Skip to main content
. 2022 Jun 20;12:911426. doi: 10.3389/fonc.2022.911426

Table 2.

Interlabel predictive performance of five ML models.

Models label Sensitivity Specificity PPV NPV Youden index Accuracy
RF 0 0.333 0.980 0.750 0.891 0.313 0.831
1 0.917 0.857 0.815 0.938 0.774 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932
GBDT 0 0.222 1.000 1.000 0.877 0.222 0.881
1 0.875 0.829 0.778 0.906 0.704 0.847
2 0.962 0.848 0.833 0.966 0.810 0.898
LR 0 0.222 0.900 0.286 0.865 0.122 0.797
1 0.750 0.829 0.750 0.829 0.579 0.797
2 0.961 0.909 0.893 0.968 0.871 0.932
AdaBoost 0 0.333 0.920 0.429 0.885 0.253 0.831
1 0.792 0.857 0.792 0.857 0.649 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932
KNN 0 0.444 0.900 0.444 0.900 0.334 0.831
1 0.750 0.886 0.818 0.838 0.636 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; GBDT, gradient boosting decision tree; LR, logistic regression; KNN, k-nearest neighbours.