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Abstract
Submerged macrophytes play a key role in maintaining a clear-water phase and 
promoting biodiversity in shallow aquatic ecosystems. Since their abundance has 
declined globally due to anthropogenic activities, it is important to include them in 
aquatic ecosystem restoration programs. Macrophytes establishment in early spring 
is crucial for the subsequent growth of other warm-adapted macrophytes. However, 
factors affecting this early establishment of submerged macrophytes have not been 
fully explored yet. Here, we conducted an outdoor experiment from winter to early 
spring using the submerged macrophytes Potamogeton crispus and Vallisneria spinulosa 
to study the effects of shading, nutrient loading, snail herbivory (Radix swinhoei), and 
their interactions on the early growth and stoichiometric characteristics of macro-
phytes. The results show that the effects strongly depend on macrophyte species. 
Biomass and number of shoots of P. crispus decreased, and internode length increased 
during low light conditions, but were not affected by nutrient loading. P. crispus shoot 
biomass and number showed hump-shaped responses to increased snail biomass 
under full light. In contrast, the biomass of the plant linearly decreased with snail 
biomass under low light. This indicates an interaction of light with snail herbivory. 
Since snails prefer grazing on periphyton over macrophytes, a low density of snails 
promoted growth of P. crispus by removing periphyton competition, while herbivory 
on the macrophyte increased during a high density of snails. The growth of V. spinu-
losa was not affected by any of the factors, probably because of growth limitation 
by low temperature. Our study demonstrates that the interaction of light with snail 
herbivory may affect establishment and growth of submerged macrophytes in early 
spring. Macrophyte restoration projects may thus benefit from lowering water levels 
to increase light availability and making smart use of cold-adapted herbivores to re-
duce light competition with periphyton.
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1  |  INTRODUC TION

Submerged macrophytes play vital roles in shallow aquatic ecosys-
tems as they provide multiple key functions and ecosystem ser-
vices, such as maintaining a clear water phase, providing habitat 
and shelter, producing food for animals, and by facilitating biodiver-
sity (Carpenter & Lodge, 1986; O'Hare et al., 2017; Thomaz, 2021). 
Unfortunately, due to increased anthropogenic activities, the abun-
dance and diversity of submerged macrophytes have declined in 
many shallow freshwater ecosystems worldwide (Sand-Jensen 
et al.,  2000; Zhang et al.,  2017). Loss of submerged macrophytes 
also means the loss of a natural feedback loop that facilitates a clear-
water phase, and may result in the shift into an alternative stable 
state typically consisting of phytoplankton dominance and thus 
more turbid conditions. Consecutively, many functions and ecosys-
tem services of aquatic ecosystems may be lost associated with this 
alternative turbid stable state (Hilt et al., 2017; Janssen et al., 2021; 
Phillips et al., 2016).

The recovery of a submerged macrophyte vegetation is one 
of the most important goals of lake ecological restoration (Hilt 
et al., 2018). During natural conditions, the recovery of submerged 
macrophytes from the turbid state should undergo different stages 
that may take several decades to complete (Hilt et al.,  2018). The 
re-occurrence of a spring clear-water phase that can be exploited 
by a few macrophyte species (mainly pondweeds), after which a 
more diverse and abundant submerged macrophyte community can 
establish that stabilizes a clear-water state for the rest of growing 
season. In recent years, more and more knowledge has been gath-
ered on directly transplanting macrophytes in deteriorated water 
bodies to speed up re-establishment and recovery of a macrophyte 
community, which may instead be achieved within 1 or 2 years (Li 
et al., 2021; Liu et al., 2018). However, there is little to no knowl-
edge on which factors govern the success of re-establishment of 
submerged macrophytes during and after restoration projects rely-
ing on transplantation of plants. Several abiotic factors may affect 
the growth of submerged macrophytes, such as light, temperature, 
and nutrients (Bornette & Puijalon, 2011). In addition, several biotic 
factors such as herbivory, bioturbation, and effects of trophic cas-
cades, may reduce the growth of submerged macrophytes (Bakker 
et al., 2016; Hilt et al., 2018; Phillips et al., 2016; Zhi et al., 2020).

