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Abstract

This work proposes an alternating learning approach to learn the sampling pattern (SP) and 

the parameters of variational networks (VN) in accelerated parallel magnetic resonance imaging 

(MRI). We investigate four variations of the learning approach, that alternates between improving 

the SP, using bias-accelerated subset selection, and improving parameters of the VN, using 

ADAM. The variations include the use of monotone or non-monotone alternating steps and 

systematic reduction of learning rates. The algorithms learn an effective pair to be used in future 

scans, including an SP that captures fewer k-space samples in which the generated undersampling 

artifacts are removed by the VN reconstruction. The quality of the VNs and SPs obtained by 

the proposed approaches is compared against different methods, including other kinds of joint 

learning methods and state-of-art reconstructions, on two different datasets at various acceleration 

factors (AF). We observed improvements visually and in three different figures of merit commonly 

used in deep learning (RMSE, SSIM, and HFEN) on AFs from 2 to 20 with brain and knee 

joint datasets when compared to the other approaches. The improvements ranged from 1% to 

62% over the next best approach tested with VNs. The proposed approach has shown stable 

performance, obtaining similar learned SPs under different initial training conditions. We observe 

that the improvement is not only due to the learned sampling density, it is also due to the learned 

position of samples in k-space. The proposed approach was able to learn effective pairs of SPs and 

reconstruction VNs, improving 3D Cartesian accelerated parallel MRI applications.
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I. INTRODUCTION

The acquisition of high-resolution three-dimensional (3D) volumetric data of the human 

body in magnetic resonance imaging (MRI) is time-consuming. Furthermore, shortening the 

scan time is necessary for capturing high-resolution images, dynamic processes, quantitative 

imaging, and reducing health-care costs with increased patient comfort.

The reduction of MRI acquisition time, also known as accelerated MRI, has been obtained 

by different approaches. Fast magnetic resonance (MR) pulse sequences (FPS) [1]–[3], 

parallel imaging (PI) [4]–[6], compressed sensing (CS) [7]–[10], and deep learning (DL) 

image reconstructions [11]–[14] are some examples of the advancements in the accelerated 

MRI field. These approaches have different mechanisms, FPS can collect more k-space data 

per unit of time [3], PI uses a receiver array with different coil sensitivities to capture more 

data in parallel [15] to overcome k-space undersampling, CS relies on incoherent sampling 

and sparse reconstruction, while DL uses neural networks able to learn non-linear filters to 

remove artifacts from undersampling.

The quality of image reconstruction in accelerated MRI depends on the sampling process. 

CS theory shows that specific properties of the sampling process (such as incoherence) [7], 

[16] are necessary to effectively recover images with specific reconstruction approaches 

(such as sparse reconstruction) [17]. In this sense, properties such as restricted isometry 

properties (RIP) and incoherence have guided the design of sampling patterns [7], [9], [18] 

for sparse reconstructions in MRI. However, new theoretical results [19], [20] showed that 

incoherence is not a strict requirement in MRI, which are also supported by several studies 

[21], [22]. In other words, justifying that empirical designs for sampling patterns (SP) such 

as variable density [23]–[25] or Poisson-disc [26], [27] (also written as “Poisson disk”) can 

also be effective in MRI. Recently, combined variable density and Poisson-disc [28], [29] 

has been introduced to MRI and it is currently one of the best SPs for CS-MRI.

Many accelerated MRI studies have shown that the design of the SP can be customized 

using reference k-space data of other similar images of particular anatomies [30]–[34]. One 

class of such approaches, called adaptive sampling, adjusts the probability of the k-space 

points of variable density SP according to the magnitude of the k-space. Another approach, 

known as statistical experimental design techniques [35], [36], uses optimization of Cramér-

Rao lower bounds for finding good sampling patterns. In both approaches, the particularities 

of the reconstruction algorithm are not considered in the design of the SP, even though some 

general formulation is usually assumed.

In data-driven approaches, the customization of the SP is done by optimization algorithms, 

considering images or datasets containing several images of particular anatomy and a 

specific method for image reconstruction [37]–[42]. The main idea is that the designed SP 

should perform well with other images of the same anatomy when the same reconstruction 

method is used. If one considers that the parameters of the image reconstruction methods 

can also be learned, then these approaches can be extended to jointly learning the 

reconstruction and the SP, as seen in [43]–[49]
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Most prior data-driven approaches to learning the SP, as in [37]–[40], formulate the SP 

learning as a subset selection problem and implement it using greedy search algorithms, 

which lead to extremely high computational costs for SPs of large sizes, particularly the 

ones used in Cartesian 3D acquisitions. To circumvent this problem, some methods extended 

deep learning approaches to jointly learn SP and the reconstruction network [43], [44], 

by implementing the SP as a neural network parameter to be learned. One approach for 

jointly learning the sampling and reconstruction, called Learning based Optimization of 

the Under-sampling PattErn (LOUPE), has been originally proposed in [43] for one-coil 

MRI problems and extended in [50] for multi-coil, or parallel, MRI. Unfortunately, LOUPE 

does not learn a unique SP, but a sampling density. This way LOUPE does not learn the 

advantages of the relative position and the distance between k-space samples. For example, 

studies [26]–[29] on the Poisson-disc SPs have shown that the distance between the sampled 

points is fundamental to the success of SPs used in CS and parallel MRI. In [44], [46], [47], 

parametric formulation of non-Cartesian k-space trajectories are learned. Although they are 

very interesting approaches, they require non-uniform Fourier transforms, which is not the 

best fit for our Cartesian 3D problem, as described next in Section I.A.

