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The current era of advanced computing has allowed for the development and implementation of the field of 
radiomics. In pediatric neuro-oncology, radiomics has been applied in determination of tumor histology, identifica-
tion of disseminated disease, prognostication, and molecular classification of tumors (ie, radiogenomics). The field 
also comes with many challenges, such as limitations in study sample sizes, class imbalance, generalizability of the 
methods, and data harmonization across imaging centers. The aim of this review paper is twofold: first, to summa-
rize existing literature in radiomics of pediatric neuro-oncology; second, to distill the themes and challenges of the 
field and discuss future directions in both a clinical and technical context.
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The current era of advanced computing has led to the emer-
gence of the field of radiomics.1 Radiomics, in brief, is the 
“high-throughput extraction of large amounts of imaging fea-
tures” from clinically acquired radiologic images.2 This data is 
then compiled into mineable databases and can be utilized in 
a variety of applications, ranging from hypothesis generation 
to predictive modeling to clinical decision making.3 The large-
scale impact of the application of this technology becomes 
clear when one considers the vast amount of underutilized ra-
diologic data generated through routine patient care.1 Within 
the field of neuro-oncology, patient tumors are diagnosed and 
followed through a series of cross-sectional imaging including, 
but not limited to, CT, MRI, and PET scans. Although each of 
these scans can contain millions of voxels worth of data, their 

analysis is usually limited to qualitative assessments performed 
by individual neuroradiologists.1,3 This practice leaves much of 
the generated data underutilized in the clinical setting and cre-
ates a niche that can be filled through the implementation of 
radiomics.

Radiogenomics, as it is referred to in this review, or imaging 
genomics, is defined as the integration of radiomics with al-
terations in molecular and genomic data or using machine 
learning (ML) methods based on radiomic features to find non-
invasive and in vivo signatures to predict molecular alterations 
in tumors.4 This technology has shown great potential in the 
field of neuro-oncology as many disease subtypes have been 
defined based on their genetic and molecular profiles by the 
2021 WHO guidelines.5 Some theoretical applications of this 
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technology could allow for the development of noninva-
sive, “virtual biopsies” which can bridge gaps in histopath-
ological sampling that occur after initial diagnosis when 
disease progresses or in situations where sophisticated 
molecular analyses are not readily available.4

These technologies have been increasingly applied to a 
variety of fields and have shown clinical utility in neuro-
oncological applications.6–8 For example, in adult glioma 
populations, radiomics have been applied to help to char-
acterize molecular subtypes of tumors, differentiate be-
tween treatment effects and tumor recurrence,9 and allow 
for more accurate survival stratification.10–13 Furthermore, 
radiomic profiles of disease could be utilized by clinicians 
to optimize therapy plans within this group of tumors.14

Relative to its adult counterpart, the field of pediatric 
neuro-oncology has a relative dearth of radiomic studies. 
The cause of this disparity is unclear and likely multifacto-
rial. One explanation for this could be the simple fact that, 
among oncological patients, there are far fewer children 
than adults, and therefore there is less data available upon 
which to build radiomic models. According to the Central 
Brain Tumor Registry of the United States (CBTRUS), the 
incidence rate of brain and other CNS tumors from 2013 
to 2017 was about five times higher in adults than in 
children.15

Despite the relative difference in volumes of patients be-
tween adult and pediatric populations, childhood brain and 
other CNS cancers surpass all other cancers as the primary 
reason for cancer mortality in children.15 Thus, there is a 
clear need for further work within these fields.

Figure 1 provides an overview of the workflow com-
monly used in radiomic studies. We refer the readers inter-
ested in learning more about principles of radiomics and 
radiogenomics studies and their applications to some of 
the existing excellent review papers on this topic.1,2,6 The 
aim of this review paper is twofold: first, to summarize ex-
isting literature in radiomics/radiogenomics of pediatric 
neuro-oncology; second, to distill the themes and chal-
lenges of the field and discuss future directions in both a 
clinical and technical context.

Pediatric Neuro-Oncology

WHO Classification of Brain Tumors

For all tumors of the central nervous system, the WHO 
CNS5 promotes the use of layered and integrated 
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Figure 1.  Overview of a typical radiomics workflow. First, the dataset of images and any relevant clinical or genomic data is gathered. Here, T1w, 
T1wCE, T2w, and FLAIR images are shown. Next, the images are preprocessed through steps such as co-registration and skull stripping. Here, 
the processed images are shown. Then, tumors are usually segmented by experienced radiologists. Here, the different colors showcase different 
segmented components on the processed images. Various features are then extracted from each image, usually on the order of hundreds of fea-
tures per patient. Here, a sample histogram is shown to represent histogram-based features (created in MATLAB). From these features, various 
models are built, and feature reduction/selection is typically performed to find the most predictive features to prevent overfitting. Random Forest 
is diagrammed here. Each model built can vary along a few parameters, such as: algorithm (eg, SVM vs RF vs kNN) as well as parameters, feature 
reduction/selection method, data included (eg, image only vs combined image and clinical data), or image modalities used (eg, T1w vs T2w vs T1w 
and T2w combined). Finally, each model’s performance is evaluated on a validation and/or external test set based on various metrics such as area 
under the curve. Here, a sample ROC curve is shown (created in MATLAB).
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diagnoses to more comprehensively characterize lesions 
and capture the depth of information that makes them 
distinct clinical entities.5 This layered structure includes 
an integrated diagnosis, comprised of histopatholog-
ical classification, CNS WHO grade, and molecular in-
formation specific to the subtype. For example, a tumor 
could have an integrated diagnosis of “‘Diffuse low-
grade glioma, MAPK pathway-altered’ subtype: Diffuse 
low-grade glioma, FGFR1 TKD-duplicated,” a histopath-
ological classification of “Oligodendroglioma,” a CNS 
WHO grade of “Not assigned,” and molecular informa-
tion that includes the specific molecular alteration and 
method of detection.5 This tiered approach enables preci-
sion in both research and clinical settings and highlights 
the importance of the multimodal approaches to tumor 
characterization that have been implemented in recent 
years. It is likely that with advancements in radiomic and 
radiogenomic fields, features from these modalities will 
contribute to these layered classification systems, and so 
by becoming familiar with the current layout, researchers 
can find opportunities to better differentiate and classify 
tumors.

Literature Search Strategy

PubMed and Google Scholar databases were electroni-
cally searched to identify relevant studies published prior 
to May 2021 that included keywords in the title/abstract in 
the following categories: radiomics (such as “radiomics” 
or “radiogenomics”), brain tumors (such as “glioma” or 
“medulloblastoma” or “astrocytoma” or “ependymoma”), 
and pediatric (such as “pediatric” or “childhood”). Some 
terms were also searched in medical subject headings, 
and no limitations were included on the year of publica-
tion. Following the initial search, the articles listed in the 
references of identified studies were evaluated. The search 
returned 139 articles, 108 of which were excluded after title/
abstract review. The remaining articles were reviewed, 
and studies that met any of the following criteria were ex-
cluded: fewer than 75% of patients were pediatric, ML was 
not used, brain MRI was not the main modality (eg, brain 
CT only or spine MRI only), no radiomic features were used 
(ie, studies only using MRS data were excluded), or the 
tumor was not in the brain (eg, studies on tumors in the 
spinal cord or elsewhere in the nervous system were ex-
cluded). Ultimately, 18 studies were included in the final 
analysis.

Summary of Radiomics Studies in 
Pediatric Neuro-Oncology

In this section, we will review radiomics and radiogenomics 
studies in pediatric neuro-oncology (summarized in Table 
1). We have grouped studies by their endpoint, resulting 
in four categories: applications in determining tumor his-
tology, applications in identifying disseminated diseases, 
applications in prognostication, and applications in molec-
ular classification (ie, radiogenomics).

Applications in Determining Tumor Histology

Determination of tumor histology is a key step in diagnosis 
and treatment of pediatric brain tumors. Radiomics has 
shown promise in aiding in the determination of histology 
even prior to biopsy. This early information can help with 
surgical planning and better inform caregivers when coun-
seling patients.

Posterior fossa  tumors—A common goal of radiomic 
studies in pediatric neuro-oncology has been to dis-
tinguish between posterior fossa tumors, particularly 
Ependymoma (EP), Medulloblastoma (MB), and Pilocytic 
Astrocytoma (PA)—refer to Table 2 for other abbreviations 
commonly used throughout this review. These tumors are 
all located in the posterior fossa, have some similar ra-
diologic characteristics, and patients with these tumors 
present with similar symptoms. It is clinically important to 
differentiate between these tumors as this diagnosis can 
help in guiding surgical or treatment planning, as well as 
informing prognosis.34,35 Currently, pathological analysis 
of the biopsied tissue is the gold standard for diagnosis,36 
but this process is invasive. An accurate radiomic model 
could allow for a fast, noninvasive method for presurgical 
and pretreatment diagnosis. Radiomics studies have 
shown promise in achieving this goal.16–18,23–26,31,32

Several of these studies found that classifiers were 
least accurate in classifying EP. One deep-learning study 
found that EP had the least distinctive learned feature 
space amongst these tumors,26 which may partially ex-
plain why posterior fossa classification models often are 
least accurate at classifying EP among the tumor types. 
Adding EP patients may help address these difficulties (see 
Class Imbalance section in the Discussion for further dis-
cussion on this topic).

