zano and Vallet-Regí, 2020). However, the merit of this study resides in 

the synthesis that precludes any extensive purifications and the gener-
ation of fully compatible nanostructures to the biological matrix. All the 
results and concluding remarks are presented in Fig. 8. One of the key 
advantages of these NGs is their non-contact interactions with the cell-
s/tissues/organs, which is a considerable advantage compared to other 
types of inorganic nanomaterials, including metal-organic frameworks 
(MOFs). A wide range of MOFs have been used for different biomedical 
applications (Table 1). However, none of them had the ability such as 

Fig. 6. Fluorescence emission spectra of the synthesized NGs-porphyrin with the assistance of 1,800 MHz field in the presence of different concentration ratios of 
recombinant SARS-CoV-2 spike antigen (a). TEM images of the synthesized NGs-porphyrin after fully fluorescence decay in the presence of recombinant SARS-CoV-2 
spike antigen (b–g). 

Fig. 7. CLSM images of the HT-29 cells treated with the NGs (A, B, C, D, and E), NGs in assistance of 1,800 MHz field (F, G, H, I, and J) and also NGs-porphyrin (K, L, 
M, N, and O). Bright-field (A, F, and K), Gray-scale (B, G, and L), DAPI stained (C, H, and M), DOX (D, I, and N), and merged (E, J, and O) images. 
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these NGs. 

4. Conclusion 

In this work, the CaZnO-based NGs were synthesized via a novel 
procedure using a high-gravity technique and a 1,800 MHz field while 
utilizing the leaf extract of Rosmarinus officinalis as a green template 
agent. Thorough chemical, physical and biological investigations have 
revealed that the synthesized NGs have comparable features to the MSCs 
NGs; these NGs showed excellent and unprecedented biocompatibility 
and superb ability for interaction with ssDNA- and/or pCRISPR-surface 
and features resembling the MSCs NGs, as revealed by morphological 
analysis. Furthermore, these inorganic NGs’ sensing/folding ability of 
ssDNA and pCRISPR, along with the in-situ hydrogen peroxide detection 
on the HEK-293 and HeLa cell lines, was found to be promising, which 
may lead to further explorations in this nascent area. 

In other experiments, the decorated NGs’ ability to detect low con-
centrations of RSCSA (with the detection limit of 10 nM) was explored, 
and the predictable/linear trends of the early detection of the spike 
antigen could be concluded. Furthermore, the porous NGs’ ability to 

encapsulate drug and their internalization in the HT-29 cell line 
revealed similar behavior compared to the MSCs in the cellular micro-
environments. Therefore, it could be possible to classify the CaZnO- 
based nanomaterials that have been synthesized with the assistance of 
1,800 MHz being the same as the MSCs structures. 

These fully synthesized NGs could increase the application of MSCs- 
like structures in different fields, including drug delivery, gene delivery, 
tissue engineering, biosensors, and even industrial applications, 
including catalytic and photocatalytic applications. Furthermore, 
because of the non-contact ability of the synthesized NGs to any of the 
organs/tissues/cells, they could be deployed in targeted (bio)sensors 
without using any types of biomarkers. However, the effect of these 
types of nanomaterials in biological systems should be investigated in 
more detail in the future. 
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Fig. 8. A summary of the results from this study.  

Table 1 
A comparison between the inorganic NGs and MOFs for multifunctional 
biomedical applications.  

The 
(nano) 
material 

Application Key advantageous Ref. 

UiO-66- 
NH2 

MOF 

Co-delivery of 
DOX/pCRISPR 

High transfection of 
pCRISPR, High drug 
loading 

(Rabiee et al., 2021b;  
Ahmadi et al., 2022) 

MOF-5 Delivery of a 
wide range of 
molecules/drugs 

High loading ability Rabiee et al., (2021c) 

MOF-5 (bio)senensor of 
coronavirus 

High surface 
modification ability, 
highly sensitive to 
coronavirus 

Rabiee et al., (2022) 

ZIF-8 Tissue 
engineering, 
drug delivery, 
(bio)sensor 

Considerable 
loading ability, 
tunable surface 
functional groups 

Velásquez-Hernández 
et al., (2021) 

ZIF-67 Drug delivery, 
(bio)sensor 

Stimuli-responsive 
behavior, tunable 
pore size 

Wu et al., (2021) 

CaZnO- 
based 
NGs 

Drug delivery, 
(bio)sensor 

It does not have any 
interaction with the 
cells/tissues/organs 

This work  
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