Skip to main content
. 2022 Jul 4;22:183. doi: 10.1186/s12874-022-01664-z

Table 2.

Analysis of sensitivity and specificity

Model Accuracy Sensitivity Specificity PPV NPV AUC Operating threshold 95% CI
NNET 0.840 0.802 0.733 0.391 0.946 0.833 0.164 (0.816, 0.849)
NB 0.833 0.767 0.800 0.450 0.941 0.816 0.058 (0.799, 0.833)
LR 0.843 0.808 0.731 0.391 0.947 0.833 0.162 (0.816, 0.848)
GBM 0.844 0.805 0.699 0.360 0.944 0.824 0.141 (0.807, 0.840)
Ada 0.846 0.786 0.737 0.390 0.942 0.834 0.148 (0.817, 0.849)
RF 0.840 0.856 0.642 0.338 0.954 0.825 0.150 (0.808, 0.841)
BT 0.836 0.715 0.745 0.375 0.925 0.804 0.240 (0.786, 0.820)
XGB 0.844 0.808 0.712 0.374 0.945 0.830 0.157 (0.814, 0.846)
CatBoost 0.842 0.789 0.741 0.394 0.943 0.830 0.165 (0.813, 0.846)

PPV Positive Predictive Values, NPV Negative Predictive Values, AUC Area Under the Curve, CI Confidence Interval, NNET artificial Neural Network, NB Naïve Bayes, LR Logistic Regression, GBM Gradient Boosting Machine, Ada Adapting boosting, RF Random Forest, BT Bagged Trees, XGB eXtreme Gradient Boosting