Quantitative information from Diffusion Weighted 
Imaging  (DWI) (Apparent Diffusion Coefficient  (ADC) 
maps) and/or DSC images (unnormalized cerebral blood 
volume, corrected cerebral blood volume, and/or K2 maps) 
have been shown to be predictive of classification of pos-
terior fossa tumors.23,24,31,32 For example, Dong et al. found 
that several ADC-derived features distinguished EP from 
MB, which is consistent with the clinical understanding 
that MB, by virtue of its high cellular density, often restricts 
diffusion to a greater extent than EP tumors.32

In particular, texture-based features derived from T1w 
and T2w images have been shown to be predictive of pos-
terior fossa tumor classification in both single and multi-
institutional studies.16–18,25

Most radiomic studies select imaging features from 
the region of interest drawn around the tumor. However, 
one study found that imaging features extracted from the 
whole brain, when combined with imaging features calcu-
lated from the region of interest, can improve classification 
accuracy for posterior fossa tumors.24 While the mech-
anism of this improved accuracy is not fully elucidated in 
the mentioned study, it implies that peri-tumoral regions 
harbor data that can be meaningful in the clinical context.

Adamantinomatous craniopharyngioma—Correct diag-
nosis of adamantinomatous craniopharyngioma (ACP) is 



  
Ta

bl
e 

1.
 

Su
m

m
ar

y 
of

 R
ad

io
m

ic
 P

ap
er

s 
fro

m
 in

 P
ed

ia
tri

c 
N

eu
ro

-O
nc

ol
og

y

Pa
p

er
 

R
el

ev
an

t T
u

m
o

rs
 

Pa
ti

en
t 

A
g

e 
G

ro
u

p
 

(Y
ea

rs
) 

# 
S

u
b

je
ct

s 
an

d
 B

re
ak

-
d

o
w

n
, I

f 
ap

p
lic

ab
le

 

S
in

g
le

 o
r 

M
u

lt
i-

 
In

st
it

u
ti

o
n

al
 

(#
 C

en
te

rs
) 

R
ad

io
m

ic
s 

E
n

d
p

o
in

t 
Im

ag
es

 U
se

d
 

S
eg

m
en

ta
ti

o
n

 
M

et
h

o
d

 u
se

d
 

Fe
at

u
re

 S
el

ec
ti

o
n

/
R

ed
u

ct
io

n
 M

et
h

o
d

(s
) 

M
o

d
el

(s
) 

Pe
rf

o
rm

an
ce

 o
f B

es
t 

M
o

d
el

(s
),

 G
en

er
al

ly
 in

 
Te

rm
s 

o
f A

U
C

 

Fe
ti

t e
t a

l.16
P

ilo
cy

ti
c 

as
tr

o
cy

to
m

a 
 

M
ed

u
llo

b
la

st
o

m
a 

 
E

p
en

d
ym

o
m

a

n
/a

a
48

 To
ta

l 
b

re
ak

d
o

w
n

:  
20

 P
A

  
21

 M
B

  
7 

E
P

s

S
in

g
le

D
iff

er
en

ti
at

e 
b

et
w

ee
n

 P
A

, 
M

B
, E

P,
 c

o
m

-
p

ar
in

g
 2

D
 a

n
d

 
3D

 te
xt

u
re

 
an

al
ys

is

T
1w

  
T

2w
S

em
i-

 
au

to
m

at
ic

E
n

tr
o

p
y-

M
D

L 
d

is
-

cr
et

iz
at

io
n

 a
n

d
 P

C
A

N
B

, k
N

N
, c

la
ss

ifi
-

ca
ti

o
n

 tr
ee

, S
V

M
, 

A
N

N
, L

R

B
es

t m
o

d
el

s 
w

er
e 

LR
 

an
d

 A
N

N
 o

n
 3

D
 te

xt
u

re
 

fe
at

u
re

s 
w

it
h

 e
n

tr
o

p
y-

M
D

L-
b

as
ed

 s
el

ec
ti

o
n

. 
A

U
C

 w
as

 9
9%

 (l
ea

ve
-

o
n

e-
o

u
t c

ro
ss

- 
va

lid
at

io
n

 a
n

d
 1

0-
fo

ld
 

cr
o

ss
-v

al
id

at
io

n
)

Fe
ti

t e
t a

l.17
P

ilo
cy

ti
c 

as
tr

o
cy

to
m

a 
 

M
ed

u
llo

b
la

st
o

m
a 

 
E

p
en

d
ym

o
m

a

n
/a

12
1 

To
ta

l 
b

re
ak

d
o

w
n

:  
61

 P
A

  
42

 M
B

  
18

 E
P

M
u

lt
i (

3)
D

iff
er

en
ti

at
e 

b
et

w
ee

n
 P

A
, 

M
B

, E
P

 w
it

h
 

3D
 te

xt
u

re
 

an
al

ys
is

T
1w

  
T

2w
S

em
i-

 
au

to
m

at
ic

E
n

tr
o

p
y-

M
D

L 
d

is
-

cr
et

iz
at

io
n

C
-S

V
M

O
ve

ra
ll 

A
U

C
: 8

5%
 (l

ea
ve

-
o

n
e-

o
u

t c
ro

ss
- 

va
lid

at
io

n
)

Fe
ti

t e
t a

l.18
P

ilo
cy

ti
c 

as
tr

o
cy

to
m

a 
 

M
ed

u
llo

b
la

st
o

m
a 

 
E

p
en

d
ym

o
m

a

n
/a

13
4 

To
ta

l 
b

re
ak

d
o

w
n

: 
71

 P
A

  
45

 M
B

  
18

 E
P

m
u

lt
i (

3)
D

iff
er

en
ti

at
e 

b
et

w
ee

n
 P

A
, 

M
B

, E
P

T
1w

  
T

2w
S

em
i-

 
au

to
m

at
ic

R
el

ie
f, 

en
tr

o
p

y-
M

D
L,

 
an

d
 c

o
m

b
in

at
io

n
 o

f 
R

el
ie

f a
n

d
 e

n
tr

o
p

y-
 

M
D

L

C
-S

V
M

. I
n

cl
u

d
ed

 
ov

er
sa

m
p

lin
g

 
o

n
 E

P.

M
ea

n
 A

U
C

: 7
6%

 (o
n

 
u

n
se

en
 te

st
 s

et
 fr

o
m

 a
 

d
iff

er
en

t c
en

te
r 

in
 p

ai
r-

w
is

e 
te

st
in

g
).

 A
U

C
 o

n
 

co
m

b
in

ed
 d

at
as

et
: 8

6%
 

(b
ef

o
re

 o
ve

rs
am

p
lin

g
 

o
n

 E
P

) a
n

d
 9

2%
 (a

ft
er

 
ov

er
sa

m
p

lin
g

 o
n

 E
P

) 
(l

ea
ve

-o
n

e-
o

u
t c

ro
ss

- 
va

lid
at

io
n

).

H
ar

a 
et

 a
l.19

E
m

b
ry

o
n

al
 b

ra
in

 
tu

m
o

rs
M

ed
ia

n
: 6

.9
34

 To
ta

l
S

in
g

le
D

iff
er

en
ti

at
e 

b
et

w
ee

n
 

va
ri

o
u

s 
h

is
to

lo
g

ie
s,

 
id

en
ti

fy
 tu

-
m

o
rs

 w
it

h
 

n
eu

ra
xi

s 
m

et
as

ta
se

s,
 

id
en

ti
fy

 p
a-

ti
en

ts
 a

t r
is

k 
o

f r
ec

u
rr

en
ce

, 
an

d
 p

re
d

ic
t 

su
rv

iv
al

 o
u

t-
co

m
es

 fr
o

m
 

p
re

o
p

er
at

iv
e 

im
ag

in
g

T
1w

C
E

  
FL

A
IR

M
an

u
al

S
el

ec
te

d
 fe

at
u

re
s 

th
at

 h
ad

 th
e 

la
rg

es
t 

o
b

se
rv

ed
 v

ar
ia

n
ce

 
w

it
h

in
 th

e 
co

h
o

rt
, 

an
d

 s
el

ec
te

d
 o

n
es

 
w

it
h

 p
hy

si
ci

an
- 

d
efi

n
ed

 p
ro

g
n

o
st

ic
 

va
lu

e 
fo

r 
fu

rt
h

er
 

an
al

ys
is

LR
 to

 p
re

d
ic

t s
ex

 
an

d
 M

 s
ta

tu
s,

 
m

u
lt

in
o

m
ia

l L
R

 
fo

r 
h

is
to

lo
g

y,
 a

n
d

 
C

ox
 r

eg
re

ss
io

n
 

fo
r 

re
cu

rr
en

ce
 

an
d

 s
u

rv
iv

al
 o

u
t-

co
m

es

Fo
r 

h
is

to
lo

g
y,

 k
ey

 fe
a-

tu
re

s 
in

cl
u

d
ed

 s
iz

e 
an

d
 

te
xt

u
re

 fe
at

u
re

s.
 F

o
r 

n
eu

ra
xi

s 
m

et
as

ta
se

s,
 

p
re

d
ic

ti
ve

 fe
at

u
re

s 
in

cl
u

d
ed

 tu
m

o
r 

d
ia

m
-

et
er

 (A
U

C
 =

 0
.7

4)
 a

n
d

 
n

ei
g

h
b

o
rh

o
o

d
 g

ra
y 

to
n

e 
co

ar
se

n
es

s 
(A

U
C

 =
 0

.7
).