In [42], a fast learning approach for SPs of large sizes was proposed. This approach, called 

bias-accelerated subset selection (BASS), is still based on the subset selection formulation, 

as the greedy approaches, but it is as fast as any neural network training algorithm. BASS 

has shown great results for parallel and CS problems in MRI. However, BASS was never 

combined with deep learning reconstructions before.

The difficulty in using BASS in a combined learning approach arises because it is originally 

a monotone algorithm, while deep learning training algorithms are usually done with 

non-monotone stochastic methods. Because of this, we investigate four variations of the 

alternating learning approach for the jointly learning SP and reconstruction problem. These 

variations exploit the use or not of monotonicity and/or reduced initial learning rate.

The SP learning approach is formulated as a subset selection problem, solved either with the 

original BASS or with its new non-monotone version presented in this paper. The parameters 

of the reconstruction network are learned using backpropagation algorithms, such as ADAM 

[51]. The four variations consider the use or not of monotonicity check after each execution 

of ADAM, and the use or not of reduced initial learning rates.

The version with monotonicity and the reduced initial learning rate is referred to as the 

proposed one when compared to other kinds of methods. We illustrate through several 

experiments that this approach is stable and obtains a better pair of SPs and learned 

reconstruction, superior to other joint learning approaches for the same problem, such as 

LOUPE, and superior to reconstructions trained with the currently best human-designed SPs 

for MRI, the combined variable density with Poisson-disc [28], [29].

A. The specific content of this paper

We propose and validate the new alternating learning approach to jointly learning the SP 

and the parameters of a variational network (VN) [11] used for image reconstruction in 

accelerated parallel MRI applications. We focus on Cartesian 3D problems used in high-

Zibetti et al. Page 3

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2023 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution and quantitative MRI, in which the data are collected along multiple k-space lines 

in a frequency-encoding direction with the SP specifying the 2D phase/partition-encoding 

positions to be acquired, as illustrated in Fig. 1. The acquisition is a 3D process, but we 

assume that a Fourier transform is applied in the frequency-encoding direction and the 

volume is separated into multiple slices for 2D reconstructions. We assume that both, the 

learned SP and VN, would be saved in the MRI scanner for future acquisitions of images of 

the same anatomy.

II. Methods

A. Models used

Parallel MRI methods such as SENSE [52], [53] and many CS approaches [54], including 

VN, are based on the image-to-k-space forward model, such as

m = FCx = Ex . (1)

Here x represents 2D+time images, of size Ny × Nz × Nt, where Ny and Nz are horizontal 

and vertical dimensions and Nt is the number of time frames, C denotes the coil sensitivities 

transform, which maps x into multi-coil-weighted images of size Ny × Nz × Nt × Nc, with 

Nc coils. F represents the spatial Fourier transforms (FTs), which are Nt × Nc repetitions of 

the 2D-FT, and m is the fully sampled data, of size NNs, where N = NyNzNt and Ns = Nc. 

Both systems combine in the encoding system E. When accelerated MRI by undersampling 

is used, then the SP is included in the model as

m = SΩFCx = EΩx, (2)

where SΩ is the sampling function using the SP specified by Ω ⊂ Γ (same for all coils) 

which is a subset of the fully sampled Cartesian set Γ, and m = SΩm is the undersampled 

multi-coil k-space data (or k-t-space when Nt > 1), with MNs elements, where M is the 

number of sampled points in the undersampled k-space. Essentially, the operation SΩm 
maintains the k-space points that are sampled and it eliminates the ones that are not sampled. 

The acceleration factor (AF) in MRI is given by N/M. Depending on the approach used to 

obtain coil sensitivity, additional sampling might be necessary. Here, we assume a central 

area of the k-space will be always fully sampled and used to compute coil sensitivities with 

auto-calibration methods, such as [55].

B. Variational networks for image reconstruction:

The VNs are inspired by the minimization problem [56], given by

x ∈ argmin
x

1
2 EΩx − m 2

2 + ∑f = 1
Nf Φ Kfx , 1 , (3)

where the complex-valued images x, undersampled k-space data m, and the encoding system 

EΩ are described in (1) and (2). The first term in (3) is the data-discrepancy term, modeled 
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by a squared Euclidean norm, and the second term is a regularizing penalty, composed of Nf 

linear operators Kf, with potential function Φ, and 1 is a vector of ones.

However, instead of minimizing the cost function in (3), the VN approximates a solution by 

a fixed number of iterations, denoted by J, of a gradient descent-like algorithm [11], given 

by

xj + 1 = xj − αjEΩ
∗ EΩxj − m + ∑f = 1

Nf Kj, f
b Φ′ Kj, fxj . (4)

In (4), 1 ≤ j ≤ J + 1 represents the iteration index, where J = 10 was chosen in this work. 

In the context of deep learning [57], [58], it corresponds to the number of layers. All the 

VN parameters, i.e. convolutional filters Kj, f
b , Kj,f (Nf = 24) and step-sizes αj, are learned 

from data [11]. In this study, activation functions Φ′ are fixed rectified linear units (ReLu) 

[57]. The set of convolutional filters Kj, f
b , Kj,f are typical convolutional filters implemented 

in deep learning packages. Each convolutional filter Kj,f, maps the complex-valued images 

(represented as a multichannel image of size Ny × Nz with 2Nt channels, where real and 

imaginary components of the complex-valued images are treated as separate channels) into 

one filter output of size Ny × Nz. A 2D convolution is performed on each channel with a 

learned kernel of size 11 × 11 (different for each channel), and their output are added to a 

one-channel output. The linear filter Kj, f
b

, maps the one-channel output, after applying the 

activation function Φ′, back to the original image representation using other learned kernels 

of the same size.