The underwater light environment is considered to be one of 
the most decisive factors affecting the distribution and growth of 
submerged plants (Middelboe & Markager,  1997). Shading by, for 
instance, suspended particulate matter, dissolved organic mat-
ter, and algae (phytoplankton and periphyton), may negatively af-
fect the germination (Going et al., 2008; Havens et al., 2004) and 
growth (Bornette & Puijalon,  2011; Philbrick & Les,  1993) of sub-
merged plants. The growth of submerged macrophytes is also (in)

directly affected by nutrient loading (nitrogen, N and phosphorus, 
P). Generally, moderate nutrient loading would enhance the growth 
of macrophytes (Bakker et al., 2010; Cronin & Lodge, 2003; Ozimek 
et al., 1993). During eutrophic conditions, phytoplankton and periph-
yton growth is promoted, which can substantially reduce the growth 
of submerged macrophytes via increased light competition (Zhang 
et al., 2020). Furthermore, changes in light availability and nutrient 
loading may modify plant nutrient content, the carbon (C):nutrient 
[nitrogen (N) and phosphorus (P)] composition, and growth rates 
(Gu et al., 2018; Velthuis et al., 2017; Zhang et al., 2020). However, 
during winter, when temperatures are low, algae growth may be 
temperature limited (Edwards et al., 2016), and eutrophication may 
thus have less impact during these early stages of submerged mac-
rophyte establishment.

Herbivory is also considered an important biological factor af-
fecting the growth of submerged plants (Bakker et al., 2016). Previous 
studies show potential for complex relationships between snails, 
periphyton, and macrophytes (Bronmark, 1989; Jones et al., 1999; 
Underwood et al., 1992). Generally, periphyton is more palatable and 
the preferred food for snails over macrophytes (Bronmark, 1989; Guo 
et al., 2021; Koleszár et al., 2021; Mormul et al., 2010). At low den-
sity, snails can promote submerged macrophyte growth by removing 
periphyton from the surface of macrophytes and thus reducing the 
competition for light and nutrients with algae (Cao et al., 2014; Jones 
& Sayer, 2003; Underwood et al., 1992). At high densities, however, 
snails can inhibit macrophyte growth directly by grazing on the plant 
(Bronmark, 1990; Li, Liu, & Gu, 2009; Zhi et al., 2020).

Herbivory may also interact with nutrient loading to affect mac-
rophyte and algal growth. During increased nutrient loading, the 
quality, namely lower C:nutrient ratios, may make primary producers 
more palatable to herbivores (Bakker et al., 2016; Liu et al., 2021). 
Similarly, herbivory may also interact with light, as reduced light may 
lower C:nutrient ratios of plants and algae also increasing palatabil-
ity and nutritional quality of plants (Cronin & Lodge, 2003). Thus, 
during both increased nutrient loading and low light conditions, the 
negative effects of snails on macrophyte growth are expected to 
increase.

To test the effects of light, nutrient loading, and snail herbivory, 
and their interaction, on the growth and stoichiometry of submerged 
macrophytes, we performed an outdoor mesocosm experiment from 
winter to early spring using the two common rooted submerged vas-
cular aquatic plants Potamogeton crispus and Vallisneria spinulosa. We 
hypothesize that (1) the growth of macrophytes will be limited by 
low light intensity, and will further decrease with increasing snail 
biomass. (2) Under high light, low snail biomass will promote macro-
phyte growth due to food preference on periphyton, releasing mac-
rophytes from competition for light with periphyton, and high snail 
biomass will inhibit macrophyte growth, because snails will start 
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feeding on macrophytes as a result of food limitation. (3) Nutrient 
loading will inhibit growth of submerged macrophytes, particularly 
under high snail biomass and low light conditions, as periphyton 
growth is stimulated and nutrient loading will increase quality of 
macrophytes for snails, namely higher nutrient contents and lower 
C:nutrient ratios.

