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Abstract

Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file
format conversion, and processing and analysis—is integrated into diverse disciplines in the biological sciences. Several command-line
pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses
are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of
which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence align-
ments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination
of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-
wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of
901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful
in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.
com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/
jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/
BioKIT).

Keywords: multiple sequence alignment; genome assembly quality; codon; bioinformatics; gene-wise relative synonymous codon
usage; genetic code

Introduction
Bioinformatics is the application of computational tools to pro-

cess and analyze biological data, such as nucleotide or amino

acid sequences in the form of genome assemblies, gene annota-

tions, and multiple sequence alignments (Bayat 2002). Diverse

disciplines in the biological sciences rely on bioinformatic meth-

ods and software (Wren 2016). Researchers have acknowledged

the need to consider diverse types of biological scientists with dif-

ferent levels of experience, including those with no experience—

such as students in classroom settings, when developing soft-

ware (Kumar and Dudley 2007). It is also essential to implement
high standards of software development that ensure software

functionality and archival stability (Mangul, Martin, et al. 2019;
Mangul, Mosqueiro, et al. 2019). For example, code quality can be
improved by utilizing tests that help ensure faithful function of
code and facilitate debugging (Darriba et al. 2018). More specifi-
cally, integration tests examine end-to-end functionality of soft-
ware, whereas unit tests evaluate the functionality of smaller
chunks of code. Both tests ensure specific inputs result in
expected outputs. As a result, the development of effective
and user-friendly software for diverse biologists often requires
an interdisciplinary team of software engineers, biologists,
and others.

Even though numerous bioinformatic pieces of software are
available, there are still several barriers to creating seamless and
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reproducible workflows (Kim et al. 2018). This issue in part stems
from different pieces of software requiring different input file for-
mats, being unable to account for nonstandard biological phe-
nomena, such as the use of alternative genetic codes, or can only
be executed using web servers or graphical user interfaces, which
cannot be incorporated into high-throughput pipelines. Another
factor is that multiple pieces of software or custom scripts are
typically needed to execute different steps in a larger bioinfor-
matic pipeline; for example, bioinformatic workflows often rely
on 1 software/script for converting file formats, another soft-
ware/script for translating sequences using standard and non-
standard genetic codes, another software/script to examine the
properties of genomes or multiple sequence alignments, etc. As a
result, maintaining efficacious bioinformatic workflows is cum-
bersome (Kulkarni et al. 2018). To address this need, package, and
workflow managers have facilitated stringing together numerous
pieces of software. An alternative approach to addressing this is-
sue is the development of multipurpose toolkits that contain di-
verse processing and analysis functions and therefore reduce the
overall number of pieces of software users need to install regard-
less of the use of package and workflow managers.

To address this need, we—an interdisciplinary team of soft-
ware engineers, evolutionary biologists, molecular biologists,
microbiologists, and others—developed BioKIT, a versatile toolkit
that currently has 42 functions, several of which were requested
by the research community, that conduct routine and novel proc-
essing and analysis of diverse sequence files including genome
assemblies, multiple sequence alignments, protein coding
sequences, and sequencing data (Table 1). Functions imple-
mented in BioKIT facilitate a wide variety of standard bioinfor-
matic analyses, including processing and analysis of protein
coding sequences (e.g. translation using 26 genetic codes includ-
ing user-specified translation tables, GC content at the first, sec-
ond, and third codon positions, and relative synonymous codon
usage), evaluation of genome assembly quality [e.g. N50, L50, as-
sembly size, guanine–cytosine (GC) content, number of scaffolds,
and others], and the calculation of multiple sequence alignment
properties (i.e. number of taxa, alignment length, the number of
constant sites, the number of parsimony-informative sites, and
the number of variable sites). To demonstrate the utility of
BioKIT, we calculated relative synonymous codon usage in 171
fungal genomes, estimated codon optimization in each gene
from 2 Saccharomyces budding yeast species using a novel metric,
gene-wise relative synonymous codon usage (gRSCU), examined
the genome assembly quality of 901 eukaryotic genomes, and
evaluated the properties of 10 phylogenomic data matrices. We
hope that BioKIT will improve reproducibility and accessibility of
diverse bioinformatic analysis, serve as an effective teaching tool,
and facilitate discovery in the biological sciences.

Materials and methods
BioKIT is an easy-to-install command-line software that conducts
diverse bioinformatic analyses. BioKIT is written in the Python pro-
gramming language and has few dependencies, namely Biopython
(Cock et al. 2009) and NumPy (Van Der Walt et al. 2011).