 
Fo

r 
re

cu
rr

en
ce

, A
U

C
 

w
as

 0
.7

 fo
r 

p
re

d
ic

ti
ve

 
fe

at
u

re
s 

su
ch

 a
s 

tu
m

o
r 

vo
lu

m
e 

an
d

 n
ei

g
h

b
o

r-
h

o
o

d
 g

ra
y 

to
n

e 
co

ar
se

-
n

es
s.

 4 Madhogarhia et al. Radiomics in pediatric neuro-oncology: a review



  
Ta

bl
e 

1.
 

Co
nt

in
ue

d

Pa
p

er
 

R
el

ev
an

t T
u

m
o

rs
 

Pa
ti

en
t 

A
g

e 
G

ro
u

p
 

(Y
ea

rs
) 

# 
S

u
b

je
ct

s 
an

d
 B

re
ak

-
d

o
w

n
, I

f 
ap

p
lic

ab
le

 

S
in

g
le

 o
r 

M
u

lt
i-

 
In

st
it

u
ti

o
n

al
 

(#
 C

en
te

rs
) 

R
ad

io
m

ic
s 

E
n

d
p

o
in

t 
Im

ag
es

 U
se

d
 

S
eg

m
en

ta
ti

o
n

 
M

et
h

o
d

 u
se

d
 

Fe
at

u
re

 S
el

ec
ti

o
n

/
R

ed
u

ct
io

n
 M

et
h

o
d

(s
) 

M
o

d
el

(s
) 

Pe
rf

o
rm

an
ce

 o
f B

es
t 

M
o

d
el

(s
),

 G
en

er
al

ly
 in

 
Te

rm
s 

o
f A

U
C

 

D
as

g
u

p
ta

  
et

 a
l.20

M
ed

u
llo

b
la

st
o

m
a

M
ed

ia
n

: 9
ra

n
g

e 
2–

48
11

1 
To

ta
l  

B
re

ak
d

o
w

n
:   

17
 W

N
T

  
44

 S
H

H
  

27
 G

ro
u

p
 3

  
23

 G
ro

u
p

 4

M
u

lt
i (

n
/a

)
Pr

ed
ic

t M
B

 
m

o
le

cu
la

r 
su

b
g

ro
u

p
 fr

o
m

 
p

re
o

p
er

at
iv

e 
im

ag
in

g

M
u

lt
ip

ar
am

et
ri

c 
 

M
R

I, 
in

cl
u

d
in

g
T

1w
C

E
,  

T
2w

n
/a

Pe
ar

so
n

 c
h

i-
sq

u
ar

e 
te

st
 a

n
d

 F
is

h
er

’s
 

ex
ac

t t
es

t (
o

n
 fe

a-
tu

re
s 

ex
tr

ac
te

d
 b

y 
o

b
se

rv
er

s,
 s

u
ch

 
as

 tu
m

o
r 

lo
ca

ti
o

n
, 

m
ax

im
u

m
 tu

m
o

r 
si

ze
, a

n
d

 c
o

n
tr

as
t 

en
h

an
ce

m
en

t c
h

ar
-

ac
te

ri
st

ic
s,

 a
m

o
n

g
st

 
o

th
er

s)

Lo
g

is
ti

c 
re

g
re

s-
si

o
n

 to
 d

ev
el

o
p

 
b

in
ar

y 
n

o
m

o
-

g
ra

m
s 

fo
r 

ea
ch

 
su

b
g

ro
u

p

W
N

T:
 A

U
C

 o
f 0

.6
93

.  
S

H
H

: A
U

C
 o

f 0
.9

91
.  

G
ro

u
p

 3
: A

U
C

 o
f 0

.6
00

. 
G

ro
u

p
 4

: A
U

C
 o

f 0
.7

88
. 

(v
al

id
at

io
n

 c
o

h
o

rt
)

G
o

ya
 O

u
ti

  
et

 a
l.21

D
iff

u
se

 in
tr

in
si

c 
p

o
n

ti
n

e 
g

lio
m

a
M

ea
n

: 7
.4

38
 To

ta
l b

re
ak

-
d

o
w

n
:  

9 
H

3.
1 

m
ut

at
io

n
22

 H
3.

3 
m

ut
at

io
n

  
4 

W
T

3 
u

n
kn

o
w

n

S
in

g
le

Pr
ed

ic
t H

3 
m

u
-

ta
ti

o
n

 s
ta

tu
s

T
1w

  
T

2w
  

T
1w

C
E

  
FL

A
IR

n
/a

M
u

lt
i-

le
ve

l f
ea

tu
re

 
se

le
ct

io
n

, i
n

cl
u

d
in

g
 

in
tr

a-
cl

as
s 

co
rr

el
a-

ti
o

n
 c

o
ef

fi
ci

en
t,

 A
U

C
, 

an
d

 h
ie

ra
rc

h
ic

al
 

cl
u

st
er

in
g

 u
si

n
g

 
sp

ea
rm

an
’s

 c
o

rr
el

a-
ti

o
n

 c
o

ef
fi

ci
en

t

S
V

M
, k

N
N

, R
F.

 In
-

cl
u

d
ed

 o
ve

rs
am

-
p

lin
g

 o
n

 m
in

o
ri

ty
 

cl
as

s 
(H

3.
1)

B
es

t m
o

d
el

 w
as

 S
V

M
 

w
it

h
 c

o
m

b
in

ed
 im

ag
in

g
 

an
d

 c
lin

ic
al

 fe
at

u
re

s.
 T

h
is

 
m

o
d

el
 h

ad
 F

1-
w

ei
g

h
te

d
 

sc
o

re
 o

f 0
.8

4 
(l

ea
ve

-o
n

e-
o

u
t c

ro
ss

-v
al

id
at

io
n

)

Iv
 e

t a
l.22

M
ed

u
llo

b
la

st
o

m
a

R
an

g
e:

 1
 to

 
18

, m
ea

n
: 

8.
56

10
9 

To
ta

l  
b

re
ak

d
o

w
n

:  
30

 S
H

H
19

 W
N

T
  

24
 G

ro
u

p
 3

36
 G

ro
u

p
 4

M
u

lt
i (

3)
Pr

ed
ic

t M
B

 
m

o
le

cu
la

r 
su

b
-

g
ro

u
p

T
1w

C
E

  
T

2w
M

an
u

al
W

ilc
ox

o
n

 r
an

k 
su

m
 

te
st

S
V

M
Fo

r 
d

o
u

b
le

 1
0-

fo
ld

 c
ro

ss
-

va
lid

at
io

n
 o

n
 c

o
m

b
in

ed
 

d
at

a,
 b

es
t m

o
d

el
 u

se
d

 
b

o
th

 T
1w

C
E

 a
n

d
 T

2w
. 

A
U

C
: 0

.7
9 

(S
H

H
),

 0
.4

5 
(W

N
T

),
 0

.7
0 

(G
ro

u
p

 3
),

 
0.

83
 (G

ro
u

p
 4

).
T

2w
-o

n
ly

 
m

o
d

el
 h

ad
 s

lig
h

tl
y 

b
et

te
r 

p
er

fo
rm

an
ce

 o
n

 W
N

T
 

(0
.6

3)
.  

Fo
r 

3-
d

at
as

et
 c

ro
ss

- 
va

lid
at

io
n

, T
1w

C
E

 &
 T

2w
 

m
o

d
el

 h
ad

 A
U

C
: 0

.8
0 

(G
ro

u
p

 4
),

 0
.7

0 
(S

H
H

),
 

0.
45

 (W
N

T
),

 0
.3

9 
(G

ro
u

p
 

3)
. T

1w
C

E
-o

n
ly

 m
o

d
el

 
h

ad
 s

lig
h

tl
y 

h
ig

h
er

 A
U

C
 

fo
r 

S
H

H
 (0

.7
3)

.T
2w

-o
n

ly
 

m
o

d
el

 h
ad

 h
ig

h
es

t 
A

U
C

 fo
r W

N
T

 (0
.7

2)
 a

n
d

 
G

ro
u

p
 3

 (0
.5

7)
.

5Madhogarhia et al. Radiomics in pediatric neuro-oncology: a review
N

eu
ro-O

n
colog

y 
A

d
van

ces



  
Ta

bl
e 

1.
 

Co
nt

in
ue

d

Pa
p

er
 

R
el

ev
an

t T
u

m
o

rs
 

Pa
ti

en
t 

A
g

e 
G

ro
u

p
 

(Y
ea

rs
) 

# 
S

u
b

je
ct

s 
an

d
 B

re
ak

-
d

o
w

n
, I

f 
ap

p
lic

ab
le

 

S
in

g
le

 o
r 

M
u

lt
i-

 
In

st
it

u
ti

o
n

al
 

(#
 C

en
te

rs
) 

R
ad

io
m

ic
s 

E
n

d
p

o
in

t 
Im

ag
es

 U
se

d
 

S
eg

m
en

ta
ti

o
n

 
M

et
h

o
d

 u
se

d
 

Fe
at

u
re

 S
el

ec
ti

o
n

/
R

ed
u

ct
io

n
 M

et
h

o
d

(s
) 

M
o

d
el

(s
) 

Pe
rf

o
rm

an
ce

 o
f B

es
t 

M
o

d
el

(s
),

 G
en

er
al

ly
 in

 
Te

rm
s 

o
f A

U
C

 

Z
h

o
u

 e
t a

l.23
P

ilo
cy

ti
c 

as
tr

o
cy

to
m

a 
 

M
ed

u
llo

b
la

st
o

m
a 

 
E

p
en

d
ym

o
m

a

R
an

g
e:

 
0.

