Table 3. CASSCF(10,8) Optimized Stationary Points and XMC-QDPT2(10,8) Single-Point Energies along the Reaction Coordinatea.
| relative energy difference, kcal/mol |
|||||||
|---|---|---|---|---|---|---|---|
| Rb | R′b | RO2• + R′O2•c | RO2···R′O2 | [ROO···OOR′]‡ | RO4R′ | [RO···O2···OR′]‡ | RO• + R′O• + 3O2 |
| H | H | 3.92 8.42 (19.17) | –0.32 2.95 | 4.19 4.13 | 0.00 | 2.34 1.71 | –12.46 9.57 (33.10) |
| Me | H | 3.09 10.88 (16.72) | –1.23 4.06 | 3.87 4.65 | 0.00 | 1.21 1.03 | –16.63 12.62 (27.22) |
| Me | Me | 0.88 3.72 (16.19) | –1.27 –0.56 | 1.40 –3.00 | 0.00 | 2.31 –3.42 | –17.41 3.98 (23.26) |
| Et | Et | 0.69 10.71 (15.14) | –1.73 5.38 | 1.53 –0.30 | 0.00 | 1.21 –0.74 | –18.37 13.64 (24.41) |
| iPr | iPr | –0.47 6.98 (15.24) | –2.92 1.23 | 1.06 –3.69 | 0.00 | 2.97 –5.40 | –17.17 12.08 (25.06) |
| Ac | Me | 7.48 19.37 (22.33) | 4.66 15.82 | d | 0.00 | 1.09 –0.44 | –20.33 14.30 (23.49) |
| Ac | Ac | 12.23 32.04 (27.43) | 8.66 26.33 | d | 0.00 | 0.05 –0.99 | –23.94 16.59 (22.68) |
| Allyl | Allyl | 1.31 14.30 (16.52) | –1.06 10.41 | 2.73 3.67 | 0.00 | 0.71 0.32 | –20.17 18.02 (23.51) |
| Ace | Ace | 2.36 19.65 (17.94) | –0.73 14.24 | 3.41 5.10 | 0.00 | 0.91 0.72 | –22.92 18.66 (22.75) |
| Ace | S-BuOH | 3.67 21.28 (16.67)e | –1.64 13.48 | 3.26 3.58 | 0.00 | 1.35 –2.82 | –21.49 45.69 (22.30)e |
| R-BuOH | R-BuOH | 3.02 21.55 (14.56)e | –2.40 13.45 | 6.64 6.76 | 0.00 | 1.11 –3.25 | –21.86 47.58 (21.80)e |
| R-BuOH | S-BuOH | 3.57 20.00 (15.24)e | –1.57 14.26 | 3.52 2.52 | 0.00 | 1.36 –3.65 | –20.87 18.70 (22.49)e |
| R-PrNO3 | R-PrNO3 | 3.44 28.03 (15.27)e | –1.82 18.61 | 3.72 5.08 | 0.00 | 1.46 –5.11 | –22.52 50.56 (22.02)e |
| R-PrNO3 | S-PrNO3 | 4.02 28.40 (14.94)e | –1.32 17.50 | 2.73 2.14 | 0.00 | 2.18 –4.59 | –21.65 25.09 (21.78)e |
Lightfaced values correspond to CASSCF energies, and bold values correspond to XMC-QDPT2 single-point energies. For comparison, values in brackets correspond to CCSD(T)-F12a/cc-pVDZ-F12 single-point total energies at ωB97X-D/aug-cc-pVTZ optimized geometries.
Data for R or R′ = H is presented for reference and comparison only: the dominant reaction pathway in these systems is not the mechanism studied here.
In the geometry optimizations, the distance between the two terminal oxygen atoms of the peroxyl moieties were frozen to 15 Å.
Barrierless formation reaction.
DLPNO-CCSD(T)-F12/cc-pVTZ-F12 used instead of CCSD(T)-F12a/cc-pVDZ-F12.