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Abstract

Autophagy is a cellular degradative pathway that plays diverse
roles in maintaining cellular homeostasis. Cellular stress caused by
starvation, organelle damage, or proteotoxic aggregates can
increase autophagy, which uses the degradative capacity of lyso-
somal enzymes to mitigate intracellular stresses. Early studies
have shown a role for autophagy in the suppression of tumorigen-
esis. However, work in genetically engineered mouse models and
in vitro cell studies have now shown that autophagy can be either
cancer-promoting or inhibiting. Here, we summarize the effects
of autophagy on cancer initiation, progression, immune infiltra-
tion, and metabolism. We also discuss the efforts to pharmacologi-
cally target autophagy in the clinic and highlight future areas for
exploration.
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Introduction

Macroautophagy (hereafter referred to as autophagy) is a lysosome-

dependent catabolic process conserved from yeast to human. The

basic function of autophagy is to maintain the integrity of proteins

and organelles, and balance cellular energy and nutrient needs. The

autophagy pathway is activated by a variety of intracellular

stressors including damaged mitochondria, pathogen infection, pro-

tein aggregates, and nutrient limitation (Parzych & Klionsky, 2014).

Short-term activation of autophagy is homeostatic and supports cell

survival under stress by removing or counteracting the intracellular

stressor. This activity is achieved through the formation of a double-

membraned vesicle called an autophagosome that captures intracel-

lular components for degradation (Zhao et al, 2021). Autophagic

breakdown of encapsulated proteins, lipids, nucleic acids, or carbo-

hydrates occurs after fusion with the lysosome, which provides the

acid hydrolases to break down diverse macromolecules so that they

can be transported back into the cytoplasm to support essential cel-

lular processes such as translation and metabolism.

Mutational inactivation of the autophagy pathway is not com-

mon in cancer, suggesting that a complete loss of autophagy is not a

major contributor to cancer development or is harmful to cell viabil-

ity (Lebovitz et al, 2015). However, dysregulation of selective or

bulk autophagy has been observed in several cancers and is linked

to disease progression (Klionsky et al, 2021). The role of autophagy

in cancer is complicated by several factors including stage of the dis-

ease, driver mutation, tissue types, and metabolic sensitivity. How-

ever, trends have emerged showing autophagy can play a tumor-

suppressive role in cellular transformation or an oncogenic role in

established disease. The tumor-suppressive role of autophagy has

been linked to inhibiting stress and reactive oxygen species, while its

oncogenic potential has been described to support cancer cell metab-

olism and inhibit immune infiltration (Amaravadi et al, 2016).

This review will focus on the role of autophagy in cancer, with

particular emphasis on recent advances in the field. We will explore

how cancer-driving pathways regulate autophagy activity and dis-

cuss the roles of autophagy in oncogenesis. Further, we will cover

animal models of oncogenesis which perturb tumor autophagy or

host autophagy. For those interested in general reviews of the

autophagy pathway, please see the following reviews (Johansen &

Lamark, 2020; King et al, 2021; Zhao et al, 2021).

ATG proteins and autophagy receptors

The formation and maturation of autophagosomes are supported by

over 30 autophagy-related (ATG) proteins. ATG proteins can be

categorized into 5 major functional groups (Fig 1). First is the

Unc-51 Like kinase 1 (ULK1) protein kinase complex, which

includes FAK family-interacting protein of 200 kDa (FIP200),

ATG13, and ATG101. In cancer models, FIP200 is the most

common component disrupted to inhibit autophagy. Second is the

phosphatidylinositol-3-kinase catalytic subunit type 3 (PIK3C3; here-

after referred to as VPS34) complex, which includes the core sub-

units of phosphatidylinositide-3-kinase regulatory subunit 4

(PIK3R4) and Beclin 1 (BECN1). Additional regulatory binding part-

ners of the VPS34 complex include ATG14, UV radiation resistance

associated gene (UVRAG), SH3 domain-containing GRB2-like pro-

tein B1 (SH3GLB1), activating molecule in BECN1-regulated autop-

hagy protein 1 (AMBRA 1) and Run domain Beclin 1-interacting and

cysteine-rich domain-containing protein (RUBCN). Beclin 1

1 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
2 Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
3 Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
4 Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA

*Corresponding author. Tel: +1 613 562 5800; E-mail: ryan.russell@uottawa.ca
This article is part of the Cancer Reviews series.

ª 2022 The Authors The EMBO Journal 41: e110031 | 2022 1 of 21

https://orcid.org/0000-0003-3364-8869
https://orcid.org/0000-0003-3364-8869
https://orcid.org/0000-0003-3364-8869
https://orcid.org/0000-0003-1892-0174
https://orcid.org/0000-0003-1892-0174
https://orcid.org/0000-0003-1892-0174
https://www.embopress.org/page/journal/14602075/focus/cancer-reviews-2021


disruption is the most prevalent method used to inhibit this complex

in cancer models. Third is the ubiquitin-like conjugation system,

which contains two subgroupings of proteins: i. ATG3, ATG4, and

ATG7 and ii. ATG7, ATG10, ATG5, ATG12, and ATG16L1. Together,

these protein cascades are responsible for the conjugation of Atg8

family members to the autophagosomal membrane. ATG5 and

ATG7 knockout mouse models are commonly used in autophagy

studies, although an inducible dominant negative version of ATG4

has recently been used quite widely. Fourth is the trafficking of the

transmembrane ATG9 protein. Fifth is the ATG2/WD repeat domain

phosphoinositide-interacting protein (WIPI) lipid transfer system. In

this review, we will pay particular attention to the first 3 groups of

autophagy proteins as they are often targeted in transgenic mouse

models of cancer.

ULK1 and VPS34 kinases
One of the earliest events in autophagosome biogenesis is the

recruitment of ULK1 to the phagophore, a membrane structure that

will expand to form the autophagosome. ULK1 and related ULK2

can both function as mammalian homologs to yeast Atg1. ULK1 and

ULK2 are the most upstream components in the autophagy

machinery and are the only protein kinases among the Atg proteins

(Zhang et al, 2021). Inhibition or deletion of both ULK1 and ULK2

results in a profound defect in stress-induced autophagy. ULK1 pro-

motes autophagy by phosphorylating several ATG protein targets

including multiple subunits of VPS34 lipid kinase complexes (Fig 1;

King et al, 2021). VPS34 is the catalytic component of these com-

plexes phosphorylating phosphatidylinositol to form phosphatidyli-

nositol 3-phosphate (PI3P). VPS34 is not exclusive to the autophagy

pathway as it also plays a key role in cellular vesicle trafficking. The

specific cellular function of VPS34 is driven by regulatory binding

partners within complexes. VPS34 promotes autophagosome forma-

tion and maturation when complexed with Beclin 1 binding partners

ATG14 and UVRAG, respectively (Kim et al, 2013). PI3P acts as an

anchor to recruit downstream autophagy proteins and promotes

autophagosome biogenesis and maturation (Zhang et al, 2021).

Ubiquitin-like conjugation systems
Autophagosome formation is dependent on two ubiquitin-like con-

jugation cascades that promote the coupling of Atg8 homologs to

phosphatidylethanolamine (PE) of the autophagosomal membrane.

Mammals have 7 isoforms of Atg8 including the microtubule-
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Figure 1. The autophagy pathway.

Autophagosome initiation is driven by protein and lipid kinase activity, which is sensitive to nutrient sensitive kinases mTORC1 and AMPK, and the PI3K-AKT pathway.
Expansion of the autophagosome requires the activity of a ubiquitin-like conjugation system that lipidated LC3 to the autophagosomal membrane. Autophagy receptors
bind LC3 to recruit cargo to the autophagosome. Recruitment of FIP200 by autophagy receptors can stimulate autophagosome biogenesis. Lysosomal fusion promotes
degradation of autophagic cargo.
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associated protein light chain 3 (LC3) family (LC3A, LC3B, LC3B2,

and LC3C) and the GABA type A receptor-associated protein

(GABARAP) family (GABARAP, GABARAP1, and GABARAPL2/

GATE16), which are all conjugated to PE on the autophagosomal

membrane (Kumar et al, 2020; Fig 1). The first ubiquitin-like system

involves the activity of ATG7 (acting as E1) and ATG10 (acting as

E2), which facilitates an isopeptide bond formation between ATG12

to ATG5 (resembling that of ubiquitin to its substrate). ATG5-

ATG12 then associates with ATG16L1 to form the core of the enzy-

matic complex (acting as E3) that conjugates LC3 to PE. The proces-

sing of LC3 and other Atg8 family members depends on the second

ubiquitin-like pathway required for lipidation (Zhang et al, 2021).

LC3 is first processed by C-terminal cleavage by ATG4 (acting as a

protease) and is then activated by ATG7 (E1). Activation by ATG7

promotes transfer of LC3 to ATG3 (E2) to form an ATG3-LC3 conju-

gate. ATG3-LC3 is then recruited to the autophagosomal membrane

by the ATG12-ATG5-ATG16L1 complex (acting as an E3), where

LC3 is finally lipidated with PE (Fig 1; Kabeya et al, 2000). The

ATG12-ATG5-ATG16L1 enzyme is phosphorylated directly by ULK1

in response to most autophagy-inducing stressors (Tian et al, 2020).