25
–1

8,
 

m
ea

n
: 8

.6

28
8 

To
ta

l  
b

re
ak

-
d

o
w

n
:1

07
 P

A
  

11
1 

M
B

70
 E

P

m
u

lt
i (

4)
D

iff
er

en
ti

at
e 

b
et

w
ee

n
 P

A
, 

M
B

, E
P

T
1w

C
E

  
T

2w
A

D
C

M
an

u
al

C
h

i-
sq

u
ar

ed
 s

co
re

, 
an

al
ys

is
 o

f v
ar

ia
n

ce
, 

T-
te

st
, F

is
h

er
, R

el
ie

f, 
W

ilc
ox

o
n

, m
u

tu
al

 in
-

fo
rm

at
io

n
, m

in
im

u
m

 
re

d
u

n
d

an
cy

/ 
m

ax
im

u
m

 r
el

e-
va

n
ce

, c
o

n
d

it
io

n
al

 
in

fo
m

ax
, j

o
in

t 
m

u
tu

al
 in

fo
rm

at
io

n
, 

co
n

d
it

io
n

al
 m

u
tu

al
 

in
fo

rm
at

io
n

 m
ax

i-
m

iz
at

io
n

, i
n

te
ra

ct
io

n
 

ca
p

p
in

g
, d

o
u

b
le

 
in

p
u

t s
ym

m
et

ri
c 

re
le

va
n

ce
, m

u
tu

al
 

in
fo

rm
at

io
n

 m
ax

im
i-

za
ti

o
n

N
eu

ra
l n

et
-

w
o

rk
, d

ec
is

io
n

 
tr

ee
, b

o
o

st
in

g
, 

B
ay

es
ia

n
, b

ag
-

g
in

g
, R

F,
 S

V
M

, 
lin

ea
r 

d
is

cr
im

-
in

an
t a

n
al

ys
is

, 
kN

N
, g

en
er

al
iz

ed
 

lin
ea

r 
m

o
d

el
. 

C
o

m
p

ar
ed

 a
u

to
-

m
at

ed
 o

p
ti

m
iz

a-
ti

o
n

 o
f p

ip
el

in
e 

(w
it

h
 T

P
O

T
) w

it
h

 
m

an
u

al
 o

p
ti

m
i-

za
ti

o
n

 o
f f

ea
tu

re
 

se
le

ct
io

n
 a

n
d

 
cl

as
si

fi
ca

ti
o

n
.

M
u

lt
ic

la
ss

 c
la

ss
ifi

ca
ti

o
n

: 
m

ic
ro

-a
ve

ra
g

ed
 A

U
C

 
w

as
 0

.9
1 

fr
o

m
 T

P
O

T
 a

n
d

 
w

as
 0

.9
2(

ch
i-

 
sq

u
ar

ed
 +

 g
en

er
al

iz
ed

 
lin

ea
r 

m
o

d
el

) f
ro

m
 

m
an

u
al

 e
xp

er
t o

p
ti

m
i-

za
ti

o
n

 (t
es

t s
et

).
 B

in
ar

y 
cl

as
si

fi
er

s 
fr

o
m

 T
P

O
T

 
h

ad
 A

U
C

: 0
.9

4 
(M

B
),

 0
.8

4 
(E

P
),

 0
.9

4 
(P

A
) (

te
st

 s
et

).
 

B
in

ar
y 

cl
as

si
fi

er
s 

fr
o

m
 

m
an

u
al

 e
xp

er
t o

p
ti

m
iz

a-
ti

o
n

 h
ad

 A
U

C
: 0

.9
8 

(M
B

),
 

0.
70

 (E
P

),
 0

.9
3 

(P
A

) (
te

st
 

se
t)

.

G
ri

st
 e

t a
l.24

P
ilo

cy
ti

c 
A

st
ro

cy
to

m
a 

 
M

ed
u

llo
b

la
st

o
m

a 
 

E
p

en
d

ym
o

m
a

n
/a

49
 To

ta
l 

b
re

ak
d

o
w

n
:  

22
 P

A
  

17
 M

B
  

10
 E

P

M
u

lt
i (

4)
D

iff
er

en
ti

at
e 

b
et

w
ee

n
 lo

w
- 

g
ra

d
e 

(P
A

) a
n

d
 

h
ig

h
-g

ra
d

e 
(E

P,
 

M
B

),
 a

s 
w

el
l 

as
 d

iff
er

en
ti

at
e 

b
et

w
ee

n
 P

A
, 

M
B

, a
n

d
 E

P

T
1w

  
T

1w
C

E
  

T
2w

  
FL

A
IR

  
D

W
I  

D
S

C

n
/a

P
C

A
 a

n
d

 U
A

S
in

g
le

 la
ye

r 
N

eu
ra

l N
et

w
o

rk
, 

A
d

aB
o

o
st

, R
F,

 
S

V
M

, a
n

d
 k

N
N

. 
Tr

ie
d

 o
ve

rs
am

-
p

lin
g

 o
n

 E
P.

A
d

aB
o

o
st

 w
it

h
 u

n
iv

ar
-

ia
te

 r
ed

u
ct

io
n

 a
ch

ie
ve

d
 

85
%

 b
al

an
ce

d
 a

cc
u

ra
cy

 
(3

-f
o

ld
 c

ro
ss

-v
al

id
at

io
n

)

Li
 e

t a
l.25

E
p

en
d

ym
o

m
a 

 
P

ilo
cy

ti
c 

A
st

ro
cy

to
m

a

R
an

g
e:

 
0–

14
 

m
ea

n
: 7

45
 P

at
ie

n
ts

, 
13

5 
sl

ic
es

 
to

ta
l  

b
re

ak
d

o
w

n
:  

81
 s

lic
es

 E
P

  
54

 s
lic

es
 P

A

S
in

g
le

D
iff

er
en

ti
at

e 
b

et
w

ee
n

 E
P

 
an

d
 P

A

T
1w

  
T

2w
M

an
u

al
K

W
T

S
V

M
A

U
C

 =
 0

.8
8 

(v
al

id
at

io
n

 
se

t)

Q
u

o
n

 e
t a

l.26
D

iff
u

se
 m

id
lin

e 
g

lio
m

a 
 

M
ed

u
llo

b
la

st
o

m
a 

 
P

ilo
cy

ti
c 

as
tr

o
cy

to
m

a 
 

E
p

en
d

ym
o

m
a

R
an

g
e:

 
0.

21
–3

4 
 

m
ed

ia
n

: 
6.

75

61
7 

To
ta

l 
b

re
ak

d
o

w
n

:  
12

2 
D

M
G

  
27

2 
M

B
  

13
5 

PA
  

88
 E

P
  

(+
19

9 
co

n
-

tr
o

l)

M
u

lt
i (

5)
D

et
ec

ti
o

n
 a

n
d

 
cl

as
si

fi
ca

ti
o

n
 

o
f p

o
st

er
io

r 
fo

ss
a 

tu
m

o
rs

T
1w

C
E

  
T

2w
  

A
D

C

M
an

u
al

 
(i

d
en

ti
fi

ca
ti

o
n

 
o

f t
u

m
o

r 
vs

. 
n

o
 tu

m
o

r 
o

n
 

sl
ic

es
)

n
/a

D
ee

p
-l

ea
rn

in
g

 
ar

ch
it

ec
tu

re
s 

(R
es

N
et

, R
es

N
eX

t,
 

D
en

se
N

et
, 

In
ce

p
ti

o
n

V
3)

. 
U

se
d

 tr
an

sf
er

 
le

ar
n

in
g

. F
in

al
 

p
re

d
ic

ti
o

n
 m

ad
e 

fr
o

m
 a

g
g

re
-

ga
te

 s
lic

e-
le

ve
l 

p
re

d
ic

ti
o

n
s 

fr
o

m
 

en
se

m
b

le
 o

f 5
 

m
o

d
el

s

2D
 R

es
N

eX
t-

50
-3

2x
4d

 
tr

ai
n

ed
 o

n
 T

2w
 fe

at
u

re
s 

h
ad

 A
U

C
 o

f 0
.9

9 
fo

r 
tu

m
o

r 
d

et
ec

ti
o

n
. F

o
r 

cl
as

si
fi

ca
ti

o
n

, a
cc

u
ra

cy
 

w
as

 9
2%

 a
n

d
 F

1 
w

as
 

0.
80

 (h
el

d
-o

u
t t

es
t s

et
).