Note that the VN in equation (4) resembles a general iterative regularized reconstruction 

algorithm. The central term in (4), αjEΩ
∗ EΩxj − m , is responsible for reducing k-space error, 

while the right term in (4), ∑f = 1
Nf Kj, f

b Φ′ Kj, fxj , reduces undesired artifacts in the image. 

These components are different for each layer j. The output of a VN can be written as

x = Rθ(m, Ω), (5)

where Rθ represents the VN reconstruction with network parameters 

θ = Kj, f
b , Kj, f f = 1

Nf , αj j = 1

J
, input sampling pattern Ω and undersampled data m = SΩm, 

and output reconstructed image x. Note that coil sensitivity maps used in C (that is part of 

EΩ) are also input parameters for image reconstruction, but since they are obtained from m, 

and they are not considered a learned parameter, we will not make them explicit in (5).

C. Adjoint followed by U-net for direct reconstruction:

VN architectures resemble CS iterative reconstructions, however, different approaches for 

reconstruction with neural networks (NNs) are often used [13], [14], [58]. In [43], image 

reconstruction is composed of a NN as aliasing removal post-filtering after the adjoint 

operator EΩ
∗ . For parallel MRI, it can be written as:
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x = EΩ
∗ m, (6)

followed by:

x = Uθ(x) . (7)

Compared to the VN, this approach does not use the image-to-k-space model in the network 

itself, in (7). It only uses the adjoint operator, EΩ
∗ , in (6), to compute the initial aliased image 

x. Nevertheless, we can still represent both steps as in (5), with x = Rθ(m, Ω) = Uθ EΩ
∗ m . In 

[43], the NN is a U-net. In this study, we will call this approach UNET.

D. Joint learning the sampling pattern and image reconstruction:

The joint learning process can be formulated through the following criterion:

Ω, θ = argmin
Ω ⊂ Γ, θ ∈ Θ
s . t . Ω = M

1
Ni

∑i = 1
Ni f xi, Rθ mi, Ω ,

(8)

where Rθ mi, Ω = xi is the reconstructed image using undersampled data mi, with sampling 

pattern Ω and network parameters θ. Note that i represent the index of the image and k-space 

data in the dataset with Ni elements. Ideally, undersampled data from true k-space data 

should be used, as mi, = SΩmi, and reference images can be produced by xi= R(mi, Γ), as 

a reference for fully sampled image reconstruction (which do not necessarily need to be 

a deep learning reconstruction). Under some limited circumstances [59], the undersampled 

data could be synthetically generated using mi = EΩxi, if images and coil sensitivities are 

available.

The criterion (8) is defined in the image domain. This approach is useful when fully-

sampled k-space data are not directly available, but images reconstructed from fully-sampled 

data and coil sensitivities are available, or when one wants to weigh differently particular 

regions of interest of the image to obtain better quality in more relevant structures. In 

this study, we will consider f xi, Rθ mi, Ω = xi − Rθ mi, Ω 2
2, since it is a criterion easily 

available in most deep learning tools and it is the same criterion used in the other compared 

approaches.

III. Proposed alternating learning approach:

In this work, we propose an alternating approach for this joint learning process in (8), 

represented as:

Ωm + 1 = argmin
Ω⊂Γ

s . t . Ω = M

1
Ni

∑i = 1
Ni f xi, Rθm SΩmi, Ω ,

(9)
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θm + 1 = argmin
θ ∈ Θ

1
Ni

∑i = 1
Ni f xi, Rθ SΩm + 1mi, Ωm + 1 , (10)

where the problem in (9) is a subset selection problem and the problem in (10) is a neural 

network training. For fast solving the subset selection problem, the BASS algorithm [42] 

was chosen, and for neural network parameters learning the ADAM algorithm was chosen 

[51]. An overview of the proposed approach is shown in Fig. 2. BASS has been proven 

effective in learning the SP for CS and parallel MRI methods before, however it was never 

tested with deep learning algorithms. ADAM is currently one of the most used approaches to 

train deep neural networks.

We investigate four variations for the joint alternating approach, testing the effect of two 

different techniques for the alternating decrease of the cost function: a) forced monotonicity, 

by checking the reduction of the cost functions at each alternating step; and b) reducing 

initial learning rate. The forced monotonicity is used to make sure the parameters θm+1 

learned in a particular iteration are better than the previous θm (the improvement strongly 

depends on the choice of the parameters used in ADAM, including initial learning rate 

and the number of iterations). Reducing the learning rate is typically used in deep learning 

algorithms, including ADAM. In our proposed approach the learning rate is always reduced 

during ADAM executions, however, the initial learning rate of each ADAM run can be 

reduced or can be fixed.

A. Bias-Accelerated Subset Selection:

BASS is a heuristic optimization approach for subset selection based on bit change, such as 

Pareto optimization for subset selection (POSS) [60]–[62]. In general, bit change algorithms 

are much faster than greedy algorithms. While greedy algorithms compute many candidates 

before choosing the one with maximum improvement, bit-wise mutation algorithms change 

the current best SP, adding and removing some elements of it, according to some heuristic 

rule, accepting the new solution if it is better. BASS is faster because it uses heuristics rules 

to choose the new k-space points based on large observed errors in the k-space [42].