Ablation of lipidation of Atg8 isoforms in mammals inhibits nearly

all autophagy. As a result, deletion of proteins required for lipida-

tion are very common targets for inhibiting the autophagy pathway

in vitro and in vivo.

Autophagy receptors
Autophagosome cargo is often enriched for substrates that have

been ubiquitinated. Selective capture of ubiquitinated substrates is

facilitated by a class of proteins called autophagy receptors (Fig 1).

Autophagy receptors bind ubiquitinated proteins through ubiquitin

binding domains and recruit them to the autophagosome by associ-

ating with LC3 family members through a LC3-interacting region

(LIR) (Johansen & Lamark, 2020). Some membrane-embedded

autophagy receptors that promote the degradation of membranous

organelles lack a ubiquitin binding domain. These transmembrane

adaptors can be activated by phosphorylation or increased protein

levels to trigger the uptake of damaged organelles into autophago-

somes (Palikaras et al, 2018). More recently, autophagy receptors

have been shown to bind LC3 outside the LIR domain, adding

another layer of selectivity and complexity to selective autophagy

(Marshall et al, 2019). Since autophagy receptors are digested by

lysosomal proteases along with other autophagy cargos, their levels

tend to be inversely correlated with autophagic flux, making them

useful markers for studying autophagy.

The best characterized autophagy receptor is p62 (also called

sequestosome 1). p62 is implicated in several forms of selective

autophagy, including, but not limited to, aggrephagy (degradation of

protein aggregates), xenophagy (degradation of pathogens), lipo-

phagy (degradation of lipids), and mitophagy (degradation of mito-

chondria; Johansen & Lamark, 2020). In addition to binding LC3 and

ubiquitin p62 can bind other signaling molecules such as raptor (a

subunit of the mTORC1 complex) and Kelch-like ECH-associated pro-

tein 1 (KEAP1), which is a regulator of nuclear factor erythroid 2-

related factor 2 (NRF2; Katsuragi et al, 2015). Notably, NRF2 and

KEAP1 are frequently mutated in cancer (Rojo de la Vega et al, 2018).

As a result of these additional interactions, p62 functions as a regula-

tor in amino acid sensing and oxidative stress pathways (Katsuragi et

al, 2015). Some functions of p62, such as the positive regulation of

mTORC1 through raptor, are autophagy-independent. Chromosomal

amplification of 5q in renal cancer leads to increased p62 levels,

which fortifies the cell against redox stress and enhances oncogenesis

(Li et al, 2013). Like members of the Atg8 family there is a significant

degree of functional overlap possible among the autophagy receptors,

which typically contain ubiquitin binding and LIR domains to pro-

mote the targeting of autophagy cargo (Johansen & Lamark, 2020).

Autophagy receptors have more recently been shown to promote

the formation of autophagosomes by recruiting FIP200 to autop-

hagic cargo. When p62 is recruited to ubiquitinated autophagic

cargo, it promotes degradation by binding the claw domain of

FIP200 to stimulate the recruitment of autophagy-initiating enzymes

(Turco et al, 2019). The ability to recruit FIP200 is shared by many

autophagy receptors, including NBR1, NDP52, TAX1BP1, CCPG1,

and OPTN (Fig 1; Ravenhill et al, 2019; Vargas et al, 2019; Turco et

al, 2021; Zhou et al, 2021). Importantly, the recruitment of FIP200

by these receptors has been shown to be important, and in some

cases sufficient, to promote the degradation of specific cargo includ-

ing mitochondria, ER, protein aggregates, and pathogens (Ravenhill

et al, 2019; Vargas et al, 2019; Zhou et al, 2021). Not all autophagy

receptors bind ubiquitin to identify cargo for autophagosomal cap-

ture. For example, some autophagy receptors are localized to the

lipid bilayer of targeted organelles such as mitochondria or ER

(Fig 1). In addition, NCOA4 is stabilized to transfer ferritin to autop-

hagosomes when iron is low, but ferritin does not require ubiquiti-

nation for NCOA4 binding (Gubas & Dikic, 2022). The selective

degradation of cargo such as mitochondria or antigen presenting

receptors without a concomitant activation of bulk autophagy has

significant effects on tumor biology, which will be discussed in fur-

ther detail in subsequent sections.

Upstream signals and autophagy regulators

The formation of autophagosomes and therefore the rate of cellular

degradation is tightly controlled by the activity of ULK1, VPS34, and

ATG16L1-containing enzyme complexes described above. Accord-

ingly, several signal transduction pathways converge on these three

enzymes to control the initiation and rate of autophagy (King et al,

2021). Autophagy is stress responsive and as such many of the

upstream pathways regulating autophagy-promoting enzymes are

controlled by well characterized stress-sensitive kinases. For exam-

ple, nutrient deprivation is one of the earliest and best characterized

stresses capable of activating autophagy. One of the first nutrients

showed to regulate autophagy levels was branched chain amino

acids (Mortimore & Schworer, 1977). Withdrawal of amino acids

inhibits the activity of mechanistic target of rapamycin (mTOR)

complex 1 (mTORC1), which is prominently linked to autophagy

regulation (Ravikumar et al, 2003). In addition to amino acids,

mTORC1 activity is enhanced by growth factors through the class I

phosphatidylinositol 3-kinase (PI3K)-Akt pathway. mTORC1 is a

potent repressor of the autophagy pathway. Under nutrient and

growth factor sufficiency, mTORC1 blocks autophagy through inhib-

itory phosphorylation of ULK1 and the ATG14 subunit of VPS34

complexes (Fig 1; King et al, 2021). However, upon starvation

mTORC1 activity is rapidly inhibited and the repressive phosphory-

lation on ULK1 or VPS34 complexes is removed, thereby activating

these enzymes and autophagy. Dephosphorylation of ULK1 and
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VPS34 complexes under nutrient withdrawal is facilitated by the

serine/threonine-protein phosphatase 2A catalytic subunit alpha iso-

form (PP2A)-B55a phosphatase complex, which is activated upon

starvation (Wong et al, 2015; Fujiwara et al, 2016).

In cancer, mTORC1 activity is often elevated, promoting cellular

growth through control of translation and other biosynthetic pro-

cesses. Pathological mTORC1 activation is promoted through activa-

tion of PI3K signaling, which is achieved through activation of

receptor tyrosine kinase signaling or inactivation of the lipid phos-

phatase phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and

dual-specificity protein phosphatase (PTEN; Jewell & Guan, 2013).

PI3K signaling promotes AKT-mediated phosphorylation and inacti-

vation of the tuberous sclerosis complex (TSC), thus relieving the

inhibitory effect of TSC on mTORC1. Analysis of precancerous

lesions from patients harboring TSC mutations revealed a repression

of autophagy, which was reversible upon pharmacological mTORC1

inhibition (Reis et al, 2021).

Another important stress responsive kinase upstream of the

autophagy pathway is AMP activated protein kinase (AMPK). AMPK

is a serine/threonine kinase, whose activity is sensitive to intracellu-

lar ratios of AMP/ADP to ATP. In times of energetic stress, cellular

AMP and ADP levels rise. The binding of AMP and ADP to a regula-

tory subunit of the AMPK kinase complex increases phosphorylation

on the activation loop of the AMPK catalytic subunit, thereby pro-

moting kinase activity of the complex (Xiao et al, 2007; Dunlop &

Tee, 2013). Notably, serine/threonine–protein kinase STK11 (LKB1)

is a tumor suppressor kinase that directly phosphorylates and acti-

vates AMPK. In addition to the regulatory effects of AMP and ADP

on AMPK, intracellular levels of an intermediate metabolite in glycol-

ysis, fructose-1-6-bisphosphate can affect AMPK activity (Zhang

et al, 2017). Specifically, lower levels of fructose-1-6-bisphosphate

increases the activity of LKB1 on AMPK localized to the lysosome,

thereby providing another stimulatory input to AMPK upon glucose

scarcity (Zhang et al, 2017). Under energetic stress, AMPK regulates

many metabolic processes, including inhibiting lipid synthesis, gly-

colysis, and protein synthesis. AMPK also promotes autophagy by

targeting many of the same autophagy components as mTORC1.

However, AMPK-mediated phosphorylation of autophagy compo-

nents is activating rather than inhibitory (Kim et al, 2011). Specifi-

cally, AMPK can activate ULK1 through direct phosphorylation, or

VPS34 lipid kinase through phosphorylation of the Beclin 1 subunit

(Kim et al, 2013). AMPK is also capable of indirectly activating

autophagy through inhibition of mTORC1. AMPK inhibits mTORC1

through direct phosphorylation of the complex on the raptor subunit,

or through activation of the inhibitory TSC complex (Inoki et al,

2003; Gwinn et al, 2008). Taken together, AMPK can act as a power-

ful autophagy inducer by relieving the repressive effects of mTORC1

signaling and simultaneous activation of key autophagy enzymes.