2  |  MATERIAL S AND METHODS

2.1  |  Study species

Potamogeton crispus (curly-leaf pondweed) is native to Eurasia and 
invasive in North and South America and New Zealand. It is a cold-
adapted macrophyte with an optimum growth temperature in the 
range 10–20°C (Ren et al., 1997; Tobiessen & Snow, 1984). Turions 
of the plant germinate in fall, overwinter with little growth, and sub-
sequently grow fast during early spring after which their growth 
subsides and they eventually die and senesce in summer (Catling 
& Dobson,  1985; Tobiessen & Snow,  1984; Zhang et al.,  2022). 
Vallisneria spinulosa is endemic to China, mostly occurring in the mid-
dle and lower reaches of the Yangtze River (Wang, Song, et al., 2010), 
where it often coexists with P. crispus. V. spinulosa is a warm-adapted 
species with an optimum temperature for germination at approxi-
mately 20°C (Wang et al.,  2021). Potamogeton crispus turions and 
seedlings of V. spinulosa were obtained from another nearby lake, 
Lake Honghu (29°51′N, 113°20′ E), 2 days before the start of the ex-
periment. P. crispus turions were stored in the dark at 4°C, and seed-
lings of V. spinulosa were kept fresh in a large tank (around 1000 L) 
with tap water.

The herbivore used in this experiment is Radix swinhoei (big-ear 
radix), a pulmonated freshwater snail widely distributed throughout 
Asia, and found in a diverse set of habitats, including lakes, ponds, 
streams, rivers, and rice fields (Ziu et al.,  1979). Radix swinhoei is 
a generalist grazer which feeds on both periphyton and macro-
phytes (Li, Liu, Hu, & Yang, 2009; Xiong et al., 2010). Radix swinhoei 
snails were collected in a pond in Huazhong Agricultural University 
Fisheries College Base in Wuhan City, Central China (30°29′N; 
114°22′ E). All snails were collected by hands or fish nets, tempo-
rally stored in a bucket, sorted and evenly distributed to the selected 
containers at the first day of experiment.

2.2  |  Experimental design

Forty square polyethylene containers (around 100 L, 55 × 45 × 40 cm, 
l × w × h) were used as mesocosms and exposed to eight experimen-
tal treatments in a full factorial design (a control and three factors: 
shading, nutrient loading, and herbivory, each with two levels), with 
five replicates for each treatment (Figure S1), assigned randomly to 
the containers. The two selected light intensity levels were full sun-
light (S0, high light intensity) and 25% sunlight (S1, low light inten-
sity with shading). The two nutrient loading treatments consisted 

of nutrient loading (E1) and no external nutrient loading (E0) to the 
water column. Two snail herbivory treatments, one with (H1) and 
one without (H0) extra snails were added. The experiment lasted for 
58 days, from January 26 to March 18, 2021. Tap water was added 
bi-weekly to the containers to compensate for evaporation, how-
ever, the amount of water added to each container was little due to 
low evaporation during winter.

2.3  |  Experimental setup

The mesocosm is situated at Huazhong Agricultural University in 
Wuhan City, Central China (30°29′N, 114°22′ E). Ten centimeters 
of sediments were added which were collected from the top few 
cm of sediments in Lake Liangzi (N 30°11′3″, E 114°37′59″; sedi-
ment TN, 5.5 ± 0.4  mg g−1 and TP, 0.42 ± 0.08 mg g−1, dry weight, 
n  =  5), and were thoroughly mixed in a clean container before 
transferring it into the experimental containers. On top of this, a 
layer 35 cm of tap water was added (TN, 2.438 ± 0.249 mg L−1; TP, 
0.022 ± 0.006 mg L−1, n = 5). Each container received 12 V. spinulosa 
(shoot length:12.1 ± 2.0  cm, mean ± SD, n  =  480) and 16 P. crispus 
turions (length:5.0 ± 0.5 cm, mean ± SD, n = 640) which were planted 
evenly distributed within each container.