 
M

o
d

el
’s

 tu
m

o
r 

d
et

ec
ti

o
n

 
ac

cu
ra

cy
 w

as
 s

im
ila

r 
to

 
4 

ra
d

io
lo

g
is

ts
; m

o
d

el
’s

 
cl

as
si

fi
ca

ti
o

n
 a

cc
u

ra
cy

 
an

d
 F

1 
sc

o
re

 w
as

 h
ig

h
er

 
th

an
 2

/4
 r

ad
io

lo
g

is
ts

 6 Madhogarhia et al. Radiomics in pediatric neuro-oncology: a review



  
Ta

bl
e 

1.
 

Co
nt

in
ue

d

Pa
p

er
 

R
el

ev
an

t T
u

m
o

rs
 

Pa
ti

en
t 

A
g

e 
G

ro
u

p
 

(Y
ea

rs
) 

# 
S

u
b

je
ct

s 
an

d
 B

re
ak

-
d

o
w

n
, I

f 
ap

p
lic

ab
le

 

S
in

g
le

 o
r 

M
u

lt
i-

 
In

st
it

u
ti

o
n

al
 

(#
 C

en
te

rs
) 

R
ad

io
m

ic
s 

E
n

d
p

o
in

t 
Im

ag
es

 U
se

d
 

S
eg

m
en

ta
ti

o
n

 
M

et
h

o
d

 u
se

d
 

Fe
at

u
re

 S
el

ec
ti

o
n

/
R

ed
u

ct
io

n
 M

et
h

o
d

(s
) 

M
o

d
el

(s
) 

Pe
rf

o
rm

an
ce

 o
f B

es
t 

M
o

d
el

(s
),

 G
en

er
al

ly
 in

 
Te

rm
s 

o
f A

U
C

 

Pi
sa

pi
a 

et
 a

l.27
O

p
ti

c 
p

at
h

w
ay

 
g

lio
m

as
R

an
g

e:
 

2–
18

38
 To

ta
l 

b
re

ak
d

o
w

n
:  

19
 w

it
h

 p
ro

-
g

re
ss

io
n

19
 w

it
h

o
u

t 
p

ro
g

re
ss

io
n

S
in

g
le

Pr
ed

ic
t p

ro
-

g
re

ss
io

n
 

(d
efi

n
ed

 a
s 

ra
d

io
g

ra
p

h
ic

 
tu

m
o

r 
g

ro
w

th
 

o
r 

vi
si

o
n

 d
e-

cl
in

e)

T
1w

  
T

1w
C

E
  

T
2w

  
FL

A
IR

D
T

I (
FA

, R
A

D
, T

R
)

M
an

u
al

n
/a

S
V

M
M

o
d

el
 th

at
 in

cl
u

d
ed

 
fe

at
u

re
s 

d
efi

n
ed

 a
s 

th
e 

ch
an

g
e 

in
 fe

at
u

re
s 

b
et

w
ee

n
 p

ai
rw

is
e 

co
m

-
b

in
at

io
n

s 
o

f i
m

ag
in

g
 

st
u

d
ie

s 
d

o
n

e 
b

ef
o

re
 

p
ro

g
re

ss
io

n
 s

ca
n

 h
ad

 
ac

cu
ra

cy
: 8

6%
 (l

ea
ve

-
o

u
t-

tw
o

 c
ro

ss
- 

va
lid

at
io

n
)

Pr
in

ce
 e

t a
l.28

A
d

am
an

ti
n

o
m

at
o

u
s 

cr
an

io
p

h
ar

yn
g

io
m

a
n

/a
39

 To
ta

l
M

u
lt

i (
18

)
Id

en
ti

fy
 A

C
P

T
1w

C
T

n
/a

n
/a

Va
ri

o
u

s 
p

re
tr

ai
n

ed
 d

ee
p

- 
le

ar
n

in
g

 n
eu

ra
l 

n
et

w
o

rk
s;

 u
se

d
 

tr
an

sf
er

 le
ar

n
in

g
, 

g
en

et
ic

 a
lg

o
ri

th
m

 
to

 o
p

ti
m

iz
e,

 a
n

d
 

d
at

a 
au

g
m

en
ta

-
ti

o
n

A
cc

u
ra

cy
 o

f 8
7.

8%
 fo

r 
m

o
d

el
 u

si
n

g
 fe

at
u

re
s 

fr
o

m
 b

o
th

 M
R

I a
n

d
 C

T,
 

83
.3

%
 fo

r 
M

R
I o

n
ly

, a
n

d
 

85
.3

 fo
r 

C
T

 o
n

ly
 (t

es
t 

se
t)

. M
o

d
el

 p
er

fo
rm

ed
 

o
n

 p
ar

 w
it

h
 a

ve
ra

g
e 

o
f 

tw
o

 h
u

m
an

 s
p

ec
ia

lis
ts

.

Ta
m

 e
t a

l.29
D

iff
u

se
 in

tr
in

si
c 

p
o

n
ti

n
e 

g
lio

m
a

R
an

g
e:

 
1.

58
– 

19
.0

8
m

ea
n

: 6
.6

7

17
7 

To
ta

l
M

u
lt

i (
11

)
Pr

o
g

n
o

st
ic

a-
ti

o
n

 (p
re

d
ic

t 
ov

er
al

l s
u

r-
vi

va
l)

T
1w

C
E

  
T

2w
M

an
u

al
Fe

at
u

re
s 

ch
o

se
n

 
b

as
ed

 o
n

 la
m

b
d

a 
va

lu
e 

w
it

h
 m

in
im

u
m

 
cr

o
ss

-v
al

id
at

ed
 

er
ro

r 
ac

ro
ss

 1
00

 
re

p
et

it
io

n
s 

o
f 1

0-
fo

ld
 

cr
o

ss
-v

al
id

at
io

n
 o

f 
fit

ti
n

g
 a

 C
ox

 r
eg

re
s-

si
o

n
 m

o
d

el

C
ox

 p
ro

p
o

rt
io

n
al

 
h

az
ar

d
s 

m
o

d
el

M
o

d
el

 u
si

n
g

 b
o

th
 

ra
d

io
m

ic
 a

n
d

 c
lin

ic
al

 fe
a-

tu
re

s:
 c

o
n

co
rd

an
ce

 w
as

 
0.

70
 (t

ra
in

in
g

 s
et

) a
n

d
 

0.
59

 (t
es

ti
n

g
 s

et
)

W
ag

ne
r e

t a
l.30

Lo
w

-g
ra

d
e 

g
lio

m
as

M
ea

n
: 9

.2
1

11
5 

To
ta

l
M

u
lt

i (
2)

Pr
ed

ic
t B

R
A

F 
m

o
le

cu
la

r 
st

at
u

s 
(f

u
si

o
n

 
an

d
 V

60
0E

 
p

o
in

t m
u

ta
-

ti
o

n
) f

ro
m

 
im

ag
in

g

FL
A

IR
S

em
i-

 
au

to
m

at
ic

n
/a

R
F

A
U

C
 =

 0
.7

5 
(i

n
te

rn
al

 
4-

fo
ld

 c
ro

ss
-v

al
id

at
io

n
) 

an
d

 0
.8

5 
(e

xt
er

n
al

 v
al

i-
d

at
io

n
 o

n
 a

 c
o

h
o

rt
 fr

o
m

 
a 

se
p

ar
at

e 
ce

n
te

r 
th

an
 

tr
ai

n
in

g
 d

at
a)

N
ov

ak
 e

t a
l.31

P
ilo

cy
ti

c 
as

tr
o

cy
to

m
a 

 
M

ed
u

llo
b

la
st

o
m

a 
 

E
p

en
d

ym
o

m
a

R
an

g
e:

 
1.

0–
16

.3
12

4 
To

ta
l 

b
re

ak
d

o
w

n
:

36
 P

A
  

55
 M

B
26

 E
P

  
7 

o
th

er
 

(A
T

R
T

s 
+ 

o
th

er
 

lo
w

-g
ra

d
e 

tu
m

o
rs

 n
o

t 
in

cl
u

d
ed

 in
 

cl
as

si
fi

ca
ti

o
n

 
an

al
ys

is
)

M
u

lt
i (

12
)

D
iff

er
en

ti
at

e 
b

et
w

ee
n

 p
o

s-
te

ri
o

r 
fo

ss
a 

tu
m

o
rs

T
1w

  
T

2w
  

T
1w

C
E

  
D

W
I

M
an

u
al

P
C

A
N

B
, R

F
O

ve
ra

ll 
cl

as
si

fi
ca

ti
o

n
 a

c-
cu

ra
cy

: 8
6.

3%
 fo

r 
R

F 
an

d
 

84
.6

%
 fo

r 
N

B
 (1

0-
 

fo
ld

 c
ro

ss
-v

al
id

at
io

n
).

 
N

B
 c

la
ss

ifi
ed

 m
o

re
 E

P
 

an
d

 P
A

 c
as

es
 c

o
rr

ec
tl

y 
th

an
 R

F,
 w

h
ile

 R
F 

cl
as

-
si

fi
ed

 m
o

re
 M

B
 c

as
es

 
co

rr
ec

tl
y 

th
an

 N
B

7Madhogarhia et al. Radiomics in pediatric neuro-oncology: a review
N

eu
ro-O

n
colog

y 
A

d
van

ces



  
Ta

bl
e 

1.
 