Together, the regulation of autophagy machinery by the coordi-

nated activity of mTORC1 and AMPK ensures that during acute star-

vation autophagy is upregulated to generate sufficient nutrients to

support essential cellular processes. In solid tumors, the ability of

autophagy to compensate for nutrient limitation promotes survival

and cancer progression. Autophagy-deficient mice are born pheno-

typically normal, but die within 24 h after birth (Kuma et al, 2004).

Postnatal lethality poses difficulties in studying the role of autop-

hagy in disease, and as a result, most studies of the role of autop-

hagy in cancer utilize a tissue-specific knockout of autophagy genes.

Selective autophagy

Selective autophagy relies on the binding of autophagy receptors

to membrane-associated LC3/GABARAP family members and

ubiquitin. Localized activation of autophagy enzymes coupled

with the ubiquitination of damaged organelles or proteins drives

many types of selective autophagy (Johansen & Lamark, 2020).

Unlike starvation-induced autophagy, activation of selective autop-

hagy is not always accompanied by a reduction in total protein

levels for the autophagy receptors involved. For example, degra-

dation of a single invading bacteria or a few mitochondria does

not require enough p62 to affect protein levels, which also com-

plicates the analysis of selective autophagy in disease (Losier

et al, 2019). However, the lack of alteration in levels of proteins

associated with autophagic flux does not indicate that defects in

selective autophagy are devoid of biological impact. For example,

inhibition of mitophagy can affect cellular metabolism and viabil-

ity. Similarly, defects in clearance of protein aggregates because

of aggrephagy inhibition can stimulate cancer cell survival and

exacerbate neurodegeneration. Here, we will limit our discussion

of selective autophagy to mitophagy and aggrephagy. However,

there are several in-depth reviews of selective autophagy in nor-

mal and disease states (Mancias & Kimmelman, 2016; Lamark

et al, 2017; Kirkin & Rogov, 2019; Liu et al, 2020).

Mitophagy
The autophagic degradation of mitochondria (hereafter referred to

as mitophagy) is selective for damaged mitochondria. Specifically,

depolarization of the outer mitochondrial membrane (OMM) or

hypoxia-induced accumulation of mitophagy receptors can block

mitochondrial fusion and trigger isolation from the rest of the

mitochondrial compartment, thereby promoting its engulfment

into an autophagosome (Liu et al, 2012; Palikaras et al, 2018).

Efficient removal of damaged mitochondria is essential to limit

the release of reactive oxygen species (ROS), mitochondrial DNA,

and activators of intrinsic apoptosis from damaged mitochondria

into the cytosol.

Ubiquitin dependent mitophagy

The best characterized mechanism for the clearance of damaged

mitochondria involves the PTEN-induced putative kinase 1 (PINK1)

and the E3 ubiquitin ligase Parkin. This pathway is stimulated by

the depolarization of the mitochondrial membrane, which results in

stabilization and accumulation of PINK1 on the OMM (Jin et al,

2010; Shi & McQuibban, 2017). On the OMM, PINK1 phosphorylates

and activates Parkin and ubiquitin (Vives-Bauza et al, 2010; Kane

et al, 2014; Kazlauskaite et al, 2014; Koyano et al, 2014). Activated

Parkin targets mitochondrial proteins for ubiquitination, which pro-

motes the recruitment of ubiquitin binding domain-containing

autophagy receptors (Fig 1; Geisler et al, 2010; Chen & Dorn, 2013;

Sarraf et al, 2013). Despite being well characterized in vitro, the

requirement for PINK1/Parkin in physiological mitophagy remains

more elusive. For example, knocking out PINK1 in mice does not

result in a profound change in the number of mitochondria (Gautier

et al, 2008; McWilliams et al, 2018). This may be a result of PINK1/

Parkin-mediated mitophagy being activated in rare instances or

compensation by other mitophagy-inducing pathways, which are

discussed below.
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Ubiquitin-independent mitophagy

Ubiquitin-independent mitophagy uses mitochondria-localized adap-

tors that have transmembrane domains and LIRs. These adaptors

are regulated by protein stability and post-translational modifica-

tion. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

(BNIP3) and BNIP3-like (BNIP3L; also known as NIX; Mellor &

Harris, 2007) are two such mitophagy adaptors. BNIP and BNIP3L

are BH3-only containing members of the Bcl2 family that also con-

tain LIR domains (Bellot et al, 2009). Transcription of BNIP3 and

BNIP3L is sensitive to hypoxia via stabilization of the hypoxia-

inducible factor transcriptional coactivator. BNIP3 is also transcrip-

tionally regulated by forkhead box O3a (FOXO3a) and nuclear factor

kappa B (NF-kappaB) signaling (Mellor & Harris, 2007; Dhingra et

al, 2013; Chaanine et al, 2016). Phosphorylation BNIP3 and BNIP3L

near the LIR motif can increase their affinity to LC3 and upregulate

mitophagy (Zhu et al, 2013; Rogov et al, 2017; Poole et al, 2021).

Like BNIP3, FUN14 domain-containing 11 (FUNDC1) is an OMM

protein that binds LC3 to promote mitophagy under hypoxia (Liu

et al, 2012; Lampert et al, 2019). FUNDC1 is subject to inhibitory

phosphorylation by the Src kinase and activating phosphorylation

by ULK1. In addition to the pathways involving adaptor proteins

like FUNDC1, many more proteins have been implicated in mito-

phagy regulation that have been described in depth (Palikaras et al,

2018; Vara-Perez et al, 2019).

Mitophagy defects in cancer

Alterations in mitophagy may play an important role in supporting

the metabolic requirements of a cancer cell. For example, deletion

of the mitophagy adaptor BNIP3 is found in triple-negative breast

cancer and was shown to have tumor-suppressive functions in the

MMTV-PyMT murine breast cancer model (Chourasia et al, 2015).

In this model, BNIP3 deletion resulted in a reduction in the rate of

mitophagy and an increase in ROS-induced HIF1a expression

(Chourasia et al, 2015). Concordantly, siRNA-mediated knockdown

of BNIP3 in breast cancer cell lines injected into the fat pad of syn-

geneic mice resulted in a reduction of primary tumor growth and

metastases (Manka et al, 2005). Reduction of BNIP3 has been linked

to poor mitochondrial health and an increased reliance on glycolysis

(Fig 2) (Chourasia et al, 2015; Lyons et al, 2017). While aerobic gly-

colysis had been linked to metastasis, the release of reactive oxygen

species by the accumulation of defective mitochondria has also been

shown to promote metastatic potential (Ishikawa et al, 2008;
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Autophagy can inhibit tumor initiation through efficient removal of damaged mitochondria, which reduces glycolysis, ROS levels, and DNA damage. Autophagy supports
later stage tumor growth by promoting metabolic remodeling, inhibiting apoptosis and anoikis, and suppressing anti-tumor immunity (see text for details).
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Porporato et al, 2014). In triple-negative breast cancer, BNIP3

repression is predictive of poor metastasis free survival (Chourasia

et al, 2015).

Conversely, in several cancers expression of BNIP3 and family

member BNIP3L are positively correlated with poor prognosis,

which may suggest an oncogenic role for these mitophagy receptors

(Petrova et al, 2015; Chen et al, 2017; Macher-Goeppinger et al,

2017). However, this correlation may be in part due to the hypoxic

signature of advanced malignancies and the role of the HIFa tran-

scription factor in driving expression of BNIP3 and BNIP3L. The

best evidence for an oncogenic role for BNIP3L comes from a study

of KRAS proto-oncogene (KRAS) and tumor suppressor protein p53

(hereafter referred to as p53)-driven pancreatic cancer. In this

model, KRAS activation drives BNIP3L expression and enhances

redox capacity (Humpton et al, 2019). Deletion of BNIP3L resulted

in an increase in mitochondrial number and improved survival. The

expression of BNIP3 and BNIP3L is tissue specific and, in PDAC,

BNIP3 expression was not observed except in BNIP3L knockout

tumors, indicating a partial compensatory mechanism in these cells.

Therefore, it will be important in the future to tease apart the role of

these two mitophagy receptors in the promotion or inhibition of

malignancy while also mediating the oncogenic effects of tumor

hypoxia.

Parkin is encoded by the PARK2 gene, a large gene that is in the

genomically unstable region FRAG6E, which is a fragile region and

mutational hotspot in cancer (Toma et al, 2013). In kidney cancer

driven by HIF stabilization, loss of Parkin results in a reduced over-

all survival (Toma et al, 2013). Deletion of Park2 in a ras-driven

model of pancreatic cancer accelerated oncogenesis, further under-

scoring the potential tumor-suppressive functions of Parkin (Li et

al, 2018). Ablation of Parkin in this model resulted in an increase

of mitochondrial iron and HIF stabilization, which in turn promoted

glycolysis (Li et al, 2018). Due to the location of PARK2 in a geno-

mically fragile site Parkin loss has also been found in several can-

cers, although in many instances the role of mitophagy disruption

has not been explored (Vara-Perez et al, 2019). It is important to

determine the biological consequences of Parkin loss because

Parkin has functions that extend beyond promoting the recycling of

damaged mitochondria. For example, Parkin forms multiple E3–

ligase complexes to ubiquitinate cell cycle proteins including polo-

like kinase (PLK1), Aurora A&B, and cyclins E1, D, B1 (Gong et al,

2014; Lee et al, 2015). The discovery that Parkin can directly

ubiquitinate cell cycle proteins explained the observations that

Parkin deletion can increase cell division and lead to errors in chro-

mosomal segregation (Gong et al, 2014; Lee et al, 2015). In addition

to a role in regulating cell cycle through chromosomal segregation

and control of cyclin stability, Parkin may also control damage-

sensitive impediment of cell cycle. This role was identified through a

genetic interaction with ataxia telangiectasia mutated (ATM), which

is a kinase involved in DNA damage response (Sarraf et al, 2019).