BioKIT currently has 42 functions that process and analyze se-
quence files such as genome assemblies, multiple-sequence
alignments, protein coding sequences, and sequencing data
(Table 1). Processing functions include those that convert various
file formats, subset sequence reads from FASTQ files, rename
entries in FASTA files, and others. Analysis functions include
those that trim sequence reads in FASTQ files according to

quality and length thresholds, calculate relative synonymous co-
don usage, estimate codon optimization, and others. Where ap-
plicable, BioKIT functions can also take standard output as input
thereby enabling the use of POSIX pipes.

Details about each function, their usage, tutorials, and other
information such as how to request additional functions can be
found in the online documentation (https://jlsteenwyk.com/
BioKIT). To demonstrate the utility of BioKIT, we highlight 4 use-
cases: (1) determination of relative synonymous codon usage us-
ing different genetic codes; (2) determination of a novel metric for
estimation of gene-wise codon optimization, gene-wise relative
synonymous codon usage (gRSCU); (3) genome assembly quality
assessment; and (4) summarizing properties of multiple se-
quence alignments.

Examining features of coding sequences
including relative synonymous codon usage
BioKIT contains multiple functions that process or analyze pro-
tein coding sequences including translating protein coding
sequences into amino acids. One distinct advantage of BioKIT is
its ability to account for diverse genetic codes (currently, BioKIT
comes complete with 26 genetic codes) or take as input a user-
defined translation table. Other coding sequence-related analy-
ses include determining the GC content at the first, second, and
third codon positions.

Here, we highlight the relative_synonymous_codon_usage func-
tion, which calculates relative synonymous codon usage, the ra-
tio of the observed frequency of synonymous codons to an
expected frequency in which all synonymous codons are used
equally (Xu et al. 2008). In this analysis, overrepresented codons
have relative synonymous codon usage values greater than one
whereas underrepresented codons have relative synonymous co-
don usage values less than 1. Relative synonymous codon usage
values of one fit the neutral expectation. The relative_synony-
mous_codon_usage function can be used with one of 26 genetic
codes including user-specified translation tables. The ability of
BioKIT to account for diverse genetic codes, which cannot be
done by other currently available software, makes it uniquely
suitable for analyses of lineages that contain multiple genetic
codes (Krassowski et al. 2018; LaBella et al. 2019). Other software
that conduct similar analyses include DAMBE and GCUA
(McInerney 1998; Xia 2013).

We also highlight the gene_wise_relative_synonymous_codon_us-
age function, which calculates a novel metric, gRSCU, to examine
biases in codon usage among individual genes encoded in a ge-
nome. Specifically, the gRSCU is calculated by determining the
mean or median relative synonymous codon usage value for all
codons in each gene based on their genome-wide values. Thus,
BioKIT calculates relative synonymous codon usage for each co-
don based on codon usage in an entire set of protein coding
genes, individually re-examines each gene and the relative syn-
onymous codon usage value for each codon therein, and then
determines the mean or median relative synonymous codon us-
age value for the individual gene. The formula for the mean
gRSCU calculation is as follows:

gRSCUa ¼
Pj

i¼1 RSCUi

n
;

where gRSCUa is the gene that gRSCU is being calculated for,
RSCUi is the relative synonymous codon usage value (calculated
from all protein coding genes in a genome) for the ith codon of j
codons in a gene, and n is the number of codons in a gene. To
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Table 1. Summary of 42 functions available in BioKIT at the time of publication.

Function name Description Type of function Input data Citation Example software that
performs this function

alignment_length Calculate alignment
length

Analysis Multiple-sequence file
in FASTA format

NA AMAS (Borowiec 2016)

alignment_recoding Recode alignments
using reduced
character states

Processing Multiple-sequence file
in FASTA format

Woese et al. (1991),
Embley et al. (2003),
Kosiol et al. (2004),
Hrdy et al. (2004),
Susko and Roger
(2007)

Custom scripts
(Hernandez and
Ryan 2021)

alignment_summary Summarize diverse
properties of a
multiple sequence
alignment

Analysis Multiple-sequence file
in FASTA format

NA AMAS (Borowiec 2016);
custom scripts
(Shen, Salichos, et al.
2016); PhyKIT
(Steenwyk, Buida,
et al. 2021)

consensus_sequence Generates a consensus
sequence

Analysis Multiple-sequence file
in FASTA format

Sternke et al. (2019) Geneious (https://
www.geneious.com)

constant_sites Determine the number
of constant sites in
an alignment

Analysis Multiple-sequence file
in FASTA format

Kumar et al. (2016) IQ-TREE (Minh et al.
2020)

parsimony_
informative_sites

Determine the number
of parsimony-infor-
mative sites in an
alignment

Analysis Multiple-sequence file
in FASTA format

Kumar et al. (2016) AMAS (Borowiec 2016);
custom scripts
(Shen, Salichos, et al.
2016)

position_specific_
score_matrix

Generates a position
specific score matrix
for an alignment

Analysis Multiple-sequence file
in FASTA format

Gribskov et al. (1987) BLASTþ (Camacho
et al. 2009)

variable_sites Determine the number
of variable sites in an
alignment

Analysis Multiple-sequence file
in FASTA format

Shen, Salichos, et al.
(2016)