The learning process can start with any known SP, such as Poisson-disc, variable density, or 

even an empty SP. It is also possible to constrain some regions of the SP, such as the central 

area that is used for coil sensitivity auto-calibration. BASS, originally proposed in [42], is 

detailed in Algorithm 1, for completeness, where the cost function F (Ω) = 1
Ni

∑i = 1
Ni di 2

2, 

for di = xi − Rθ mi, Ω , is different from [42] in this study.

Algorithm 1:

BASS | Non-monotone BASS

1. Ω ← Ωinit

2. K ← Kinit

3. l ← 1
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4. While l ≤ L do

5.  Ωr ← select-remove (Ω, K, ρr(K, M, l))

6.  Ωa ← select-add(Ω, K, ρa(K, M, N, l))

7.  Ω′ ← (Ω\Ωr) ⋃ Ωa

8.  if |Ω| ≠ M, Ω ← Ω′

9.  if |Ω| = M

10.  if F(Ω′) ≤ F(Ω), Ω ← Ω′ |or 10. Ω ← Ω′

11.  else K ← ⌊(K − 1)α⌋ + 1 |or 11. K ← ⌊(K − 1)α + 1

12. l ← l + 1

13. return Ω

In this paper, we also present a new non-monotone version of BASS. In the non-monotone 

version, line 10 of Algorithm 1 is replaced by Ω ← Ω′, and line 11 is simply replaced by K 
← ⌊(K − 1)α⌋ + 1.

In Algorithm 1, Kinit is the initial number of elements of the SP that change at each iteration, 

α < 1 is the decreasing rate of K, and ρa and ρr are the probabilities of selecting an element 

to be added to or removed from the SP. The probabilities can be constant or a function of K, 

M, N, l, as discussed next.

B. Modification in the heuristics used in BASS:

In BASS, the elements of Ωa and Ωr are selected by the functions select-add and 

select-remove in similar ways. The functions select-add(Ω, K, ρa(K, M, N, l)) and select-
remove(Ω, K, ρr(K, M, l)) in Algorithm 1 are used to modify Ω in the composition of a 

new candidate Ω′. The number K of elements to be added/removed varies with iteration. 

For 1 ≤ i ≤ Ni, let ei = FCdi = FC xi − Rθm mi, Ω , which is essentially the transformation 

of the residual error of the image reconstruction di to the multi-coil k-space. Note that each 

of the N components of ei is an Ns-dimensional vector. For 1 ≤ k ≤ N, and 1 ≤ s ≤ Ns, 

where [ei]k,s, denotes the s-th component (corresponding to the coil) of the k-th component 

(corresponding to the k-space position) of ei. For select-add, we define the measure of 

importance (MI) used in this work, for 1 ≤ k ≤ N, as

εk = 1
NiNs

∑i = 1
Ni ∑s = 1

Ns |[ei]k, s|
2
, (11)

which is referred to as the ε-map. The purpose of select-add is to select K elements from 

Γ\Ω in a randomly biased manner [42], and its MI prioritizes to add unselected k-space 

elements with large error, which may significantly reduce the cost function. Note that 

in the non-monotone version F(Ω) is never computed. Then, the convergence relies on 

the correlation between F(Ω) and the chosen MI. For select-remove, a sequence with K 
elements that are in Ω, is generated in the same way, but using rk as the MI, instead of εk. 

The MI for select-remove is
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rk = 1
NiNs

∑i = 1
Ni ∑s = 1

Ns |[ei]k, s|2 + δ

∑s = 1
Ns |[mi]k, s|2 + δ

, (12)

for 1 ≤ k ≤ N, which is referred to as the r-map, with δ a small constant to avoid zero/

infinity in the definition of rk. This MI prioritizes the removal of k-space sampled elements 

that still have large errors compared to their size. Essentially, the large elements of rk are 

elements that do not fit well in the recovery, and their removal may not significantly increase 

the cost function.

The probability of pre-selecting elements should respect predefined ranges, K/M < ρr(K, M, 
l) ≤ 1 and K/(N − M) < ρa(K, M, N, l) ≤ 1. We used constant probabilities for ρa = 1/4 

and ρr = 1/8, and we used the same positional constraints (PC) rules proposed in [42]. The 

most expensive part of select-add and select-remove is the computation of the recoveries 

given by Rθm mi, Ω . However, these computations are cheap because they are just forward 

propagations of a VN, which are much faster than iterative CS reconstructions [63].

IV. Experimental Setup:

A. Datasets:

In these experiments, we utilized two MRI datasets to test the proposed approach. One 

dataset, denominated brain, contains 335 brain T2-weighted images from the fast MRI 

dataset [64]. Of these, 260 were used for training, 60 for validation, and 15 for testing. 

Validation and testing images are never used for learning, however, the validation images are 

used to monitor the generalizability of the learning process by computing the cost function 

of each iteration with similar data that are not used for training. The k-space data has a size 

Ny × Nz × Nt × Nc = 320 × 320 × 1 × 16, and the reconstructed images are Ny × Nz × Nt 

= 320 × 320 × 1. The brain T2-weighted images from the fast MRI dataset are originally 

acquired with multislice 2D pulse sequences, which would allow only 1D undersampling. 

However, we can use them as an illustrative example of learning a hypothetical 2D SP for 

3D Cartesian brain acquisitions [65].