The deleterious effects of deleting both ATM and Parkin were

described through a mechanism involving a Parkin-dependent

sequestration of activated TANK-binding kinase 1 (TBK1) to damaged

mitochondria, thereby inhibiting TBK1 function at the centrosome

(Sarraf et al, 2019). Interestingly, this mechanism serves to blur the

lines between the classical mitophagy activity of Parkin and its role in

regulating chromosomal segregation, further muddling the role(s)

Parkin may play in oncogenesis.

Aggrephagy
Cancer cells are routinely under oxidative stress and have activated

unfolded protein response pathways. To prevent the deleterious

effects of these pathways, cancer cells use autophagy and the

ubiquitin proteasome pathway to control the levels of protein aggre-

gates. Protein aggregates form from accumulation of misfolded pro-

teins, which protects the cell from the adverse effects of soluble

cytosolic misfolded proteins. Protein aggregates are often ubiquiti-

nated, which links these aggregates to autophagy receptors that pro-

mote their clearance (Ravikumar et al, 2002; Bjørkøy et al, 2005).

The E3-ubiquitn ligase TRIM16 has been shown to play an impor-

tant role in both the biogenesis and clearance of proteotoxic aggre-

gates. TRIM16 promotes both the ubiquitination and autophagic

clearance of proteotoxic aggregates in conjunction with p62 (Jena et

al, 2018). In a xenograft mouse model, tumors engineered with a

deletion of TRIM16 regressed upon induction of oxidative stress

when compared to the parental line (Jena et al, 2018).

The complex role of autophagy in cancer

Cancer cells grow despite a constant exposure to intrinsic and

extrinsic stressors, which would kill or halt growth in normal cells.

The ability of autophagy to counteract stress can have diverse

effects. For example, the ability of autophagy to clear-damaged

mitochondria reduces ROS and inhibits glycolysis, contributing to

tumor suppression. Conversely, autophagy inhibits apoptosis and

promotes survival in the nutrient poor tumor microenvironment,

contributing to oncogenesis. These conflicting effects of stress-

reduction by the autophagy pathway have led to the theory that

autophagy may initially play a role in tumor suppression by main-

taining cellular homeostasis, which switches to a protooncogenic

role as the tumor develops (Fig 2). Beyond the intrinsic effects of

autophagy in the cancer cell is a more recent focus on the effects of

autophagy in the tumor stroma, including its role in supporting the

metabolic requirements of the tumor and immune surveillance.

Lastly, autophagy may contribute to the metastatic potential of the

tumor by either suppressing detachment induced death (referred to

as anoikis) or by promoting cancer stem cells (Fig 2). These com-

plexities will be discussed in further detail below.

Tumor-suppressive functions of autophagy

The mutation of autophagy genes in cancer is rare and as a result

much of what we know about autophagy and cancer is gleaned from

genetically engineered mouse models (GEMM). The earliest hint of

a role for autophagy in cancer came from the characterization of

Beclin 1 as a candidate tumor suppressor in breast cancer (Liang

et al, 1999). However, the proximity of BECN to BRCA1 on 17q21

meant that its monoallelic loss in cancer may be partly driven by co-

deletion of BRCA1. Supporting this notion, BECN1 deletion is not

observed independently of BRCA1 in breast cancer, while deletions

of BRCA1 without BECN1 inactivation are observed (Laddha et al,

2014). Conditional deletion of Fip200, which encodes a binding pro-

tein required for both ULK1 and ULK2 activity, resulted in a repres-

sion of tumor growth in a MMTV-PyMT model of breast cancer,

indicating that the tumor-suppressive effects of Beclin 1 may be
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partially autophagy-independent (Wei et al, 2011). Similarly to

Becn1, deletion of Atg5 or Atg12 leads to an increase in metastases

in PyMT-driven mouse model of breast cancer that was driven by

the accumulation of the autophagy receptor neighbor of BRCA1

gene 1 (NBR1; Marsh et al, 2020). Notably, this increase in metasta-

sis upon Atg5 or Atg12 deletion underscores the diverse roles that

autophagy plays in metastasis. When the effects of autophagy inhi-

bition on primary tumor growth are controlled for, an increase in

metastatic outgrowth could be observed upon inducible ATG5 or

ATG12 disruption, uncovering a specific role for autophagy in the

suppression of metastatic outgrowth (Marsh et al, 2020). Several

additional studies have implicated BECN1 in the development of

ovarian and breast cancer (Qu et al, 2003; Yue et al, 2003; Cicchini

et al, 2014). BECN1 deletion results in genomic instability, thereby

contributing to cancer development (Fig 2; Karantza-Wadsworth

et al, 2007; Delaney et al, 2020).

While additional clarity is needed on the mechanisms underlying

Beclin 1 tumor suppression, it seems that in some genetically driven

mouse models of breast cancer that wnt family member 1 (WNT1)

is involved (Cicchini et al, 2014). A recent unbiased screen of the

proteome identified the involvement of e-cadherin and alpha catenin

in Beclin 1 tumor-suppressive function (Wijshake et al, 2021). Study

of other organs in Becn1+/� mice has uncovered an increased sus-

ceptibility to tumor development in the lung and liver (Qu et al,

2003; Yue et al, 2003), in addition to some type of breast tumors

(Cicchini et al, 2014). Interestingly, the lung and livers of Becn1+/�

mice exhibit reduced levels of p53. The link between the tumor sup-

pressors p53 and Beclin 1 is through regulation of p53 deubiquitina-

tion. Mechanistically, this is achieved by Beclin 1-dependent

regulation of ubiquitin-specific protease USP10, which stabilizes p53

through cleavage of p53 ubiquitin chains (Yuan et al, 2010;

Liu et al, 2011). Collectively, work on Beclin 1 has yielded some

clues into the tumor-suppressive functions of the autophagy path-

way, while also identifying some autophagy-independent functions

of Beclin 1 that may contribute to its tumor-suppressive function.

Since Beclin 1 has well-established autophagy-independent func-

tions, a concerted effort has been made to explore the tumor-

suppressive functions of the autophagy pathway by knocking out

genes that are both essential and autophagy specific. These studies

have provided evidence that autophagy can play an oncogenic or

tumor-suppressive function. Additional models that show tumor

suppression by autophagy include the conditional deletion of Atg5

and Atg7 in the liver, which resulted in limited tumor development

consisting of age-dependent benign adenomas rather than the well-

developed hepatocellular carcinoma in the Becn1+/� background

(Qu et al, 2003; Takamura et al, 2011). Reduction of ATG5 by mono-

allelic deletion or promoter methylation have both been described

to reduce autophagy in melanoma and are associated with poor

survival (Liu et al, 2013; Garc�ıa-Fern�andez et al, 2016). Stable

knockdown of ATG5 in melanoma cells reduced senescence in

BRAF-induced oncogenesis, indicating a role for ATG5 suppression

in the tumor initiation (Young et al, 2009; Liu et al, 2013). In

BRAF-driven melanoma, autophagy is required to overcome the

senescence triggered by BRAF inhibitors. Deletion of Atg7 in

BrafV600E -driven melanoma resulted in a reduction in tumor initia-

tion, further strengthening the link between autophagy and tumor

initiation in melanoma (Fig 2; Young et al, 2009; Xie et al, 2015).

Notably, the tumor suppressive effects of Atg7 disruption are lost if

the BrafV600E-driven melanoma also has disruption of Pten, under-

scoring some of the underlying complexities in trying to characterize

the role of autophagy in oncogenesis (Xie et al, 2015).

Autophagy-mediated promotion of oncogenesis

Autophagy is a stress-responsive pathway and in most cases pro-

motes survival and a return to cellular homeostasis. Perhaps

the most intuitive example of this is the recycling of cytosolic com-

ponents to produce compounds to support metabolism and meta-

bolic adaptation when nutrients become limiting. A solid tumor

expanding from a preneoplastic lesion into a malignant or invasive

tumor will experience limitations in oxygen, glucose, and amino

acids as it grows beyond the ability of nutrients to freely diffuse

from the normal vasculature. The ability to recycle nutrients gives

tumor cells that upregulate autophagy a competitive advantage

under starvation pressure. More information on cell competition in

the tumor microenvironment is reviewed here (Parker et al, 2020).

Malignant solid tumors often have areas that are anoxic or hypoxic

because tumor angiogenesis is haphazardly organized compared to

the vasculature of normal tissue. In addition to nutrient stress, DNA

damage, activation of the unfolded protein response (UPR), and

organelle damage are all capable of activating autophagy in tumors.