AMAS (Borowiec 2016);
custom scripts
(Shen, Salichos, et al.
2016); PhyKIT
(Steenwyk, Buida,
et al. 2021)

gc_content_first_
position

Determine the GC
content of the first
codon position
among protein
coding sequences

Analysis Protein coding sequen-
ces in FASTA format

Bentele et al. (2013) Custom scripts
(Bentele et al. 2013)

gc_content_second_
position

Determine the GC
content of the
second codon
position among
protein coding
sequences

Analysis Protein coding sequen-
ces in FASTA format

Bentele et al. (2013) Custom scripts
(Bentele et al. 2013)

gc_content_third_
position

Determine the GC
content of the third
codon position
among protein
coding sequences

Analysis Protein coding sequen-
ces in FASTA format

Bentele et al. (2013) Custom scripts
(Bentele et al. 2013)

gene_wise_relative_
synonymous_
codon_usage

Calculate gene-wise
relative synonymous
codon usage

Analysis Protein coding sequen-
ces in FASTA format

This study This study

relative_synonymous_
codon_usage

Calculate relative
synonymous codon
usage

Analysis Protein coding sequen-
ces in FASTA format

Xu et al. (2008) MEGA (Kumar et al.
2016)

translate_sequence Translate protein
coding sequences to
amino acid
sequences

Processing Protein coding sequen-
ces in FASTA format

NA EMBOSS (Rice et al.
2000)

fastq_read_lengths Examine the distribu-
tion of read lengths

Analysis Sequence reads in
FASTQ format

NA FQStat (Chanumolu
et al. 2019)

subset_pe_fastq_reads Down sample paired-
end reads

Processing Sequence reads in
FASTQ format

NA SeqKit (Shen, Le, et al.
2016)

subset_se_fastq_reads Down sample single-
end reads

Processing Sequence reads in
FASTQ format

NA SeqKit (Shen, Le, et al.
2016)

trim_pe_fastq_reads Trim paired-end reads
based on quality and
length thresholds

Analysis Sequence reads in
FASTQ format

NA Trimmomatic (Bolger
et al. 2014)

trim_se_fastq_reads Trim single-end reads
based on quality and
length thresholds

Analysis Sequence reads in
FASTQ format

NA Trimmomatic (Bolger
et al. 2014)

(continued)
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Table 1. (continued)

Function name Description Type of function Input data Citation Example software that
performs this function

trim_pe_adapters_-
fastq_reads

Trim adapters from
paired-end reads and
implement length
thresholds

Analysis Sequence reads in
FASTQ format

NA Trimmomatic (Bolger
et al. 2014)

trim_se_ adapter-
s_fastq_reads

Trim adapters from
single-end reads and
implement length
thresholds

Analysis Sequence reads in
FASTQ format

NA Trimmomatic (Bolger
et al. 2014)

gc_content Determine GC content Analysis FASTA file of nucleo-
tide sequences

Romiguier et al. (2010) custom scripts (Shen,
Salichos, et al. 2016);
GC-Profile (Gao and
Zhang 2006)

genome_assembly_-
metrics

Determine diverse
properties of a ge-
nome assembly for
quality assessment
and characterization

Analysis FASTA file of a genome
assembly

Gurevich et al. (2013) QUAST (Gurevich et al.
2013); REAPR (Hunt
et al. 2013)

l50 L50 Analysis FASTA file of a genome
assembly

Gurevich et al. (2013) QUAST (Gurevich et al.
2013)

l90 L90 Analysis FASTA file of a genome
assembly

Gurevich et al. (2013) QUAST (Gurevich et al.
2013)

longest_scaffold Determine the length
of the longest entry
in a FASTA file

Analysis FASTA file Gurevich et al. (2013) Custom scripts (Ou
et al. 2020)

n50 N50 Analysis FASTA file of a genome
assembly

Gurevich et al. (2013) QUAST (Gurevich et al.
2013)

n90 N90 Analysis FASTA file of a genome
assembly

Gurevich et al. (2013) QUAST (Gurevich et al.
2013)

number_of_large_scaf-
folds

Determine the number
and length of scaf-
folds longer than 500
nucleotides. Length
threshold of 500
nucleotides can be
modified by the user

