Table 2.
Interlabel predictive performance of five ML models.
Models | label | Sensitivity | Specificity | PPV | NPV | Youden index | Accuracy |
---|---|---|---|---|---|---|---|
RF | 0 | 0.333 | 0.980 | 0.750 | 0.891 | 0.313 | 0.831 |
1 | 0.917 | 0.857 | 0.815 | 0.938 | 0.774 | 0.831 | |
2 | 0.962 | 0.909 | 0.893 | 0.968 | 0.871 | 0.932 | |
GBDT | 0 | 0.222 | 1.000 | 1.000 | 0.877 | 0.222 | 0.881 |
1 | 0.875 | 0.829 | 0.778 | 0.906 | 0.704 | 0.847 | |
2 | 0.962 | 0.848 | 0.833 | 0.966 | 0.810 | 0.898 | |
LR | 0 | 0.222 | 0.900 | 0.286 | 0.865 | 0.122 | 0.797 |
1 | 0.750 | 0.829 | 0.750 | 0.829 | 0.579 | 0.797 | |
2 | 0.961 | 0.909 | 0.893 | 0.968 | 0.871 | 0.932 | |
AdaBoost | 0 | 0.333 | 0.920 | 0.429 | 0.885 | 0.253 | 0.831 |
1 | 0.792 | 0.857 | 0.792 | 0.857 | 0.649 | 0.831 | |
2 | 0.962 | 0.909 | 0.893 | 0.968 | 0.871 | 0.932 | |
KNN | 0 | 0.444 | 0.900 | 0.444 | 0.900 | 0.334 | 0.831 |
1 | 0.750 | 0.886 | 0.818 | 0.838 | 0.636 | 0.831 | |
2 | 0.962 | 0.909 | 0.893 | 0.968 | 0.871 | 0.932 |
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; GBDT, gradient boosting decision tree; LR, logistic regression; KNN, k-nearest neighbours.