To compensate for the growth-suppressing effects of these cancer-

related stresses autophagy is frequently elevated in cancer. Autop-

hagy also plays tumor cell non-autonomous roles in promoting can-

cer growth. For example, in Kras-driven lung cancer a conditional

whole-body deletion of ATG7 was more potent in promoting tumor

regression than inhibiting autophagy in the cancer cells (Karsli-

Uzunbas et al, 2014). Tumor regression was linked to metabolic

deficiencies in the tumor cells that were reliant on host nutrient

availability, which was altered due to autophagy inhibition in the

liver and tumor microenvironment (Fig 2; Karsli-Uzunbas et al,

2014). This trend of autophagy supporting the metabolic require-

ments of an aggressive tumor, either intrinsically or non-

autonomously, have been reproduced in several models and expose

a pattern by which autophagy supports cancer progression (Amara-

vadi et al, 2016, 2019).

Autophagy can also promote certain aspects of tumor cell biology

that enhances metastasis, including metabolic remodeling, inhi-

biting anoikis, evading immune cells, and improving motility (Fig 2;

Peng et al, 2013; Chourasia et al, 2015; Sharifi et al, 2016). How-

ever, it is important to note that the effects of autophagy on metasta-

sis are also dependent on tumor stage and genetic drivers (Chen

et al, 2013; Lock et al, 2014; Marsh et al, 2020). Below we discuss

in more detail the tumor-promoting activities of autophagy, which

are broken down by target organ.

Breast cancer
Ablation of the tumor suppressor Palb2 in the mouse mammary

gland impedes repair of DNA damage and redox regulation, leading

to tumor development (Bowman-Colin et al, 2013). In this model,

impairment of autophagy by monoallelic deletion of Becn1 reduced

Palb2-assocaited tumorigenesis (Huo et al, 2013). Notably, this

oncogenic effect of Becn1 deletion was not observed in p53 null

mice, which indicates context-dependent function of Beclin 1 in

tumorigenesis (Huo et al, 2013). Becn1 deletion results in only a
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partial inhibition of autophagy and likely has impacts outside the

autophagy pathway, which weakens the link between autophagy

and oncogenicity in this model. Further evidence for a role of autop-

hagy in breast cancer came from crossing the conditional knockout

of Fip200 in a PyMT-driven mouse model of breast cancer. Mam-

mary tumors in the Fip200 null mice were significantly smaller and

occurred with less frequency than in autophagy proficient mice

(Wei et al, 2011). Mechanistically, Fip200 ablation is proposed to

suppress oncogenesis through accumulation of the autophagy recep-

tor p62 and regulation of NF-kappaB signaling (Wei et al, 2014).

Various syngeneic breast cancer xenograft models that have

disrupted autophagy through deletion of Becn1, Atg5, or Atg7 have

also highlighted a role for autophagy in supporting tumor growth

(Baginska et al, 2013; DeVorkin et al, 2019; Li et al, 2020). Xeno-

graft studies with breast cancer cells have also uncovered a role for

autophagy in the regulation of metastasis. In non-metastatic cells,

the DNA-binding protein (DEDD) promotes VPS34 stability and

autophagic degradation of twist family bHLH transcription factor 1

(TWIST1) and snail family transcriptional repressor 1 (Snail), which

are two important regulators of epithelial-mesenchymal transition

(EMT) and metastasis (Lv et al, 2012). The autophagic degradation

of EMT-related transcription factors has also been described in

other cancer types (Qiang et al, 2014; Catalano et al, 2015; Qin

et al, 2015).

Lung cancer
Non-small-cell lung cancer driven by the activation of the oncogenic

allele KrasG12D gives rise to the development of adenocarcinomas in

the context of a functional immune system (Jackson et al, 2001;

Kwon & Berns, 2013). Elevated autophagy in response to KRAS acti-

vation is required for mitochondrial homeostasis, metabolic adapta-

tion, and stress adaptation (Guo et al, 2011, 2013; Lock et al, 2011;

Yang et al, 2011; Karsli-Uzunbas et al, 2014). Deletion of Atg7 or

Atg5 in Kras-driven lung tumors reduces tumor size and results in

the development of predominantly benign oncocytomas, which

exhibited accumulation of defective mitochondria (Guo et al, 2013;

Rao et al, 2014). The effects of autophagy have also been explored

in the KrasG12D; p53�/� model, which shows more aggressive ade-

nocarcinoma than those in the p53 wild-type mice. Dual ablation of

autophagy and p53 resulted in an increase in tumor volume, which

indicates that, similarly to work in breast cancer, p53 plays a role in

oncogenesis following inhibition of autophagy (Guo et al, 2013; Rao

et al, 2014). In addition to KRAS, mutations in the kinase domain of

Braf are found in ~3% of lung cancer (Davies et al, 2002). Combina-

tional mutation of ATG7 and BrafV600E resulted in an increase on

early-stage tumor formation, but ultimately resulted in a reduced

tumor burden and metabolic dysfunction (Strohecker et al, 2013),

highlighting the tumor-suppressive and oncogenic roles of autop-

hagy (Fig 2). Fasting in conditional whole body Atg7 knockout mice

was lethal and lead to muscle wasting and hypoglycemia. However,

anti-tumor activity of autophagy inhibition was achieved prior to

systemic metabolic dysfunction in lung cancer models indicating the

existence of a therapeutic window (Karsli-Uzunbas et al, 2014).

Pancreas
Autophagy is elevated in pancreatic cancer and inhibition of autop-

hagy by shRNA knockdown of ATG5 was first used to link autop-

hagy to tumor development (Yang et al, 2011). Similarly to breast

and lung cancer, the mutational landscape seems to be a critical fac-

tor in determining if autophagy plays a role in pancreatic cancer.

Oncogenic activation of KRAS and inactivation of p53 are common

in pancreatic cancer (Ying et al, 2016). In the humanized genetically

modified mouse model of pancreatic cancer driven by KrasG12D,

autophagy inhibition by deletion of Atg5 or Atg7 results in an inhibi-

tion of high-grade pancreatic lesions and pancreatic ductal carci-

noma (PDAC) (Rosenfeldt et al, 2013). Importantly, tumors in mice

with ablation of both copies of p53 and Kras activation are no longer

sensitive to autophagy (Rosenfeldt et al, 2013). However, a subse-

quent study using a pancreas specific p53+/�, which is subject to

loss of heterozygosity during disease progression, showed that

autophagy deficiency was still able to block cancer progression in

this model that more closely mimics the tumor development in

humans (Yang et al, 2014). Collectively, these studies show that

autophagy plays an oncogenic role in the progression of pancreatic

cancer, while also underscoring the importance of considering the

timing and makeup of accompanying genetic lesions in recapitulat-

ing human disease. Additionally, a study in the KrasG12D model

showed that reductions in autophagy, as opposed to complete inhi-

bition, exhibit very different results than complete loss of autophagy

(Görg€ul€u et al, 2019). To modulate autophagy in the Kras-driven

cancer, Atg5 was either reduced to one allele or completely deleted.

While Atg5�/� co-deletion reduced tumor formation when com-

pared to Kras controls, a single allele deletion of Atg5 resulted in an

increase in tumor formation and metastases (Görg€ul€u et al, 2019).

The increase in metastasis and tumor burden with partial autophagy

inhibition may raise concerns about unintended results from drug-

induced autophagy inhibition. However, in a genetic model using

an inducible and reversible dominant negative point mutant of

ATG4BC74A meant to mimic the reversible inhibition of an

autophagy-targeting drug, autophagy inhibition resulted in tumor

regression without significant side effects (Yang et al, 2018). While

additional details still need to be resolved regarding the role of

autophagy in pancreatic cancer, including the effects of autophagy

in heterogeneous cell types found in pancreatic cancer (Milan et al,

2021), the preponderance of data suggests that inhibition of

autophagy may have a therapeutic role. The potential of inhibiting

autophagy has spurred on multiple clinical trials using

combination therapy with hydroxychloroquine (NCT04145297,

NCT03825289, NCT04132505).

Melanoma
Early work in melanoma showed an elevation of autophagy, which

correlated with poor therapeutic response (Ma et al, 2011). But the

exact contribution of autophagy in the development of melanoma

remains unclear. As described in the tumor-suppressive section

above, Atg7 deletion with wildtype Pten worsens overall survival

(Rosenfeldt et al, 2021). BRAF and NRAS mutations are common

in cutaneous melanoma (Schadendorf et al, 2015). However, using

a model that inhibits autophagy by Atg7 deletion in melanoma

driven by Braf activation and allelic loss of Pten, an inhibition of

tumor growth was observed as well as significantly extended over-

all survival (Xie et al, 2015). One possible explanation for this dis-

crepancy is that downregulation of autophagy and Pten deletion

have both been implicated in avoidance of oncogene-induced

senescence and the timing or exclusivity of these mechanisms to

escape senescence may warrant further study to explain this
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genetic interaction. While the role of autophagy in breast, lung,

pancreatic, and melanoma cancers has been studied in some detail,

autophagy has also been examined in additional genetic mouse

models and allografts, which were summarized in a recent review

(Klionsky et al, 2021).

