Table 2.
Model | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC | Operating threshold | 95% CI |
---|---|---|---|---|---|---|---|---|
NNET | 0.840 | 0.802 | 0.733 | 0.391 | 0.946 | 0.833 | 0.164 | (0.816, 0.849) |
NB | 0.833 | 0.767 | 0.800 | 0.450 | 0.941 | 0.816 | 0.058 | (0.799, 0.833) |
LR | 0.843 | 0.808 | 0.731 | 0.391 | 0.947 | 0.833 | 0.162 | (0.816, 0.848) |
GBM | 0.844 | 0.805 | 0.699 | 0.360 | 0.944 | 0.824 | 0.141 | (0.807, 0.840) |
Ada | 0.846 | 0.786 | 0.737 | 0.390 | 0.942 | 0.834 | 0.148 | (0.817, 0.849) |
RF | 0.840 | 0.856 | 0.642 | 0.338 | 0.954 | 0.825 | 0.150 | (0.808, 0.841) |
BT | 0.836 | 0.715 | 0.745 | 0.375 | 0.925 | 0.804 | 0.240 | (0.786, 0.820) |
XGB | 0.844 | 0.808 | 0.712 | 0.374 | 0.945 | 0.830 | 0.157 | (0.814, 0.846) |
CatBoost | 0.842 | 0.789 | 0.741 | 0.394 | 0.943 | 0.830 | 0.165 | (0.813, 0.846) |
PPV Positive Predictive Values, NPV Negative Predictive Values, AUC Area Under the Curve, CI Confidence Interval, NNET artificial Neural Network, NB Naïve Bayes, LR Logistic Regression, GBM Gradient Boosting Machine, Ada Adapting boosting, RF Random Forest, BT Bagged Trees, XGB eXtreme Gradient Boosting