The treatment with shading of 75% of the incoming sunlight (S1) 
was achieved by covering the containers with one layer of black sun-
shading net. The monthly means of daily radiation is 6.9 MJ m−2 day−1 
in January in this area (Zhou et al., 2017). The nutrient solution used 
for the nutrient loading treatment (E1) was made by dissolving 
NaNO3 and KH2PO4 salts in demineralized water. Nutrients were 
added once a month to these E1 containers, simulating a high-level 
nutrient loading of 2 mg L−1 N and 0.2 mg L−1 P, a eutrophic state, 
in the range of concentration and ratio of earlier experiments by 
Coppens et al. (2016) and Jeppesen et al. (2007). For the herbivory 
treatment, adult snails (n = 5, size ranged from 1 to 3 cm) were added 
to each herbivory treatment container (H1), a density of snails similar 
to natural lakes around the Yangtze River (Wang, Pan, et al., 2010), 
and no extra snails were added to the rest of the containers (H0). Due 
to snail mortality and reproduction, and some snails even emerged in 
the treatments without adding snails (H0), probably recovered from 
the sediment or hatched from eggs attached to the leaves of V. spinu-
losa, snail biomass changed largely over time in the treatments, snail 
biomass changed largely over time in the treatments. We thus used 
the final snail biomass achieved as a continuous variable to predict 
the response parameters in our experiment.

2.4  |  Data collection

Water quality parameters were measured six times during the ex-
perimental period, on day 0, 27, 37, 44, 51, and 58. Conductivity, 
temperature, and dissolved oxygen concentration (DO) were meas-
ured using a HACH portable multi-parameter meter (HQ40d, HACH, 
USA). Total nitrogen (TN) and total phosphorus (TP) were determined 
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using spectrophotometry after digestion with K2S2O8 in an auto-
clave (120°C, 1.1 kg cm−2) for 30 min, measuring at wavelengths 220 
and 275 nm for TN, and 700 nm for TP (UV-2800, Unico, China, GB 
11894–89, GB 11893–89). At the end of the experiment, water was 
sampled from each experimental container and filtered onto GF/C 
filters to analyze chlorophyll a (Chl a) content as an indicator of phy-
toplankton biomass. Periphyton Chl a content (μg Chl a per cm2 area) 
was determined by brushing off a 9 cm2 (3 × 3 cm) area in the mid-
dle of one side wall after draining the water, filtering the brushed 
water through Whatman GF/C filters. Chl a content was determined 
spectrophotometrically after ethanol extraction (HJ 897–2017) 
(Chinese National Standards,  1996). Snails in each container were 
collected manually and wet weight was determined. Ten P. crispus 
were randomly selected in each container to measure internode 
length. All macrophytes were harvested with shoot and root sepa-
rately cleaned and blotted dry to measure wet weight, after which 
they were dried in an oven at 60°C for 48 h. Dried plant samples 
were ground individually in a 2 ml tube on a mill (MiniBeadbeater-16, 
Biospec Products, USA). Plant total C and N were determined on 
an elemental NC analyzer (Flash EA 1112, CE Instruments, Italy). P 
content was determined by incinerating and digesting the organic 
P with K2S2O8 (same to water TP analysis), and then measuring 
the dissolved phosphate concentration on a spectrophotometer 
(Cleverchem380, DeChem-Tech., Germany).