Chaperone-mediated autophagy in cancer

Chaperone-mediated autophagy (CMA) is a type of selective autop-

hagy that uses different proteins to promote cellular degradation

and does not involve formation of an autophagosome. Unlike con-

ventional autophagy which targets ubiquitinated and damaged

organelles, CMA is known to target fully functional proteins to exert

its effects on important cellular processes such as cell cycle (Kon

et al, 2011; Hubbi et al, 2014; Zhou et al, 2016) and metabolism

(Kon et al, 2011; Lv et al, 2011; Xia et al, 2015; Arias & Cuervo,

2020). In CMA, individual cargo are delivered to the lysosome via a

heat shock-cognate chaperone of 70 kDa (hsc70), which recognizes

a pentapeptide motif on the cargo protein (Kirchner et al, 2019; Arias

& Cuervo, 2020). The translocation of substrate into the lysosome

requires lysosome-associated membrane protein type 2A (LAMP2A),

which acts in concert with hsc70. In this pathway, protein levels of

LAMP2A are limiting and are used as a proxy for measurement

of CMA capacity (Cuervo & Dice, 2000). Chaperone-mediated

autophagy is upregulated in several cancers and contributes to

tumor growth (Kon et al, 2011). Inhibition of CMA by LAMP2A

knock-down suppresses tumor growth (Ding et al, 2016; Han et al,

2017). However, not all roles of CMA support tumor growth and,

like autophagy, CMA has been reported to have tumor-suppressive

attributes in early stages of tumor formation (Arias & Cuervo, 2020).

Additionally, CMA in cancer cells can promote tumor growth

through regulation of immune cells in tumor microenvironment.

In glioblastoma, the inactivation of CMA in the tumor suppresses the

proinflammatory activity of pericytes, resulting in an increase

of anti-tumor T cells and reduction of tumor growth (Valdor

et al, 2019).

In the future, it will be interesting to determine if the next gener-

ation of autophagy inhibitors have an effect on CMA, or whether

the development of specific inhibitors of CMA are feasible and bene-

ficial in cancer treatment.

Autophagy in cancer stem cells

Cancer stem cells (CSCs, also known as tumor-initiating cells) are

found in many types of cancer and contribute to tumor heterogene-

ity, metastases, and chemotherapeutic resistance (Kaur et al, 2014;

Smith & Macleod, 2019). The first CSC was identified in acute mye-

loid leukemia (Lapidot et al, 1994), but have since been identified in

several cancer types including solid tumors. In normal stem cells,

autophagy has been reported to promote stemness through regula-

tion of metabolic stress, hypoxia, mitochondrial turnover, and oxi-

dative stress (Liu et al, 2010; Tra et al, 2011; Oliver et al, 2012;

V�azquez et al, 2012; Warr et al, 2013; Garc�ıa-Prat et al, 2016; Naik

et al, 2019; He et al, 2021). It is through some of these same mecha-

nisms that autophagy supports CSCs survival. However, it was the

ability of autophagy to preserve the CSC population in chronic

myelogenous leukemia (CML) that raised a significant amount of

interest in studying the therapeutic potential of targeting autophagy

to selectively kill CSCs. The ability of CSCs to upregulate autophagy

to survive chemotherapeutics was first clearly illustrated in CML

treated with imatinib, a tyrosine kinase inhibitor of the BCR-ABL

fusion protein. Treatment with imatinib in combination with either

pharmacological or genetic inhibition of the autophagy pathway

resulted in much better killing of CSCs than imatinib alone (Bellodi

et al, 2009). This study spurred on several clinical trials targeting

autophagy in combination with front-line therapeutics. However,

most of these studies used hydroxychloroquine, a lysosomotropic

agent that only indirectly block autophagy, and have met with lim-

ited success (Horne et al, 2020). The use of more targeted drugs

against autophagy is underway and their functionality in combina-

tional therapy is of intense interest to the field. It has since been

shown that upregulation of autophagy is a common mechanism by

which CSCs survive pharmacological stressors and the nutrient limi-

tation of the stem cell niche (Nazio et al, 2019).

From genetic models, we know that autophagy plays a role in

supporting the CSC population in non-myelogenous cancers. For

example, in breast cancer inhibition of autophagy by deletion of

Becn1 or Fip200 results in reduced CSC number and inhibition of

tumor growth (Gong et al, 2013; Yeo et al, 2016). While these stud-

ies indicate that inhibition of autophagy may be a viable approach

to inhibit CSCs, it may take the use of new and more specific autop-

hagy inhibitors in order to successfully target CSC population in sus-

ceptible tumors.

Autophagy in the regulation of anti-tumor immunity

Therapeutic promotion of anti-tumor immunity has had a profound

impact on the treatment of a variety of cancers in numerous organs,

including kidney, skin, lung, head and neck, and bladder cancers

(Egen et al, 2020). An analysis of genetic circuits used by diverse

cancer cells to evade detection and killing by immune cells has iden-

tified a conserved role for autophagy genes (Lawson et al, 2020).

The strength of an anti-tumor immune response is governed by a

variety of factors, including presentation of cancer antigens to prime

T cells, secretion of pro-tumor and anti-tumor chemokines, T cell

infiltration, T cell activation and killing, and clearance of tumor cell

debris. Existing therapies focus heavily on inhibitory checkpoint

proteins. Immune checkpoints are ligand–receptor pairs, which elicit

a suppression of the immune cell activity (Egen et al, 2020). A well-

studied example is programmed cell death protein 1 (PD-1) that is

expressed on T cells and its ligand PD-L1 that is expressed on cancer

cells. Activation of this immune checkpoint greatly dampens the

tumor-killing activity of T cells. Drugs that exploit this pathway

block the checkpoint, often with monoclonal antibodies, and acti-

vate the anti-tumor immune response (Braun et al, 2021). Another

checkpoint protein, Cytotoxic T lymphocyte-associated protein 4

(CTLA-4) has also been targeted in immunotherapy with good suc-

cess. However, even in tumors that have seen markedly improved

outcomes using checkpoint inhibitors, such as in kidney cancer, a

large proportion of patients remain resistant leading to the search

for new inhibitory receptors (Andrews et al, 2019; Braun et al,

2021). While the use of checkpoint inhibitors has been a game

changer for some diseases, there remains a large fraction of patients
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who do not respond. Some factors that contribute to checkpoint

inhibitor resistance are changes in immune effectors or antigen pre-

sentation (Sucker et al, 2017). Inhibition of autophagy by deletion

of Fip200 or Becn1 in PyMT-driven breast cancer and B16-F10 mela-

noma leads to an increase in cytokines that recruit anti-tumor

immune cells, indicating that inhibition of autophagy may be a via-

ble approach to sensitizing some cancers to immunotherapy (Wei et

al, 2011; Mgrditchian et al, 2017). Additionally, autophagy-

dependent control of extracellular ATP has been shown to play an

important role in the control of immune surveillance (Kepp et al,

2021). Recent work in the autophagy field has uncovered links

between the autophagy pathway and key steps in the anti-tumor

immune response.

One common cause of immune evasion is mutations that can

lead to the inhibition of major histocompatibility complex class 1

(MHC-I; Rooney et al, 2015). However, in absence of genetic alter-

ations to MHC-I related proteins, cancer cells can also downregulate

MHC-I through an autophagy-dependent process. In pancreatic can-

cer, MHC-I was specifically targeted for autophagic degradation

through its interaction with the autophagy receptor NBR1 (Fig 3;

Yamamoto et al, 2020). In this model inhibition of autophagy

restores MHC-I and increases antigen presentation, thus enhancing

T-cell function and reducing tumor growth in a syngeneic model

(Yamamoto et al, 2020). Autophagy inhibition by knockdown of

ATG3 or ATG7, or pharmacologically using chloroquine (CQ) or

ULK1 inhibitors also resulted in a sensitization of pancreatic and

lung cancer to checkpoint inhibitors (Yamamoto et al, 2020; Deng

et al, 2021). Autophagy has also been linked to the increased pro-

duction of CD8+ memory T cells and reduction in tumor growth in

autophagy-deficient syngeneic mouse cancer models (Fig 3;

DeVorkin et al, 2019). Mechanistically, it was shown that ablation

of autophagy by deletion of ATG5 resulted in elevated production of

interferon gamma (IFNc) and tumor necrosis factor alpha (TNF-a;
DeVorkin et al, 2019). Interestingly, a high-throughput CRISPR

screen in multiple cancers identified autophagy as a key pathway

contributing to evasion of T-cell killing and resistance to TNF-

induced cytotoxicity (Lawson et al, 2020). Pharmacological inhibi-

tion of autophagy using VPS34 inhibitors has been shown to

increase inflammation and T-cell infiltration (Noman et al, 2020).

Autophagy also plays a role in macrophage-dependent anti-

tumor immunity. Autophagy has been described to promote M2

macrophage polarization, which is generally considered to be anti-

inflammatory and promote tumorigenesis (Fig 3; Sanjurjo et al,

2018; Wu et al, 2020). Inhibition of autophagy in pancreatic cancer

using transient induction of a dominant-negative ATG4B mutant

resulted in an increase in macrophage tumor infiltration. Depletion

of macrophages resulted in an impairment of tumor regression upon

autophagy induction in this model (Yang et al, 2018). While acute
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Figure 3. Roles for autophagy in anti-tumor immunity.