Co
nt

in
ue

d

Pa
p

er
 

R
el

ev
an

t T
u

m
o

rs
 

Pa
ti

en
t 

A
g

e 
G

ro
u

p
 

(Y
ea

rs
) 

# 
S

u
b

je
ct

s 
an

d
 B

re
ak

-
d

o
w

n
, I

f 
ap

p
lic

ab
le

 

S
in

g
le

 o
r 

M
u

lt
i-

 
In

st
it

u
ti

o
n

al
 

(#
 C

en
te

rs
) 

R
ad

io
m

ic
s 

E
n

d
p

o
in

t 
Im

ag
es

 U
se

d
 

S
eg

m
en

ta
ti

o
n

 
M

et
h

o
d

 u
se

d
 

Fe
at

u
re

 S
el

ec
ti

o
n

/
R

ed
u

ct
io

n
 M

et
h

o
d

(s
) 

M
o

d
el

(s
) 

Pe
rf

o
rm

an
ce

 o
f B

es
t 

M
o

d
el

(s
),

 G
en

er
al

ly
 in

 
Te

rm
s 

o
f A

U
C

 

D
o

n
g

 e
t a

l.32
E

p
en

d
ym

o
m

a 
 

M
ed

u
llo

b
la

st
o

m
a

R
an

g
e:

 
0–

15
51

 To
ta

l 
b

re
ak

d
o

w
n

:  
24

 E
P

27
 M

B

S
in

g
le

D
is

ti
n

g
u

is
h

 
b

et
w

ee
n

 E
P

 
an

d
 M

B

T
1w

C
E

  
D

W
I

S
em

i-
 

au
to

m
at

ic
U

A
, U

A
S

, M
LR

kN
N

, A
d

aB
o

o
st

, 
R

F,
 S

V
M

B
es

t m
o

d
el

 w
as

 R
F 

w
it

h
 

m
u

lt
iv

ar
ia

b
le

 lo
g

is
ti

c 
re

g
re

ss
io

n
 fo

r 
fe

at
u

re
 

se
le

ct
io

n
. A

U
C

 =
 0

.9
1 

(1
0-

fo
ld

 c
ro

ss
- 

va
lid

at
io

n
)

Z
h

en
g

 e
t a

l.33
M

ed
u

llo
b

la
st

o
m

a
M

ea
n

: 5
.6

12
4 

To
ta

l b
re

ak
-

d
o

w
n

:  
44

 w
it

h
 C

S
F 

d
is

se
m

in
at

io
n

  
80

 w
it

h
o

u
t C

S
F 

d
is

se
m

in
at

io
n

.

S
in

g
le

Pr
ed

ic
t C

S
F 

d
is

se
m

in
at

io
n

T
1w

 (b
o

th
 h

ea
d

 
an

d
 s

p
in

e)
M

an
u

al
m

R
M

R
 a

n
d

 L
A

S
S

O
M

u
lt

iv
ar

ia
b

le
 lo

-
g

is
ti

c 
re

g
re

ss
io

n
B

es
t m

o
d

el
 u

se
d

 
co

m
b

in
ed

 c
lin

ic
al

 a
n

d
 

ra
d

io
m

ic
 fe

at
u

re
s.

 A
U

C
: 

0.
87

 (i
n

te
rn

al
 v

al
id

at
io

n
 

co
h

o
rt

) a
n

d
 0

.7
3 

(e
x-

te
rn

al
 v

al
id

at
io

n
 c

o
h

o
rt

)

A
b

b
re

vi
at

io
n

s:
 A

DC
, A

pp
ar

en
t D

iff
us

io
n 

Co
ef

fic
ie

nt
; C

SF
, C

er
eb

ro
sp

in
al

 F
lu

id
; D

TI
, D

iff
us

io
n 

Te
ns

or
 Im

ag
in

g;
 D

W
I, 

Di
ffu

si
on

 W
ei

gh
te

d 
Im

ag
in

g;
 F

LA
IR

, F
lu

id
-a

tte
nu

at
ed

 in
ve

rs
io

n 
re

co
ve

ry
.

a n/
a 

in
di

ca
te

s 
th

at
 th

e 
in

fo
rm

at
io

n 
w

as
 n

ot
 c

le
ar

ly
 s

pe
ci

fie
d 

(e
g,

 a
ge

 w
as

 n
ot

 s
pe

ci
fie

d 
fo

r c
oh

or
t o

r s
eg

m
en

ta
tio

n 
m

et
ho

do
lo

gy
 w

as
 n

ot
 id

en
tifi

ed
) o

r t
he

 c
ol

um
n 

w
as

 n
ot

 re
le

va
nt

 to
 th

e 
pa

rti
cu

la
r s

tu
dy

 (e
g,

 
se

gm
en

ta
tio

n 
w

as
 n

ot
 p

er
fo

rm
ed

).

  

 8 Madhogarhia et al. Radiomics in pediatric neuro-oncology: a review

essential because how ACP is treated and managed differs 
drastically from other tumors that are considered in the 
differential diagnosis.28 For example, germinomas, which 
are often in the same radiologic differential as ACPs, are 
effectively treated without surgical intervention whereas 
ACP often involves aggressive surgical resection and ex-
ternal beam radiation.28 ACP is accurately diagnosed in 
64%–87% of cases.37 ACP is rare and there is limited avail-
able data upon which to build radiomic models. Prince 
et  al. utilized transfer learning, data augmentation, and 
genetic algorithms to build models from a dataset of 39 
patients to identify ACP. They also found that combining 
CT with MRI scans outperformed either modality alone.28

Embryonal tumors—Hara et al. found that histological sub-
groups of embryonal tumors, namely MB, pineoblastoma, 
and supratentorial primitive neuroectodermal tumors 
(sPNET), could be differentiated based on texture features 
as well as quantitative markers of tumor size.19 Specifically, 
tumor volume and maximum 3D diameter were associated 
with specific histologies, with sPNETs being the largest and 
pineoblastomas being smallest of the three subtypes. This 
is consistent with clinical reasoning as sPNETs likely go 
undetected for longer periods of time due to a decreased 
likelihood of causing hydrocephalus. The study also iden-
tified eight textural features that quantified intratumor 

  
Table 2.  Abbreviations

Brain tumors

LGG Low-Grade Glioma 

HGG High-Grade Glioma

PA Pilocytic Astrocytoma

MB Medulloblastoma

EP Ependymoma

DIPG Diffuse Intrinsic Pontine Glioma

DMG Diffuse Midline Glioma

ACP Adamantinomatous Craniopharyngioma

OPG Optic Pathway Glioma

Classification algorithms

NB Naïve Bayes

RF Random Forest

kNN k-Nearest Neighbors

SVM Support Vector Machine

C-SVM Cost-Based Support Vector Machine

CNN Convolutional Neural Network

GBT Gradient Boosted Trees

LR Logistic Regression

Feature reduction/selection methods

PCA Principal Component Analysis

UA Univariate Analysis

UAS Univariate Analysis Screening

MLR Multivariate Logistic Regression

KWT Kruskal-Wallis Test
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heterogeneity that were markedly different between tumor 
histologies, with pineoblastomas being the most heteroge-
nous and MBs being the most homogeneous.19

Applications in Identifying Disseminated Disease

The presence of metastasis is important in the staging of 
many oncologic processes including some primary brain 
tumors.38 However, detection of metastatic progression is 
sometimes difficult and requires a wide array of diagnostic 
testing some of which can be expensive and invasive. In em-
bryonal tumors, Hara et al. found that radiomic features can 
discriminate between localized and disseminated disease.19 
Larger primary tumor size was found to be associated with 
a higher likelihood of neuraxis metastases, and likelihood 
of neuraxis metastases also trended toward a decrease in 
primary tumor heterogeneity based on texture features (al-
though these results did not reach statistical significance).19 
In MB patients, Zheng et al. found a clinical-radiomic model 
to be predictive of preoperative Cerebrospinal Fluid  (CSF) 
dissemination (as determined by head and spine MRI, as 
well as no subsequent dissemination at the 1-year follow-up 
for the non-CSF dissemination group).33

Applications in Prognostication

Tumor prognostication, both in terms of survival and risk of 
recurrence after treatment, is a topic of great interest within 
the field. While molecular data acquired from biopsy is a cur-
rent mainstay in tumor classification and prognostication, 
noninvasive methods that can predict risk of recurrence and 
overall survival would be hugely beneficial to patients, par-
ticularly in cases where biopsy is difficult or unfeasible.