2.5  |  Data analysis

Multiple generalized linear models (GLMs), using R package lme4 
with the “glm” function (Bates et al., 2015), were employed to ana-
lyze effects of light intensity, nutrient loading, snail biomass, and 
their interactions on primary producers (including P. crispus shoot 
biomass, shoot number and internode length, V. spinulosa total bio-
mass, periphyton Chl a and phytoplankton Chl a content, C, N, P 
content and their ratios). Light intensity and nutrient loading were 
treated as categorical variables, and snail biomass as a continuous 
variable. Variance inflation factors (VIF) were calculated to test for 
collinearity problems that might arise from including interaction 
terms in the same model, and no collinearity problems were de-
tected in all the models at the criteria of VIF <5 (Sheather, 2009). 
Due to the nonlinear response of P. crispus shoot biomass and shoot 
number to snail biomass under full light, the quadratic of snail bi-
omass (poly function) was used as a predicted variable to analyze 
these effects, and the nonlinear responses were further confirmed 
by generalized additive models using “gam” function from R pack-
age mgcv (Wood,  2006) (Table  S1). Since no significant effects of 
nutrient loading were observed on the growth of macrophytes and 
periphyton (Table 1), nutrient loading and the interaction with other 
factors were excluded and analyzed again in the GLMs (Table  S2) 
and plotted. Multiple linear mixed-effects models were applied 
to test effects of the treatments on water temperature, dissolved 
oxygen, conductivity, TN, and TP, with sampling date as a random 
factor. Estimated marginal means were compared after each linear 

model test to compare the difference between the treatments, using 
package emmeans (Lenth et al., 2022). QQplot and residual plot were 
used to visually assess the normality of data. If the data were not 
normally distributed, data were transformed (data transformation 
is added in Tables 1 and S2). One sample of P. crispus (in the E1S1 
treatment) was missing after harvesting. This resulted in 39 P. crispus 
samples being available for the analysis of the three plant elemental 
compositions (plant C, N, and P content), and three plant stoichio-
metric traits (C: N, C:P, and N: P ratios).

A structural equation model (SEM) was constructed to summa-
rize the effects of shading, snail biomass, and nutrient loading on 
biomass of the macrophytes. This allowed assessing the complete 
graphical network of the interactions and relationships, with the di-
rections of paths in the SEM diagram indicating causal influences 
(Rosseel, 2012). Quadratic of snail biomass was used to predict the 
response of P. crispus biomass. Three indices of model fit were used 
with conventional significance thresholds to assess the overall fit of 
the SEM, with the χ2 p-value (p > .05), the standardized root mean 
squared residual (SRMR ≤0.08), and the comparative fit index (CFI 
≥0.95) (Hu & Bentler,  1999). All SEM procedures were conducted 
with the lavaan (version 0.6-3) package in R (Rosseel, 2012). All the 
analyses were performed using R software (ver. 4.0.1; R Core Team, 
2021).

3  |  RESULTS

3.1  |  Water quality parameters

Shading reduced water temperature (S0, 18.12 ± 0.60°C; 
S1, 16.38 ± 0.50°C) and DO concentration (S0, 
11.42 ± 0.18 mg L−1; S1, 7.85 ± 0.24 mg L−1), but increased conduc-
tivity (S0, 371.18 ± 3.77 μs cm−1; S1, 387.33 ± 3.16 μs cm−1), TN 
(S0, 1.80 ± 0.07 mg L−1; S1, 2.63 ± 0.07 mg L−1), and TP concentra-
tion (S0, 0.033 ± 0.01 mg L−1; S1, 0.045 ± 0.01 mg L−1) (Tables  S3 
and S4). TN concentration and conductivity were found to in-
crease with snail biomass (Tables  S3 and S4). Nutrient loading 
treatment increased conductivity. Shading, nutrient loading, and 
snail biomass also interactively affected DO concentration and 
conductivity (Table S3 and S4).

3.2  |  Effect of treatments on growth of 
primary producers

Nutrient loading did not affect the biomass of both submerged 
plants (Table  1). Shading decreased P. crispus shoot biomass and 
shoot number, but increased P. crispus internode length (Figures 1a 
and 2a,b). Shading and snail biomass interactively affected the shoot 
biomass of P. crispus (Table 1, Figure 1a). In the full light treatment, 
shoot biomass and number of P. crispus showed a humped-shape 
response to snail biomass, but shoot biomass declined with snail 
biomass in the shading treatment (Figures 1a and 2a). No treatment 
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effects were observed for the biomass of V. spinulosa (Table 1 and 
Figure  1b). Nutrient loading did not affect periphyton biomass. 
Shading significantly increased biomass of periphyton and phyto-
plankton. Periphyton biomass decreased with snail biomass under 
both full light and shaded conditions, while phytoplankton increased 
with increasing snail biomass only during shading (Table  1 and 
Figures 1c, d).