The second dataset comprises the knee joint, denominated knee, contains 335 T1ρ-weighted 

knee images for quantitative T1ρ mapping [66], of size Ny × Nz × Nt × Nc = 256 × 64 × 2 

× 16, and the reconstructed images are Ny × Nz × Nt = 256 × 64 × 2. Of these, 260 were 

used for training, and 60 for validation, and 15 for testing. The k-space data for all images 

are normalized by the largest component. These images were acquired with the 3D Cartesian 

acquisitions as described in [66].

B. Compared approaches:

The proposed alternating approach was compared with the following training approaches for 

VN:

• General training VN, VD+PD SP

• Specific training VN, VD+PD SP
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• VN trained with LOUPE, LOUPE SP

The two best learned VN approaches, the VN with the proposed alternating approach and 

the one with specific training were compared against other learned and CS reconstructions:

• Specific training UNET, VD+PD SP

• Proposed alternating approach with UNET

• Compressed Sensing, VD+PD SP

The details of each method are described below. We trained and tested the SPs and the 

reconstructions for AF from 2 to 20, spaced by 2.

C. General training of a VN:

The VN was trained with several randomly generated SPs of several kinds, including 

Poisson-disc [27], [67], variable density [25], uniform density [67], and combined variable 

density with Poisson-disc (VD+PD) [28] and different AF. One VN training is performed 

for all AF, the VD+PD SP used for testing may have not been used for training. Each of 

the Ni elements of the datasets contains an image sequence, with respective coil sensitivities 

and SP. The SP is different in each element, randomly assigned between the kinds of SP 

mentioned above. We used 80 epochs of the ADAM algorithm [51] with an initial learning 

rate of 1×10−4, with a learning rate drop factor of 1/10 applied every 5 epochs, and a batch 

size of 8 images.

D. Specific training of a VN or UNET:

A VN or UNET [43] were trained with only one specific SP, the same SP for all Ni elements, 

a combined variable density with Poisson-disc (VD+PD), for each AF. One VN or UNET 

training is performed for each AF. We used 80 epochs of the ADAM algorithm [51] with 

an initial learning rate of 1×10−4, with a learning rate drop factor of 1/10 applied every 5 

epochs, and a batch size of 8 images.

E. Joint SP and VN training with LOUPE:

We trained a VN (also UNET, in some specific experiments) within LOUPE framework 

[43], [50], where the VN and the sampling density (SD) are learned. The VN is tested with 

a specific SP that is one realization obtained from the learned sampling density (SD), named 

LOUPE SP. One joint SD and VN training is performed for each AF. We used 80 epochs of 

ADAM with an initial learning rate of 1×10−4, for the VN weights, and 1 for the SD, with a 

learning rate drop factor of 1/10 applied every 5 epochs, and a batch size of 8 images. The 

slope parameter of LOUPE is 0.25.

F. Configuration of the training process of the proposed approach:

The proposed alternating learning algorithm consists of alternating executions of BASS and 

ADAM. Each run of BASS starts with Kinit=1024 and α=0.5 and stops when K=1 (or when 

L=31 in the non-monotone version). Each run of ADAM uses 8 epochs with an initial 

learning rate of 1×10−4, with a learning rate drop factor of 0.25 applied every 2 epochs, and 

batch size of 8 images. The alternating procedure is repeated until the cost function stops 
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decreasing for 5 cycles or a maximum of 100 alternating cycles passed. When a reduced 

initial learning rate is used, each ADAM run starts with the previous initial learning rate 

multiplied by a reduction factor of 0.9.

G. Compressed sensing reconstructions:

We included CS reconstructions using sparsity on spatial finite differences for the brain 

dataset, as in [42], and using spatio-temporal finite differences for the knee dataset, as in 

[68], [69]. The CS is used as a reference for non-deep learning methods. The training dataset 

was used to optimize the regularization parameter, as in [69].

H. Assessment:

The quality of the results obtained with the SP and reconstructions was evaluated using the 

root mean squared error (RMSE), structural similarity index (SSIM), and high-frequency 

energy norm (HFEN). All measurements of individual images are averaged among the tested 

images. The RMSE is defined as:

RMSE xi, xi = xi − xi 2
2 . (13)

The SSIM is defined in [70] and HFEN in [71]. Only RMSE is computed for training and 

validation images along the training process. The testing images have RMSE, SSIM, and 

HFEN values computed only with the final SPs and reconstructions.

V. Results:

A. Illustration of convergence of the proposed approaches:

We illustrate several aspects of the convergence of the proposed approaches, showing the 

curves of the cost function for validation or training images. We compare the four alternating 

approaches, showing the convergence with or without monotonicity and reduced initial 

learning rate. We compare the proposed alternating approach with one long run of BASS, as 

in [42] without alternating learning, using an already learned VN. Finally, we illustrate the 

performance of the proposed approach with other deep learning solvers, such as stochastic 

gradient descent with momentum (SGDM) and root mean square propagation (RMSprop) 

[72].

In Fig. 3(a)–(d), we show the RMSE over the accumulated BASS iterations of the proposed 

approach when forced monotonicity is enabled (monotone) and disabled (non-monotone 

for both: BASS and ADAM), and we also show the convergence of both methods with 

a fixed or reducing initial learning rate for ADAM, as a way to stabilize and improve 

convergence. This experiment uses the knee dataset in 3(a)–(b) and brain dataset in 3(c)–(d), 

both at AF=16. The forced monotonicity only assure a monotone decrease of the cost with 

training images, while the validation images are used to monitor generalizability. When 

monotonicity is disabled, the convergence has some small oscillations, but the local average 

behavior is similar to the monotone version. Except that, the cost starts to increase again on 

the non-monotone version with a fixed initial learning rate. The increase of the RMSE with 

training data (divergence of the algorithm) happened due to the use of a large initial learning 
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rate combined with a short number of epochs. Proper reduction of the initial learning rate 

solves this problem (a factor of 0.9 was used).