Radiomic features have been shown to be useful in 
predicting prognosis in optic pathway gliomas (OPGs) 
and diffuse intrinsic pontine gliomas (DIPGs).27,29 In de-
veloping a model to predict OPG progression, which was 
defined by radiographic tumor growth and/or vision loss 
on follow-up scans, Pisapia et  al. included data derived 
from Diffusion Tensor Imaging  (DTI), including fractional 
anisotropy (FA), trace, and radial diffusivity, in addition to 
features from T1w, T1wCE, T2w, and Fluid-attenuated inver-
sion recovery  (FLAIR) sequences.27 The imaging was ac-
quired as part of a well-defined surveillance protocol. FA 
features in the optic radiations were found to be among 
the most predictive features. These results suggest that DTI 
can measure the changes in the microstructure of white 
matter that follows tumor growth.27 For DIPGs, which are 
progressive and lethal pediatric cancers, intensity-based 
and texture-based features from wavelet-transformed im-
ages have been found to be predictive of overall survival.29

In embryonal tumors, larger tumor size and decreased 
heterogeneity, as measured by their quantitative features, 
trended toward recurrence of tumors, but these trends did not 
reach statistical significance based on univariate analyses.19

Radiogenomics for Molecular Classification 
of Tumors

Radiogenomics, as it is referred to in this review or im-
aging genomics, is defined as the integration of radiomics 

with alterations in molecular and genomic data or using 
ML methods based on radiomic features to find noninva-
sive and in vivo signatures to predict molecular alterations 
in tumors.4 This technology has great promise in the field 
of neuro-oncology as many disease subtypes have been 
defined based on their genetic and molecular profiles by 
WHO guidelines.5,8

In pediatrics, models have been developed to pre-
dict the molecular subtype of H3 histone mutations 
in DIPG,21 molecular subtype in MBs,20,22 and BRAF 
mutation.30

H3 molecular subtype in  DIPG—There are two types of 
H3 mutations frequently associated with diffuse midline 
gliomas of the pons (generically called DIPG): H3.1K27M 
and H3.3K27M. A patient’s H3 mutation status is clinically 
important as it guides treatment of DIPG patients and is in-
cluded in the classification schema of the new WHO CNS5 
guidelines.5

In one model developed for prediction of H3 mutation 
subtype among patients with DIPG, three of the six selected 
imaging features were from FLAIR scans, indicating that 
the differences in H3 molecular subtype affect some as-
pect of tumor biology that is reflected in FLAIR scans.21 This 
study also found that the combined model of clinical and 
radiomic features was more accurate than the model built 
on image data alone.

MB molecular  subtype—In the recent WHO CNS5 guide-
lines, MB has been classified into four distinct subgroups 
based on molecular identity: wingless (WNT)-activated, 
sonic hedgehog (SHH)-activated and TP53-wildtype, 
SHH-activated and TP53-mutant, and non-WNT/non-
SHH.5 However, radiogenomic studies have utilized prior 
guidelines and so discussion of these entities here will 
have the following identities—WNT, SHH, Group  3, and 
Group 4 (Groups 3 and 4 are now classified as non-WNT/
non-SHH39).

Radiomic models generally perform better at 
predicting SHH and Group 4 than Group 3 and WNT, es-
pecially WNT.20,22 Association has been shown between 
the presence of peri-tumoral edema, especially moderate 
to severe edema, and SHH MBs.20 The location of SHH tu-
mors also has been shown to vary significantly between 
pediatric patients and adult patients, with them being 
more commonly located in the midline in the former and 
lateralized in the latter.20 One contributing factor to the 
worse performance of models for prediction of WNT sub-
type might be that it is the least common subtype of MB, 
and there were not enough subjects for the predictive 
models to train on.

Iv et al. found that for a dataset that combined data from 
three institutions into one set, models built from T1wCE 
and T2w images outperformed models built from either 
modality alone for all subgroups except WNT. They also 
explored training models on data from two institutions 
and testing on the third, and they found that some of the 
most predictive features that were repeatedly selected in 
all three loops included features related to lesion area, 
intensity-based histograms, tumor edge-sharpness, and 
local area integral invariant.22
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BRAF mutations—Pediatric low-grade gliomas (pLGGs) 
represent a particularly large and heterogeneous group of 
tumors where molecular subtyping is a key part of diag-
nosis and treatment planning. The type of BRAF alteration 
may play a particularly important role in the prognosis of 
these tumors. Differentiation between BRAF fusion tu-
mors and BRAF V600E mutated tumors is becoming nec-
essary prior to initiating treatment with certain precision 
chemotherapeutic agents and has been shown to be impor-
tant in predicting the clinical course of patients.40 Wagner 
et al. developed a model that predicted BRAF status in pa-
tients with pLGGs.30 Features were extracted from FLAIR 
sequences and included histogram, shape, and texture-
based features. Features extracted from 3D wavelet trans-
forms, as well as location of the tumor and patient age at 
presentation, were especially predictive.

Several of the aforementioned radiogenomic studies 
that built models on conventional MRI modalities noted 
that the integration of data from DWI or the resulting ADC 
maps could improve predictive performances,20,22,30 but 
the data were not always routinely available.20

Challenges and Future Directions

There are a number of important challenges that face 
radiomic studies. In this section, we will discuss these chal-
lenges as well as potential solutions and overall trajectory 
of the field.

Sample Size

Small sample size is a widespread challenge—Many 
studies had relatively small sample sizes, which most au-
thors noted as a limitation of their models and expressed a 
desire to increase their patient cohort size in the future. The 

sample size of the papers summarized in Table 1 ranged 
from 34 to 617 brain tumor patients, with a median of 110 
patients. One of the reasons contributing to small cohort 
sizes might be a simple lack of pediatric data. For instance, 
among oncological patients, there are far fewer children 
than adults, and therefore there is less data available upon 
which to build radiomic models specifically for pediatrics 
compared to adults. In fact, the incidence rate of brain and 
other CNS tumors from 2013 to 2017 was about five times 
higher in adults than in children.15 One group of authors 
noted that even though EP and MB data have been col-
lected in pediatrics for nearly a decade, their study included 
a small sample due to the rarity of brain tumors in children 
overall.32 Consequences of small sample size include de-
creased generalizability, increased risk of overfitting, and 
lack of a separate test cohort.

Increasing cohort sizes through collaboration and 
consortia—A long-term solution to small sample size is 
to use data from multiple institutions through either di-
rect collaboration or utilization of a collective online data-
base. Just under half of the radiomic papers summarized 
in Table 1 used data from a single institution. Some au-
thors noted that moving forward, multicenter data could 
be used to increase sample size and evaluate model gen-
eralizability.32,33 There exist a few consortiums to facili-
tate data collection and sharing,41,42 such as the Children’s 
Brain Tumor Network , which has several cloud-based plat-
forms, outlined in Figure 2, where researchers can access 
the data. Other databases relevant for radiomic studies 
include the National Cancer Institute’s Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) and the Pediatric 
Brain Tumor Consortium.

One example of how multi-institutional databases can 
be helpful is the previously discussed study on ACP, which 
is a rare tumor. The authors used data from the Advancing 

  
Data from CBTN, KidsFirst, TARGET, TCGA

PedcBioPortal FlywheelCAVATICA

Perform computational analysis:
machine learning
statistical analysis

standardized workflows
cloud computing

View provided analytics:
visualization

data exploration
view mutations

statistical analysis

Image management and processing:
imaging data preparation
imaging data visualization
standardized workflows

cloud computing

Figure 2.  Data platforms for pediatrics. In CAVATICA, researchers can rapidly run computational analysis on datasets. In PedcBioPortal, users 
can view analytics on datasets without needing any knowledge of programming or bioinformatics tools. In Flywheel, users can manage and 
process imaging data.
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Treatment for Pediatric Craniopharyngioma consortium, 
which provides data from 17 North American centers, 
along with some data from St. Jude’s. This allowed them to 
build a dataset of 39 patients for a rare brain tumor.28

One solution for building such databases is for the 
radiologists to prospectively capture imaging data and 
annotate them with a more standardized lexicon.1 This 
will help researchers use larger patient cohorts and 
multicenter data.

Another approach to multi-institutional collaboration is 
federated learning, which bypasses many of the challenges 
associated with data sharing.43,44 In this approach, indi-
vidual institutions train models on their institutional data. 
The trained models are then aggregated across institutions 
into one model. This training process is repeated until a 
final model is obtained.44 Recently, federated learning has 
shown potential for adult brain tumor segmentation from 
MRI scans.43

Algorithmic solutions to small sample  sizes—A shorter-
term solution to having a small data set is to employ 
transfer learning or data augmentation. Transfer learning 
allows one to combat the risk of overfitting a model to a 
small data set by taking an already trained model and using 
it as the starting point for training on another data set. For 
example, one study, discussed earlier for work on poste-
rior fossa tumors, used transfer learning from a model that 
had been pretrained on over 1 million images.26 Another 
study used data augmentation, the process of adding syn-
thetic data samples by transforming the original data, in 
addition to transfer learning.28 Moving forward, studies 
with small sample sizes should consider employing these 
learning techniques to increase the power and generaliza-
bility of any findings.

Class Imbalance

More studies should explore strategies to mitigate effects 
of class imbalance—Many studies summarized in Table 1 
faced the challenge of class imbalance, which occurs when 
the sizes of the classification categories in the training 
dataset are skewed. In radiomics, class imbalance is often 
a problem when training a classifier on several cancers 
where one is rarer than the others, and as a result, there 
are less samples available for some classes compared to 
others. To discuss class imbalance, we will use the studies 
that worked on differentiating between three posterior 
fossa tumors—MB, PA, and EP—as our example.