Autophagy inhibition promotes anti-tumor immunity through a variety of factors. Tumor cells can degrade MHC Class I through the autophagy receptor NBRI reducing
T-cell activation. Autophagy inhibition in T cells also promotes activation of T cells. Autophagy in macrophages creates substrates for MHC Class II and promotes differen-
tiation and maintenance. Systemic inhibition of autophagy in macrophages inhibits tumor-associated macrophage differentiation and increases macrophage infiltration
in the tumor.

10 of 21 The EMBO Journal 41: e110031 | 2022 ª 2022 The Authors

The EMBO Journal Ryan C Russell & Kun-Liang Guan



inhibition of autophagy does not seem to damage adaptive immu-

nity, autophagy plays an important role in the differentiation and

survival of stimulated monocytes (Zhang et al, 2012; Starobinets et

al, 2016). Autophagy has been implicated in the antigen delivery to

MHC Class II on macrophages, thereby stimulating T cells (Dengjel

et al, 2005). Autophagy and LC3-associated phagocytosis (LAP)

have been linked to the polarization of M2 macrophages, which are

generally considered to promote oncogenesis (Liu et al, 2015; Cunha

et al, 2018). The contribution of autophagy to the immune response

to cancer can also be cell non-autonomous (Yang et al, 2018;

Poillet-Perez et al, 2020). In a model of hepatic cancer with high

mutational burden, the conditional deletion of Atg7 in the host

resulted in an increase in inflammatory cytokine production and

greater CD4+ T-cell tumor infiltration (Poillet-Perez et al, 2020). This

indicates that host autophagy plays a role in enhancing the growth

of hepatic tumors with high mutational burden by inhibiting T cell-

mediated anti-tumor immunity (Poillet-Perez et al, 2020).

Similarly to how autophagy can play dual roles in tumor suppres-

sion and oncogenesis, the role of autophagy in immune surveillance is

nuanced. As described above, autophagy can play a role in silencing

T-cell activation (Fig 3). However, it can also increase immune sur-

veillance induced by chemotherapeutics. Fasting, a physiological way

to induce autophagy in many organs of the body, can have a beneficial

effect when combined with chemotherapeutics that target DNA repair

and replication (Mizushima et al, 2004; Lee et al, 2012). Notably, the

beneficial effects of starvation were lost in mice that lacked T cells,

indicating that starvation can enhance chemotherapy-induced immu-

nosurveillance (Pietrocola et al, 2016). Like T cell-deficient mice,

knockdown of ATG5 also resulted in an attenuation of starvation-

induced immunosurveillance (Pietrocola et al, 2016). The studies

above demonstrate some of the potential effects of autophagy inhibi-

tion in the promotion of anti-tumor immunity. However, autophagy

has also been shown to play a role in T-cell priming by dendritic cells

and development of anti-viral CD8+ T cells. Therefore, careful analysis

of the immune response needs to be characterized when testing autop-

hagy inhibition in future pre-clinical models.

Autophagy and tumor cell metabolism

The recycling of nutrients by autophagy is necessary to meet the

altered metabolic demands of some cancers (Nyfeler & Eng, 2016).

There are several properties that can contribute to a cancers autop-

hagy dependency including intrinsic factors like switching to anaer-

obic metabolism or an increased need for the biosynthetic building

blocks required for continuous cell division (Strohecker et al, 2013).

Extrinsically, autophagy-dependent cancer cells have to contend

with the stressors of hypoxia, immune response, and chemothera-

peutics (Kimmelman & White, 2017). In RAS-driven tumors autop-

hagy was shown to support glycolysis and maintain nucleotide

levels by supplying amino acids under starvation (Fig 4; Guo et al,

2011). In KRAS-driven lung cancer, autophagy supports AMPK sig-

naling (Eichner et al, 2019), which was recently tied to lung cancer

growth through promotion of lysosomal gene expression (Eichner et

al, 2019). In pancreatic cancer, melanocyte inducing transcription

factor (MITF), transcription factor binding to IGHM enhancer 3

(TFE3), and transcription factor EB (TFEB) drive autophagy and are

necessary for maintaining intracellular amino acid pools (Perera

et al, 2015). As discussed in the section on mitophagy, mutations or

deletions of mitophagy adaptors are also linked to metabolic repro-

gramming of cancer cells. Collectively, we have learned from these

studies that autophagy plays an important role in promoting the

metabolic alterations in multiple cancer models.

Host autophagy promotes tumor cell metabolic deficiencies
Cancer cells have altered metabolic requirements that can be

supported by metabolites produced by autophagy in distant organs

(Fig 4). For example, several cancer cells increase their production of

nucleotides by inhibiting expression of argininosuccinate synthase 1

or argininosuccinate lyase, which are necessary for arginine biosyn-

thesis (Fig 5; Soria et al, 2021). As a result, these cells are reliant on

circulating arginine that is provided by autophagy in the liver (Dillon

et al, 2004; Rabinovich et al, 2015). If Atg7 is conditionally knocked

out in the liver or whole body, tumor growth is reduced (Poillet-Perez

et al, 2018). The exact mechanisms bywhich arginine promotes cancer

cell survival remains unclear, but might involve activation of mTOR,

polyamine synthesis, or production of nitric oxide (Morris, 2016).

In addition to distally produced nutrients, the tumor can also

stimulate nutrient production from the tumor microenvironment. In

pancreatic cancer, the involvement of the stroma in supporting can-

cer cell metabolism is well established (Feig et al, 2012; Sousa &

Kimmelman, 2014). Pancreatic cancer is nutrient poor leading the

tumor cells to scavenge protein from its surroundings. The amino

acid alanine, rather than glucose or arginine, is the major carbon

source for pancreatic cancer (Fig 5; Kamphorst et al, 2015). Pancre-

atic stromal cell autophagy is required for the release of alanine into

the tumor microenvironment, where it is scavenged by the tumor

cells (Sousa et al, 2016). Consequently, stable knockdown of ATG5

or ATG7 in pancreatic stellate cells resulted in a reduction in alanine

in the tumor microenvironment, inhibition of tumor growth, and an

increase in disease-free survival (Sousa et al, 2016). The discoveries

linking systemic autophagy to impairments in tumor metabolism

and growth are an exciting advance in the field. Future work to dis-

cover the link between an acquired addiction to circulating nutrients

and cancer sensitivity to autophagy inhibitors will help in the identi-

fication of tumors that should be prioritized inclusion in future clini-

cal trials targeting autophagy.

The therapeutic potential of targeting autophagy

The importance of autophagy in maintaining cellular and organis-

mal homeostasis is well known. For example, conditional knockout

of Atg7 in adult mice leads to increased rates of infection, neurode-

generation, and metabolic deficiencies (Karsli-Uzunbas et al, 2014).

These disorders limited mouse survival to 2–3 months due to neuro-

degeneration and starvation-induced hypoglycemia and cachexia

(Karsli-Uzunbas et al, 2014). However, this study as well as others

identified a therapeutic window where the anti-cancer effects pre-

cede systemic dysfunction (Yang et al, 2011). Moreover, the prepon-

derance of neurological disorders also indicated that an autophagy

inhibitor that could not cross the blood brain barrier would be better

tolerated (Amaravadi et al, 2019). Another model system, which

used a whole-body inducible dominant negative mutant of the

ATG4B enzyme, also found that anti-cancer effects could be

achieved by inhibiting host autophagy, without lethality or
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increased oncogenesis arising from transient systemic inhibition of

autophagy (Yang et al, 2018).

While there is a possible therapeutic window for autophagy

inhibitors, evidence from pre-clinical models indicates that only

some tumors will be autophagy sensitive. For example, factors that

have been linked “autophagy addiction” in cancer include RAS and

BRAF proto-oncogene activation, MHC I downregulation, and argi-

nine auxotrophy (Yang et al, 2011; Levy et al, 2014; Mulcahy Levy

et al, 2014, 2017; Yang & Kimmelman, 2014; Xie et al, 2015; Poillet-

Perez et al, 2018). Because of the involvement of host metabolism

and immunity in the sensitivity of cancer to autophagy inhibition, it

is important wherever possible that future studies use immune com-

petent animal models to address these variables.

To date, clinical trials in cancer that target autophagy, alone or

in combination, have relied on chloroquine derivatives. The best

studied of these derivatives is hydroxychloroquine (HCQ), which

has been used to treat malaria and rheumatoid arthritis for several

decades. These drugs block autophagy by deacidifying the lysosome

and prevent autophagosome fusion (Mauthe et al, 2018). However,

HCQ is not an autophagy-specific inhibitor and its effect on cancer

cells can be autophagy-independent (Maycotte et al, 2012; Maes et

al, 2014; Eng et al, 2016). One of the first trials was a small trial in

glioblastoma multiforme, which added chloroquine to surgery,

radiotherapy, and chemotherapy (Brice~no et al, 2003). Although

autophagy was not considered in the execution of this study, they

observed that chloroquine improved the response rate to the anti-

neoplastic treatments. Subsequent studies identified the potential

anti-cancer effects of autophagy inhibition, and several clinical trials

were initiated with HCQ. The outcomes of these clinical trials are

summarized in Table 1 if results were reported (see Table 1).