3.3  |  Effect of treatments on stoichiometry  
of macrophyte

No changes in N content and C: N ratio of P. crispus could be de-
tected in any of the treatments (Table  1 and Figure 3b, d). The P 
content of P. crispus decreased and C:P ratio increased under shad-
ing (Table 1 and Figure 3c, f). Plant C content decreased with snail 

biomass during shaded conditions (Table 1 and Figure 3a). Nutrient 
loading and snail biomass interactively affected C:P and N:P ratios 
of P. crispus, and the two treatments together with shading affected 
the P content and C:P ratio of P. crispus (Table 1).

3.4  |  Structural equation model

The structural equation model indicates that both shading and snails 
affect primary producer biomass (Figure 4). Shading and snail her-
bivory both negatively affected biomass of P. crispus (standardized 
path coefficient, SPC =  −0.61 and − 0.25, respectively). Snail her-
bivory decreased (SPC = −0.56), and shading increased (SPC = 0.32) 
biomass of periphyton (r2  =  0.29). Both shading (SPC =  0.35) and 
snail (SPC = 0.36) significantly increased the biomass of phytoplank-
ton (r2 = 0.49).

F I G U R E  1 Effects of shading and snail biomass on primary producers. P. crispus shoot biomass (a), V. spinulosa biomass (b), periphyton 
chl a content (c), and phytoplankton chl a content (d). S0 indicates full light, S1 indicates low light intensity under shading. Lines are fitted by 
gam functions in package ggplot2, and a solid line indicates p < .05, and a dashed line indicates p > .05. Dot symbol indicates nutrient loading, 
and triangles indicate no additional nutrients were added. p values in the panel indicate a significant effect of shading on the mean of the 
response variable
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4  |  DISCUSSION

Light intensity, nutrient loading, and snail herbivory interactively 
affected the growth of submerged macrophytes, phytoplankton, 
and periphyton during the start of the growing season. Our experi-
ment indicated that shading substantially reduced the total biomass 
and shoot number of P. crispus compared to full light conditions. 
P. crispus shoot biomass decreased with increasing snail herbivory 
under shaded conditions, which confirms the first hypothesis. Under 
full light conditions, P. crispus shoot biomass first increased and then 
decreased with increasing of snail biomass, which is in line with the 
second hypothesis. Additionally, shading promoted the growth of 
periphyton and phytoplankton, and periphyton biomass decreased 
with increased snail biomass. These interactions were furthermore 
confirmed by a structural equation model. However, no effects of 
nutrient loading and the interactions with light intensity nor snail 
herbivory on the growth of primary producers could be detected, 
thus rejecting the third hypothesis.

4.1  |  Effects of shading

Shading significantly reduced the shoot number and biomass, but 
increased the internode length of the submerged macrophyte P. 
crispus. Light is one of the primary factors determining photosyn-
thetic rate of plants, and reducing light availability thus is expected 
to inhibit the growth of submerged macrophytes, which has in-
deed been demonstrated in a number of studies (Chou et al., 2022; 
Middelboe & Markager, 1997; Riis et al., 2012), and is in line with 
our findings. Shading, however, may also promote macrophyte 

elongation as a strategy to cope with light limitation as seen in this 
and previous studies (Chou et al., 2022; Riis et al., 2012). Light also 
indirectly changed growth conditions of macrophytes in this experi-
ment, as the average water temperature was, for instance, almost 
2°C lower in the shaded treatment as compared to the full light 
treatment. Increased temperature has been shown to promote the 
growth of macrophytes (Puche et al., 2018; Rojo et al., 2017; Zhang 
et al., 2016; Zhang et al., 2022), and thus in part may explain why 
P. crispus accumulated less biomass under the shaded colder condi-
tions. No effects of shading could be detected on the growth of V. 
spinulosa, as the plant grew little in any of the treatments. Vallisneria 
species are warm-adapted species, and the plant thus may have 
grown little due to the low temperature in our experiment (Bartleson 
et al., 2014; Zhang et al., 2021).