PA (and/or sometimes MB) is usually the largest class 
size, and EP is the smallest. This imbalance makes sense 
given the tumor incidence rates. According to the CBTRUS 
age-adjusted incidence rates from 2013 to 2017, in cases 
per 100,000 persons aged 0 to 19, the incidence rate was 
0.92 for PA, 0.40 for MB, and only 0.29 for EP. In fact, PA is 
the most common brain or CNS tumor in persons aged 0 
to 19 years, making up 14.9% of all brain or CNS tumors in 
pediatrics.15 The rarity of EP contributes to its disproportion-
ally small class size in radiomic studies, a trend that can be 
seen in many of the previously discussed studies.16–18,23,24,31

Imbalanced multiclass data can be one of the causes of 
worse performance and lower sensitivity of a classifier on 

the minority class (here, EP). One strategy for overcoming 
class imbalance is balancing the training cohort through 
undersampling of majority class(es) or oversampling of 
minority class(es).45 However, some implementations 
of these methods, such as random under or oversam-
pling, might reduce the accuracy on the majority class or 
cause overfitting to the minority class.45 One study with 
a training cohort of 71 PA, 45 MB, and 18 EP tumors, cre-
ated additional synthetic EP samples using the synthetic 
minority oversampling technique (SMOTE) on the ex-
tracted features, which improved their overall classifica-
tion performance and increased sensitivity of the classifier 
in discrimination of EP from other posterior fossa tumors. 
However, it was noted that their generated synthetic sam-
ples were included in the leave-one-out cross-validation 
loops, whereas ideally, performance evaluation would 
only be based on original samples.18 Another study outside 
of those summarized in Table 1 found improved accuracy 
when combining ensemble learning algorithms with an 
oversampling technique, SMOTE, for tumor classification 
from MRS data.46

Multicenter Data and Generalizability

Multicenter studies to incorporate technological var-
iation—Using data from multiple centers not only in-
creases sample size, but also aids model generalizability. 
A  problem with radiomic studies is reproducibility.47 
Scanning hardware and scanning protocol differences af-
fect radiomic features to various extents. As such, scanner 
field strength, manufacturer, family and specific type of 
MRI sequences, addition of inversion recovery or fat sup-
pression pulses, sequence acquisition parameters, spatial 
resolution, k-space readout schemes, and scanner image 
filters might change texture features that are explored in 
radiomic analyses.48–52 Several authors discussed previ-
ously have noted that incorporating images from various 
institutions is important because it incorporates a wider 
range of scanner hardware and protocol differences.22,30 
This variety makes models more robust against these dif-
ferences, and therefore more generalizable. Although this 
variety might reduce model accuracy, it is important if a 
radiomic model is ever to be used beyond a particular set 
of data.

Several studies have investigated the transferability 
of radiomic models across institutions with different 
scanners and/or acquisition protocols by training models 
on datasets from one or multiple institutions, then testing 
that model on unseen data from one or multiple different 
institutions.18,22 Reported findings indicated that models 
trained and tested on data combined from all institutions 
sometimes have slightly higher performance metrics than 
models trained and tested on data from different institu-
tions, but the latter models still performed well, indicating 
the potential for successful use of radiomic models across 
institutions.

Data harmonization and standardization—Using 
multicenter training data presents an additional challenge: 
data harmonization. Harmonization has been defined as 
the “explicit removal of site-related effects in multi-site 
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data”.53 Without harmonization during pre-processing, 
radiomic models may not be successful when applied 
to images that were taken with different MRI protocols. 
Striking a balance between scan protocol variation in the 
real world and relative harmonization to maximize both ac-
curacy and generalizability is one of the challenges in the 
field. Several harmonization methods have been devel-
oped for MRI, but further research is needed because there 
is not yet consensus within the radiomics field on what the 
optimal harmonization method is.53,54

The harmonization problem can be mitigated with the 
standardization of image acquisition protocols. In 2020, 
the Response Assessment in Pediatric Neuro-Oncology 
(RAPNO) working group was established to develop re-
commendations to guide and standardize response as-
sessment in clinical trials for tumor types. Their guidelines 
on imaging sequences and parameters can also be used 
in general imaging practices.55 As more institutions adopt 
these recommendations, the resulting standardization 
may make extracted features more reproducible, which 
should make it easier for radiomic studies to be more gen-
eralizable and useful.

Auto-segmentation pipelines to increase generalizability—
Many radiomic studies in the literature have segmented 
brain tumors from the MRI scans before feature extraction. 
Full volumetric manual segmentation can be subject to 
inter-reviewer variability. For example, one study reported 
that Dice scores between human raters in segmenting 
sub-regions of gliomas ranged from 74% to 85%.56 Some 
studies address this problem by having multiple reviewers 
delineate tumor regions and reach a consensus about the 
final segmentation.29 Inconsistent segmentation guide-
lines and manual review processes might prohibit the 
generalizability of radiomic models due to a mismatch in 
the resulting segmented tumors and their components. In 
addition, it is time-consuming to segment manually. One 
potential solution is to develop an automatic segmenta-
tion module for pediatric brain cancer, thereby allowing for 
more consistent segmentations across radiomic studies, a 
reduction in segmentation time, and easier translation of 
radiomic models to clinical settings.57

Additionally, some studies outside of those in Table 
1 used reproducibility or feature stability analysis as a 
first step in their feature reduction process by removing 
features that were not reproducible across feature ex-
tractions from segmentations performed by different 
radiologists.58,59 Future radiomic studies should consider 
employing similar analyses as this may aid in generaliza-
bility of subsequent models.

Future Directions

Combination of multi-omic approaches with radiomics—
While radiomics can provide a plethora of mineable data, 
their contribution in a clinical context will likely be syn-
ergistic with a variety of other systems-based tools. One 
combination of particular interest is the incorporation of 
radiomic features with liquid biopsy data for tumor char-
acterization and monitoring of progression. Liquid bi-
opsy refers to the extraction of tumor molecular data from 

commonly collected/easily accessible bodily fluids. In prac-
tice, cell-free DNA/RNA have shown the most promise and 
have been used to identify independent prognostic factors 
in adult pancreatic, lung, and prostate cancer.60 While neuro-
oncology is lagging behind in terms of these advances, 
there is increasing interest in the use of cell free DNA to 
characterize and follow primary brain tumors, namely in 
adult glioblastoma multiforme.61

Mutual characteristics (such as noninvasive nature, ease 
of repeatability, and ease of clinical implementation) of 
liquid biopsy information and radiomics make them par-
ticularly well suited for combination. Over the past several 
decades, the paradigm of cancer research/treatment has 
been shifting from static, “one-size” characterization of 
oncologic entities to granular, dynamical methods. Thus, 
there is a need for easily implemented and repeatable tests 
that can more accurately represent the heterogenous and 
progressive nature of many primary CNS tumors.

Biological meaning of radiomic features—In their 2021 
paper, Tomaszewski and Gillies emphasized the impor-
tance of attaching biological meaning to radiomic findings 
as the field moves forward.62 Most studies validate their 
proposed radiomic signatures using an independent test 
set. However, biological validation is critical to increase 
the practical value of these studies and integrate them into 
clinical decision making. Additionally, providing biological 
context can help move the field towards acceptance as a 
standalone method for diagnostics or prognostication. 
Four classes of biological data that can be correlated to 
radiomic signatures include: gene expression data, protein 
expression data from immunohistochemistry, data from 
local pathologic analysis, and data from habitat imaging. 
Attaching biological meaning to radiomics can be per-
formed in two ways: either radiomics can be used to pre-
dict a biological phenomenon that can then be related to 
a patient outcome, or the radiomic signature is created to 
predict a patient outcome and consequently investigated 
for its association with biologic data.62

Image-localized biopsies—Given that tumors are often 
heterogenous and harbor varying genetic and phenotypic 
aberrations, it is imperative, for the sake of accuracy, that 
radiogenomic studies correlate imaging findings with the 
location of biopsy from which molecular information is 
derived. However, this is seldom the case in retrospective 
radiogenomic studies. While there has been work done to 
quantify the spatial uncertainty in radiogenomic models,63 
future endeavors should attempt to co-register image-
localized biopsies and imaging pathology. This practice 
could enable better characterizations of tumors and lead to 
pipelines that can help guide biopsies to maximize yield of 
genetic and molecular information.

The future: an open-science platform for clinicians and re-
searchers—Currently, most radiomic models cannot be 
used after publication. This is at least in part due to a lack of 
interoperability and reproducibility, despite the individual 
models showing potential for helping clinicians in many 
different ways. Trained radiomic models should be shared 
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in a centralized platform where they can ultimately be 
used routinely for clinical applications across institutions. 
Challenges to this ideal include imaging data storage and 
management and a lack of standardized file structures and 
image acquisition protocols across sites. Ongoing efforts to 
develop systems for data management will help enable ef-
ficient workflows across institutions. Software (eg, CaPTk64) 
for processing multimodal data from end-to-end will be es-
sential for widespread implementation of radiomic models.

Finally, multiple expert groups are moving towards 
standardization of the reporting of radiomic studies, similar 
to what has been done previously for traditional studies of 
diagnostic or prognostic performance of imaging exams.65 
This can help improve the quality, repeatability, and re-
producibility of radiomic studies and bring them closer to 
finding clinical applications.

Conclusion

Radiomics and radiogenomics have been increasingly ap-
plied to the field of pediatric neuro-oncology, but many 
challenges need to be overcome to pave the way for mean-
ingful clinical application. Utilization of multi-institutional 
databases will be key to the advancement of this field. 
Despite these unique hurdles, the works reviewed in this 
article demonstrate the utility of these technologies in 
aiding in diagnosis, classification, and prognostication of 
pediatric brain tumors.
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