In Fig. 3(e), the original BASS [42] with a fixed specific trained VN is compared with the 

proposed alternating approach. The convergence curves in Fig. 3(e) illustrate the importance 

of retraining the VN to learn how to improve the reconstruction with the current SP. In Fig. 

3(f) we illustrate the RMSE over the accumulated BASS iterations for ADAM, RMSprop, 

and SGDM. All methods use the same parameters except SGDM, in which the initial 

learning rate was 1×10−5 because it diverged with the same initial rate of the other methods. 

Due to the lower initial learning rate, the SGDM was slower than the others were.

In Fig. 4 we illustrate the learned SPs considering different initial SPs: an empty SP, only 

with the fixed central auto-calibration area, shown in Fig. 4(a), a Poisson-disc SP, shown in 

Fig. 4(b), and the VD+PD SP, in Fig. 4(c). The RMSE curves for the training and validation 

datasets are shown in Fig. 4(g), while the resulting learned SPs with AF=15 are shown in 

figures 4(d)–(f), respectively. All resulting learned sets, SP and VN, obtained a final RMSE 

between 0.555 and 0.560 for the validation images with very similarly-looking learned SPs. 

In Fig. 4(h), we briefly observe what was learned in the SPs related to the position of 

the samples in the k-space. One can see comparing in Fig. 4(f) and Fig. 4(h) that many 

empty areas in one side of the k-space (with original samples in green) were sampled in 

the negative side of the k-space (with projected sampled positions shown in blue). There are 

very few coincident samples (in red) outside the auto-calibration area, where both sides of 

the k-space were sampled.

The results in Fig. 4 essentially mean that the proposed approach learned to exploit 

complex-conjugated symmetry of the k-space, as in half-Fourier, or partial-Fourier, 

acquisitions in MRI [73]. Moreover, the sampling density of the SP decreases from the 

center to the outer areas, indicating it learned variable density, and that there is a very 

regular spacing between samples that increases from the center to the outer areas, indicating 

it learned the importance of spacing between samples, like in Poisson-disc and VD+PD SPs.

B. Comparison between the tested approaches:

We compare the performance of the proposed approach against the approaches cited in 

Section IV.B. The resulting RMSE, HFEN, and SSIM for the testing dataset at different 

acceleration factors (AF) are shown in Fig. 5 for the brain dataset and in Fig. 6 for the knee 

joint dataset.

The performance of the VN depends significantly on the type of SP, and also on the way 

it was trained. Particularly, the quality of the reconstructions was better when the VN was 

trained for one specific SP (note that the same learned SP was used for testing and should be 

used in new scans that will be reconstructed with the trained VN). In LOUPE, the training 

process randomly generates different SPs from a learned sampling density. The weakness 

of this approach is that the specific k-space positions of the samples are disregarded, and 

LOUPE is not able to learn the advantages of the relative position between k-space samples. 

The relative position of the k-space samples is key in Poisson-disc SPs, as well as VD+PD 

SPs, and it is also learned by the proposed approach.
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The UNET reconstructions performed worse than VN, as shown before in [58]. UNET with 

specific training performed poorly with the brain dataset, as seen in Fig. 5, but was better 

with the knee dataset, as seen in Fig. 6. In both cases, the proposed alternating approach 

improved the quality of the UNET reconstructions and VN over their versions with specific 

training with VD+PD SP.

The proposed approach with VN was able to surpass the performance of the other 

alternatives, including CS, UNET, and even the VN trained with LOUPE or specifically 

for a VD+PD SP. On average, the improvements obtained by the proposed alternating 

approach ranged from 1.0% (SSIM, Brain, AF=4) to 62.0% (HFEN, Knee, AF=2) over 

the second-best approach (Specific training VN, VD+PD SP). Note that the VD+PD SP 

is among the best know SPs for parallel MRI. It has an excellent asymptotic performance 

(which means it performs well with different kinds of reconstructions and different data). 

Nevertheless, it is interesting that the proposed approach learned in hours a different SP that 

performed better than the VD+PD SP for the given data.

In Table 1 we included the difference in training time. Note that the proposed approach 

consumes more training time than the other ones because it requires multiple (average of 40) 

short retraining (8 epochs each) of the VN.

C. Visual comparison of the resulting images and SPs:

In Fig. 7 we compared the SPs learned by the proposed approach and LOUPE for VN, 

and also compared them with the VD+PD SP. Note that all of them show variable density 

behavior, with more samples near the center of the k-space (just outside the fixed central 

auto-calibration area). VD+PD SP has an isometric behavior (by design), while LOUPE 

and the proposed approach have not. Curiously, the proposed approach learned that more 

samples in the lower and mid frequencies are necessary for proper reconstruction, and, 

as discussed in Fig. 4(h), the proposed approach learned to exploit complex-conjugated 

symmetry of the k-space, variable density, and the importance of spacing between samples. 

The sampling density learned by LOUPE was very similar (apart from the scaling due to 

AF) across different AF. One can compare these aspects of the SP learned with the proposed 

approach with VD+PD SP and LOUPE SP in figures 7(d), 7(h), and 7(l).