Although shading reduced growth of P. crispus, biomass 
buildup of the other primary producers was promoted. It could 
be expected that reduced light availability may decrease primary 
producer biomass (Edwards et al.,  2016; Karlsson et al.,  2009). 
However, in a naturally complex shallow aquatic ecosystem with 
macrophytes, periphyton, and phytoplankton present, macro-
phytes may be more sensitive to light limitation, as they cannot 
win competition for light from periphyton and phytoplankton 
(Scheffer,  2004; Yamamichi et al.,  2018). Low light conditions 
may thus counterintuitively result in increased phytoplankton and 
periphyton biomass since they will be released from competition 
with macrophytes (Guan et al., 2020; Yamamichi et al., 2018). This 
could also explain why shading increased TN and TP concentra-
tions in our study. The algal community may have also shifted 
toward species that prefer low light conditions (Schwaderer 
et al.,  2011), thus maintaining growth rates and biomass (Mette 

F I G U R E  2 Effects of shading and snail biomass on shoot number and internode length of P. crispus. Shoot number (a) and internode 
length (b). S0 indicates full light, S1 indicates low light intensity under shading. Lines are fitted by gam functions in package ggplot2, and 
a solid line indicates p < .05, and a dashed line indicates p > .05. Dot symbol indicates nutrient loading, and triangles indicate no additional 
nutrients were added. p values in the panel indicate a significant effect of shading on the mean of the response variable
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et al., 2011). Shading reduced light intensity, as well as ultravio-
let radiation, which might have direct effects on the organisms, 
and these effects are species-specific (Rojo et al.,  2019; Rubio 
et al.,  2015). This might partly explain the different response of 
primary producers in our study.

4.2  |  Interactive effects of snail herbivory  
and shading

Shading and snail herbivory interactively affected the growth 
of P. crispus. Under full light conditions, low biomass of snails 

F I G U R E  3 Effects of shading, snail biomass, and nutrient loading on P. crispus elemental composition (C, N, and P contents) and 
stoichiometry (C:N, C:P, and N:P ratio). P. crispus C content (a), N content (b), P content (c), C:N ratio (d), C:P ratio (e), and N:P ratio (f). A solid 
line indicates p < .05, and dashed line indicates p > .05. Dots indicate nutrient loading, and triangle points indicate no nutrient loading. p 
values in the panel indicate significant difference in the means between the two light intensity treatment
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promoted the growth of P. crispus, while during high biomass of 
snails the macrophyte growth was inhibited. This may be a conse-
quence of preferential feeding of snails on periphyton over mac-
rophytes (Bronmark, 1989; Guo et al., 2021; Koleszár et al., 2021; 
Zhi et al.,  2020). During low biomass of snails, there is plenty of 
periphyton available to graze, and herbivory in this case releases 
macrophytes from competitive pressure for light with periphyton, 
promoting the growth of macrophytes (Yang et al.,  2020). In con-
trast, during high biomass of snails, periphyton food is depleted 
and snails will graze on macrophytes even under full light condi-
tions, thus inhibiting their growth (Zhi et al., 2020). However, dur-
ing shaded conditions, the preferential food availability (periphyton) 
to snails is limited, forcing snails to graze on macrophytes, thus we 
observed a continuous decline of P. crispus biomass with increasing 
of snail biomass.