While some of the HCQ trials have shown promise, the efficiency

of autophagy inhibition and autophagy-independent effects have led

to a search for more targeted and potent inhibitors. ULK1 inhibitors

SBI-0206965, ULK101 and MRT403, which should also inhibit

ULK2, should be much more specific than HCQ in targeting the

autophagy pathway. Inactivation of ULK1&2 will abrogate most bulk

autophagy. However, it will spare LAP, which may be more benefi-

cial for preserving immune function. In terms of specificity, SBI-

0206965 may also target FAK and aurora kinases, while ULK101

inhibits members of the CAMK family (Egan et al, 2015; Martin et

al, 2018). MRT403 was recently shown to sensitize CSCs from

patient-derived CML to imatinib (Ianniciello et al, 2021). This is an
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Figure 4. Autophagy supports tumor metabolism.

Left: Autophagy supports maintenance of charged nucleotide and adenosine pools within the cancer cell. Host autophagy maintains circulating amino acids and glucose
that can be used as metabolic inputs for oxidative phosphorylation and glycolysis for the cancer cell. Right: Systemic autophagy inhibition reduces mitochondrial amino
acid oxidative phosphorylation, resulting in a decrease in ATP. Energy stored in charged nucleotide pools is used to support ATP production leading to a depletion in
nucleotides that can be used to support cancer cell DNA synthesis.
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Table 1. Clinical trials targeting autophagy.

Condition Intervention Results References

Refractory metastatic
pancreatic Cancer

HCQ No response to HCQ treatment NCT01273805 (Wolpin et al, 2014)

Previously untreated
Pancreatic Cancer

HCQ, Gemcitabine No overall survival improvement or progression-free
survival with HCQ. Statistically significant response rate
was increased in HCQ arm

NCT01506973 (Karasic et al, 2019)

Pancreatic Cancer HCQ, gemcitabine, abraxane Autophagy inhibition correlates with increased disease-
free survival. 61% of patients exhibited decrease in
biomarker CA 19-9. p53 mutational status did not affect
response

NCT01978184 (Boone et al, 2015)

Solid Tumor HCQ prior to surgical resection Increase in apoptosis in resected tumors, no clinical
outcomes reported

NCT02232243 (Wang et al, 2018)

Renal Cell Carcinoma HCQ, everolimus Increase in progression free survival with HCQ was
observed.

NCT01510119 (Haas et al, 2019)

Brain and Central
Nervous System
Tumors

HCQ, temozolomide, Radiation Results posted, no associated publications NCT00486603

Metastatic Renal Cell
Carcinoma

HCQ, IL-2 Results posted, no associated publications NCT01550367

Glioblastoma HCQ, temozolomide, radiation No improvement in overall survival. Dose limiting
toxicity prevented escalation of HCQ. Autophagy
inhibition was not consistently achieved

NCT00486603 (Rosenfeld et al, 2014)
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exciting development and the sensitivity of CSCs to autophagy inhi-

bition was one of the early drivers for the application of autophagy

inhibitors in the clinic (Bellodi et al, 2009).

VPS34 is the catalytic component of multiple lipid kinase com-

plexes, which are necessary for autophagy and endocytosis. Specific

inhibitors of VPS34, like SAR405, therefore effects both autophago-

some and late endosome compartments (Ronan et al, 2014). Inhibi-

tion of VPS34 with SAR405 inhibited the growth of multiple cancer

types in a xenograft model and promoted immune infiltration in the

B16-F10 melanoma model (Noman et al, 2020). As a result, VPS34

inhibitors sensitized tumors to anti-PD-L1 checkpoint inhibitors.

Despite their recent success in pre-clinical models, VSP34 inhibitors

have not yet made it into clinical trials.

ATG4B is a protease that can activate LC3 for conjugation of LC3

to phosphatidylethanolamine and also plays a role in its deconjuga-

tion in the final steps of autophagosome closure. Overexpression of

mutant ATG4B results in an inhibition of autophagy and accumula-

tion of defective autophagosomes. Inhibitors of ATG4B have been

developed and tested in vitro and mouse models (Akin et al, 2014;

Chu et al, 2018; Fu et al, 2019). ULK1, VPS34, and ATG4B inhibitors

are of interest, but have not yet made it to clinical trials.

As mentioned above, the use of general autophagy inhibitors that

cannot cross the blood-brain barrier is a strategy to limit neurotoxic-

ity. However, this would not address the more uncommon, but

potentially serious damage to the liver, retina, and other tissues that

can occur with high dose and prolonged use (Geam�anu (Panc�a) et al,

2014; Madhavan et al, 2016). Another approach is to inhibit selective

forms of autophagy that are relevant to the disease in order to retain

the majority of autophagy-dependent activity in normal cells. Autop-

hagy receptors are attractive targets as they recruit specific ubiquiti-

nated cargo to the autophagosome and their individual deletion does

not eliminate all forms of autophagy. For example, the p62-NRF2-

KEAP1 signaling pathway in liver cancer regulates metabolic repro-

gramming in response to oxidative stress (Saito et al, 2016). In pan-

creatic cancer, which has high basal autophagy, targeting of specific

autophagy receptors has uncovered distinct in tumor-suppressive

effects. Knockdown of NBR1 inhibited autophagic MHC-I turnover

and immune evasion in pancreatic cancer (Yamamoto et al, 2020),

while knockdown of optineurin caused an inhibition in colony for-

mation and activation of apoptosis (Ali et al, 2019).

Targeting of mitophagy receptors in cancer has also been the focus

of significant study (see preceding section “Mitophagy in cancer” for

additional details). These studies have yielded contrasting results

with BNIP3 knockdown in triple-negative breast cancer reducing

tumor growth (Chourasia et al, 2015), while Park2 or Bnip3L deletion

caused an increase in pancreatic cancer growth (Li et al, 2018;

Humpton et al, 2019). In spite of the promising results from inhibition

of autophagy receptors by knockout or knockdown, the therapeutic

potential of targeting selective autophagy remains to be realized due

to a lack of drugs to target these receptors selectively.

Synergy of dual inhibition of autophagy and Ras pathways
in cancer

In response to chemotherapeutics, cancer cells can upregulate autop-

hagy to promote survival (Sui et al, 2013). The ability of autophagy

inhibition to sensitize cancer cells to targeted therapeutics has been

exemplified by, but is not limited to, recent work in RAS-driven pan-

creatic cancer. Activation of KRAS signaling is common in pancreatic

cancer and drives autophagy induction. In KRAS-driven cancers

pharmacologic or genetic inhibition of RAS-ERK signaling activates

autophagy (Bryant et al, 2019; Kinsey et al, 2019; Lee et al, 2019).

While inhibition of KRAS-signaling alone is not effective in pancre-

atic cancer, the inhibition of autophagy in conjunction with targeting

MAPK or ERK1/2 downstream of RAS results in a decrease in tumor

formation (Infante et al, 2014; Bryant et al, 2019; Kinsey et al, 2019;

Lee et al, 2019). RAS also activates BRAF, which is frequently

mutated in melanoma, central nervous system tumors, and colorec-

tal cancers. Cancers treated with the BRAF inhibitor vemurafenib

often develop resistance to the drug and display a concomitant

increase in autophagy levels (Ma et al, 2014). Inhibition of autop-

hagy with CQ has been described to re-sensitize tumors to vemura-

fenib or other inhibitors targeting kinases downstream of BRAF

(Mulcahy Levy et al, 2017). Collectively, these studies show that in

“autophagy addicted” cancers the combination of autophagy inhibi-

tors with frontline treatments holds significant therapeutic promise.

Challenges and future directions

Despite intense interest in targeting autophagy in cancer clinical trials,

no definitive therapeutic edge has been provided by combination of

HCQ to approved therapeutics. It is obvious that autophagy inhibitors

are unlikely to be effective as a single agent therapy for cancer.

Encouragingly, there seems to be a therapeutic window for autophagy

inhibition and use of these antimalarials have largely been devoid of

serious metabolic dysfunction, neurological problems, or liver injury.

The use of newer and more specific autophagy inhibitors will hope-

fully be able to exploit autophagy addicted cancers in a more effica-

cious manner. Work in GEMM has also shown that certain mutations

result in sensitivity to autophagy inhibition, while others do not

(Karsli-Uzunbas et al, 2014). Therefore, expanded experimentation in

GEMMs may uncover which cancer types may benefit from autop-

hagy inhibitors. Additionally, in the last decade we have seen a rapid

advance in our understanding of the regulatory mechanisms control-

ling selective autophagy. However, the inhibition of selective autop-

hagy in GEMM or with drugs is significantly more challenging than

the study of blocking all autophagy. Despite these challenges,

targeting selective autophagy, in particular mitophagy, represents an

attractive target for future study and therapeutic development.
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