In Fig. 8, some visual results for the brain dataset are shown. We compared the images 

obtained by LOUPE and by specific trained VN with VD+PD SP against the proposed 

approach. We also show the results with UNET and CS, with their corresponding RMSE, 

SSIM, and HFEN. One can observe improvements obtained by the proposed approach in 

the reconstructed images, in the error maps, and the details on the bottom row, with arrows 

pointing to relevant structures that were better recovered by the proposed approach.

In Fig. 9, some visual results for the knee joint dataset are shown. Note that LOUPE and the 

proposed approach learned that the sampling density should follow the average magnitude of 

the k-space. However, LOUPE performed worse than the proposed approach because it does 

not learn the importance of the relative position of the samples. The sampling density of 

the VD+PD SP does not follow well the average of the k-space data, resulting in an RMSE 

worse than the other methods. Also, the proposed approach learned that a variable number 
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of samples over time is beneficial, allocating more samples in the first frame, as previously 

observed in [42].

D. Using larger datasets:

Depending on the network architecture and application, using 260 images for training may 

not be enough. In Fig. 10, we observe the effect of the training size, comparing the results 

of VN and UNET with a training size of 1860 images, 7 times larger. Note that the RMSE 

with UNET reduced 17% and with VN it reduced only 2% on the testing data. Only minor 

changes in the learned SP are seen.

E. T1ρ mapping:

We illustrate the performance of the proposed approach for T1ρ mapping of the knee 

cartilage following [66]. We compare the proposed approach against LOUPE and the VN 

with specific training with VD+PD SP. The T1ρ mapping is performed in the cartilage region 

on the longitudinal plane (in-plane) of the recovered 3D volume. The 3D+time volume has 

Nx × Ny × Nz × Nt = 256 × 256 × 64 × 2, where Nx = 256 corresponds to the samples 

in the frequency-encoding direction, field-of-view of 130 × 130 × 130 mm3, with in-plane 

resolution of 0.5× 0.5 mm2, and slice thickness of 2 mm. In Fig. 11(a)–(d) we illustrate the 

resulting T1ρ maps and in Fig. 11(e)–(g) the pixel-wise error maps.

VI. Discussion:

The proposed approach is an interesting alternative for combined learning of the SP and 

the reconstruction parameters in 3D Cartesian parallel MRI applications. It performed 

better than LOUPE, mainly because LOUPE does not learn the relative position between 

samples in k-space, which are relevant in parallel MRI. Some other joint approaches 

that can potentially be used for this problem are [44], [46], [47], however, they require 

non-Cartesian Fourier transforms in their network. These approaches have more freedom 

in learning arbitrary k-space trajectories, while the proposed approach is limited to subset 

selection formulation to the SP learning, but they require more processing due to the need 

for non-uniform Fourier transform [74].

The SP learning algorithm used in the proposed approach, known as BASS, has been proven 

effective with different CS algorithms [42] in large-scale problems. However, it is the first 

time it has been merged with deep learning algorithms for MR image reconstruction. Four 

different versions of the alternating approach are shown. The non-monotone alternating 

approach should stop when the RMSE of the validation images increases. However, the 

convergence of the non-monotone approach can be stabilized by using a reduced initial 

learning rate on the VN retraining. This is also the most indicated variation for further 

development on batch training on very large datasets.

In [42], it was also shown that BASS can work with different cost functions. There is no 

need for differentiability in BASS, which is a requirement in neural networks trained with 

backpropagation algorithms. In this study, we illustrate the performance of the proposed 

approach with the squared l2-norm of the error as the cost function. However, other 
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criteria can improve the sampling and reconstruction in different aspects for specific MRI 

applications or problems.

An important aspect of the joint learning approaches is the stability of the results. Due to 

the non-convex nature of the problem, the learning approach is likely to converge to a local 

minimum. In other words, several parameters of the learning algorithm are relevant (like 

the initial solution, step-sizes, decaying rates). In this sense, we observe that the proposed 

approach was very stable, as seen in figures 3 and 4. The stability of the joint learning 

approaches is important, as mentioned in [44], [47].

As seen in the results of figures 7, 8, and 9, the proposed approach learned SPs that are 

more densely sampled in low and mid frequencies than VD+PD and LOUPE. The learned 

SPs look different from the others and the disposition of the k-space samples is, to say, 

non-intuitive. However, as seen in Fig. 4(h) and figures 7(d), 7(h), and 7(l), many properties 

of the SPs learned through the years by human research seems to be learned by the proposed 

approach, such as partial-Fourier (or conjugated symmetry), variable density, and the relative 

distance between the samples. There are likely even more properties learned about the SP 

that we cannot identify right now. The improvements in the reconstructed images obtained 

by a learned SP and VN are visible and measured by different figures of metrics. Particularly 

in figures 8 and 9, where brain and knee joint structures were better recovered by the 

proposed approach than by the other pairs of reconstruction and SP. The VN was also 

superior to the UNET, as previously reported [58]. Those interesting results support the fact 

that joint learning of SP and neural network parameters, using algorithms like the proposed 

one, is important in accelerated parallel MRI.

In this work, we tested the joint learning approach with the original VN for MRI [11] and 

the UNET, however, the proposed approach is not restricted to these networks. Other recent 

deep learning networks, such as the ones discussed in [13], [14], [58], can be used.

V. Conclusion

This paper proposes a new alternating learning approach to learn the sampling pattern and 

the parameters of a variational network in accelerated parallel 3D Cartesian MRI problems. 