4.3  |  Effects of nutrient loading

Increased nutrient loading was expected to increase growth of algae, 
and inhibit growth of macrophytes, as fast-growing phytoplankton 
and periphyton may outcompete macrophytes for nutrient and sub-
sequently light (Scheffer, 2004; Zhang et al., 2020). However, we did 
not find an effect of nutrient loading on the growth of macrophytes 
and periphyton, which is in accordance with previous study showing 
that moderate concentrations of nitrogen and phosphorus did not 
have a significant impact on the germination and seedling growth of 
P. crispus (Gao et al., 2005) and charophytes (Rodrigo et al., 2018). 
This may be a result of algal growth limitation by low temperatures, 
or due to other interactions with macrophytes such as, for instance, 

allelopathy (Hilt, 2006; Pakdel et al., 2013). P. crispus did not suffer 
from low temperature since it is a cold-adapted species that can ger-
minate below 10°C (Ren et al., 1997). Once temperatures rose it was 
already established and could quickly start growing in early spring, 
thus potentially outcompeting or partially suppressing growth of 
phytoplankton. An alternative explanation could be that in our ex-
perimental systems P may have limited growth of phytoplankton or 
periphyton, indicated by the relatively elevated TN:TP ratio in the 
water (N:P = 25.7 by atoms) (Klausmeier et al., 2004), but not im-
pacting the macrophytes since they can access P from the sediment 
too. Though no significant direct impact of nutrient loading on the 
growth of macrophytes was detected, nutrient loading did interact 
with other treatments to affect P content, C:P, and N:P ratios of the 
plant. These changes in nutrient content and stoichiometry may 
have impacts on herbivory via changes in food quality and palatabil-
ity (Bakker & Nolet, 2014; Frost et al., 2006).

4.4  |  Implications for lake restoration

To restore a clear-water phase in shallow aquatic ecosystems, the 
re-establishment of a P. crispus population during the end of winter 
and early spring can help recover other submerged macrophytes, as 
the growth of P. crispus can suppress the growth of algae and keep 
the water clear, improving conditions for the establishment of other 
macrophytes (Hilt et al.,  2006; Hilt et al.,  2018). As shown here, 
however, it is important to take light availability and herbivory into 
consideration, as these can significantly affect successful establish-
ment of P. crispus, particularly with ongoing climate change that may 
enhance herbivory on macrophytes (Bakker et al., 2016). Lowering 

F I G U R E  4 Structural equation model 
(SEM) of shading, nutrient loading, and 
snail biomass effects on the growth of 
primary producers. Exogenous variables 
are indicated by rounded rectangles, and 
endogenous variables are represented 
by ovals. Coefficients of determination 
(r2) are shown for all endogenous 
variables. Numbers adjacent to arrows 
are standardized path coefficients and 
indicate the effects of the relationship. 
Positive and negative effects among 
variables are depicted by green and 
orange arrows, respectively, with arrow 
thicknesses proportional to the strength 
of the relationship. Significant pathways 
(p < .05) are represented by solid lines, 
otherwise by dashed lines. The model 
satisfied each of the three model fit 
criteria with significant χ2 of p = .239, 
standardized root mean squared residuals 
of 0.012, and comparative fit index values 
of 0.981
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water level could be a good measure to increase light availability 
and thus increase P. crispus growth. Other measures to prevent her-
bivory can also be applied, for example, stocking of their predators 
or some parasites of the snail, and may be especially needed during 
high light conditions.

Furthermore, macrophytes with different thermal optima could 
be combined, as shown here where a low temperature prevented 
the growth of V. spinulosa. Since P. crispus does not tolerate high 
temperatures, it would die off during warmer conditions in sum-
mer, and it is thus essential to combine it with other macrophytes 
that germinate later and can handle warmer waters. In addition, 
with global climate change (IPCC,  2014), cold-adapted species 
might suffer more from warming through advancing growth and 
senescence, and warming might further enhance the top-down 
grazing effects of herbivores on macrophytes (Zhang et al., 2022). 
If no other macrophytes establish during the senescence of P. 
crispus the water may become dominated by phytoplankton and 
risks being shifted into a turbid state. This might further impair 
benthic food webs, a key pathway in shallow water bodies, which 
has largely been ignored (Puche et al.,  2021; Vadeboncoeur 
et al., 2003).
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