The proposed approach learned a set (SP and VN) that jointly produces better images than 

other approaches such as LOUPE with VN or a VN with a variable density with Poisson-

disc fixed SP. The proposed approach can also be used with other NN-based reconstructions. 

The results were observed with two different datasets, and performed stably across different 

acceleration factors, improving the quality from small AF, such as AF=2, up to very high 

AF, such as AF=20.
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Fig. 1. 
Illustration of the 3D+time data collection scheme considered in this work. The SP is in 

2D+time, it comprises the time-varying phase and partition encoding positions, for each of 

which data are to be collected by the MRI scanner for all frequency encoding positions.
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Fig. 2. 
General overview of the proposed approach for jointly learning the SP and the parameters of 

a VN on Parallel MRI problems.
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Fig. 3: 
Curves of cost function over accumulated BASS iterations for the (a) training images 

and the (b) validation images for knee dataset, and (c)-(d) for brain dataset, showing the 

performance of the four alternating approaches. In (e), the original BASS with a fixed 

specific trained VN (no re-training) is compared with the proposed alternating approach, 

with the same initial conditions. In these figures, the discontinuities are due to the short 

runs of the ADAM algorithm. Only some runs are marked with arrows and an illustrative 

convergence curve for ADAM is shown in the small box. In (f) the convergence using other 

deep learning solvers, instead of ADAM, is shown.
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Fig. 4: 
Convergence of the proposed approach with different initial SPs and randomly initialized 

VNs. The initial SPs are shown in (a) an empty SP, only with the fixed auto-calibration area 

in yellow, in (b) a Poisson-disc SP, and in (c) a VD+PD SP. The corresponding learned SPs 

are shown in (d)-(f). In (g), the RMSE over accumulated BASS iterations is shown, where 

the discontinuities are due to short runs of the ADAM algorithm. In (h) we illustrate some 

aspects of the position of the samples in the learned SP: in green the original positions of the 

left-hand side of the learned SP, in blue the projected samples from the negative side of the 

k-space (equivalent to horizontal and vertical flipping), and in red the coincident samples.
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Fig. 5: 
RMSE, HFEN, and SSIM of the tested approaches on the brain dataset. In (a)-(c) the results 

for the VN with different learning approaches are shown, and in (d)-(f) the results comparing 

VN, UNET, and CS are shown.
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Fig. 6: 
RMSE, HFEN, and SSIM of the tested approaches on the knee dataset. In (a)-(c) the results 

for the VN with different learning approaches are shown, and in (d)-(f) the results comparing 

VN, UNET, and CS are shown.
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Fig. 7: 
Comparing SPs for VN at different AFs for the brain dataset. In (a)-(c) the SPs learned 

by the proposed approach, for AF=4, 8, and 12, are shown. In (e)-(g) the VD+PD SPs are 

shown, for the same AFs. In (i)-(k) the SPs generated from the sampling densities (SD) 

learned in LOUPE are shown. The corresponding SDs learned by LOUPE are shown in 

(m)-(o). Yellow areas correspond to fixed auto-calibration areas of the SP. In (d), (h), and 

(l) we compare the position of the samples in the SPs: in green the original positions of the 

lower side of the SP, in blue the projected position of the samples of the negative side of the 

k-space (equivalent to horizontal and vertical flipping), and in red coincident samples.
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Fig. 8: 
Comparing SP and images with brain dataset at AF=20. In the top row the average of the 

magnitude of the k-space of the training dataset and the SPs are shown. In the second row, 

the original reference image and the reconstructed images are shown, with their respective 

RMSE, SSIM, and HFEN. In the third row, the k-space of the reference image is shown, as 

well as the corresponding error maps of the reconstructions right above them. In the bottom 

row, the details of the reconstructed images of the same column are shown. Arrows point to 

the relevant structures in the detailed reconstructed images.
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Fig. 9: 
Comparing SP and images with knee dataset at AF=12. In the top row the average of the 

magnitude of the k-space of the training dataset and the SPs are shown. In the second row, 

the original reference image and the reconstructed images are shown, with their respective 

RMSE, SSIM, and HFEN. In the bottom row, the k-space of the reference image is shown, 

as well as the corresponding error maps of the reconstructions right above them.
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Fig. 10: 
Comparing SP and reconstruction error of UNET and VN when training was performed with 

260 or 1860 images. For AF=18, VN reduced the RMSE from 0.50 to 0.49, and UNET from 

0.80 to 0.67, and for AF=13, VN reduced the RMSE from 0.43 to 0.42, and UNET from 

0.69 to 0.57 on the testing dataset.
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Fig. 11: 
Comparing T1ρ mapping results with knee joint dataset at AF=4. In (a) the reference T1ρ 
map produced from fully-sampled images is shown. In (b)-(d) T1ρ map produced by the VN 

reconstruction using LOUPE, using VD+PD SP, and using the proposed approach. In (e)-(g) 

the error maps are shown.
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Table 1:

Approximate training times for the datasets on an NVIDIA GTX 1660 GPU 4GB memory with Intel i5-4570S 

CPU and 32GB memory.

General or Specific VN training VN training with LOUPE Proposed Approach

VN training or retraining epochs 80 80 Average of 40×8

Accumulated BASS iterations 0 0 Average of 1000

Training time brain dataset 5.4 hours 5.6 hours 23.0 hours

Training time knee dataset 3.2 hours 3.8 hours 12.5 hours
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