Analysis FASTA file NA QUAST (Gurevich et al.
2013)

number_of_scaffolds Determine the number
of FASTA entries

Analysis FASTA file NA QUAST (Gurevich et al.
2013)

sum_of_scaffol-
d_lengths

Determine the total
length of all FASTA
entries

Analysis FASTA file NA QUAST (Gurevich et al.
2013)

character_frequency Determine the fre-
quency of each char-
acter. Gaps are
assumed to be repre-
sented as ‘?’ and ‘-’
characters

Analysis FASTA file NA Biostrings (https://rdrr.
io/bioc/Biostrings/)

faidx Get sequence entry
from FASTA file

Processing FASTA file NA SAMtools (Li et al. 2009)

file_format_converter Converts multiple se-
quence alignments
from one format to
another

Processing FASTA, Clustal, MAF,
Mauve, Phylip,
Phylip-sequential,
Phylip-relaxed, and
Stockholm

NA ALTER (Glez-Pena et al.
2010)

multiple_line_to_sin-
gle_line_fasta

Reformat sequences to
be represented on
one line

Processing FASTA file NA FASTX-Toolkit (http://
hannonlab.cshl.edu/
fastx_toolkit/)

remove_fasta_entry Remove sequence
based on entry iden-
tifier

Processing FASTA file NA NA

remove_short_sequen-
ces

Remove short sequen-
ces

Processing FASTA file NA NA

rename_fasta_entries Rename FASTA entries Processing FASTA file NA FASTX-Toolkit (http://
hannonlab.cshl.edu/
fastx_toolkit/)

reorder_by_sequence_-
length

Reorder FASTA entries
by length

Processing FASTA file NA SeqKit (Shen, Le, et al.
2016)

sequence_complement Generate sequence
complements in the
forward or reverse
direction

Processing FASTA file Britten (1998) EMBOSS (Rice et al.
2000)

(continued)

4 | GENETICS, 2022, Vol. 221, No. 3

https://rdrr.io/bioc/Biostrings/
https://rdrr.io/bioc/Biostrings/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/


evaluate within-gene variation in relative synonymous codon us-
age, BioKIT also reports the standard deviation of relative synon-
ymous codon usage values for each gene. Like the
relative_synonymous_codon_usage function, gRSCU can be calcu-
lated using alternative genetic codes including user-specified
ones. Taken together, these functions can be used individually or
in tandem to investigate diverse biological phenomena, including
codon usage bias (Brandis and Hughes 2016; LaBella et al. 2019)
while also accounting for diverse genetic codes.

Genome assembly quality assessment
Determination of genome assembly properties is essential when
evaluating assembly quality (Gurevich et al. 2013; Hunt et al.
2013). To facilitate these analyses, the genome_assembly_metrics
function in BioKIT calculates 14 diverse properties of genome as-
semblies that evaluate assembly quality and characteristics in-
cluding:

• assembly size: sum length of all contigs/scaffolds;
• L50 (and L90): the number of contigs/scaffolds that make up

50% (or, in the case of L90, 90%) of the total length of the ge-
nome assembly;

• N50 (and N90): the length of the contig/scaffold which, along
with all contigs/scaffolds longer than or equal to that contig/
scaffold, contain 50% (or, in the case of N90, 90%) the length
of a particular genome assembly;

• GC content: fraction of total bases that are either G or C;
• number of scaffolds: total number of contigs/scaffolds;
• number and sum length of large scaffolds: total number and

sum length of contigs/scaffolds above 500 nucleotides in
length (length threshold of a “large scaffold” can be modified
by the user); and

• frequency of nucleotides: fraction of occurrences for adenine
(A), thymine, (T), G, and C nucleotides.

Each metric can also be called using individual functions (e.g.
the n50 function calculates the N50 of an assembly and the num-
ber_of_large_scaffolds function calculates the number of large scaf-
folds in an assembly). We anticipate the ability of BioKIT to
summarize genome assembly properties will be helpful for
assessing genome quality as well as in comparative studies of ge-
nome properties, such as the evolution of genome size and GC
content (Walker et al. 2015; Shen et al. 2020). Other pieces of soft-
ware that conduct similar analyses include QUAST, REAPR, and
GenomeQC (Gurevich et al. 2013; Hunt et al. 2013; Manchanda
et al. 2020).

Processing and assessing the properties of
multiple sequence alignments
Multiple sequence alignments—the alignment of 3 or more bio-
logical sequences—contain a wealth of information. To facilitate
easy use and manipulation of multiple sequence alignments,
BioKIT implements 16 functions that process or analyze align-
ments including: generating consensus sequences; generating a

position-specific score matrix (which represents the frequency of
observing a particular amino acid or nucleotide at a specific posi-
tion); recoding an alignment using different schemes, such as the
RY-nucleotide scheme for nucleotide alignments (Woese et al.
1991; Phillips et al. 2001) or the Dayhoff-6, S&R-6, and KGB-6
schemes for amino acid alignments (Embley et al. 2003; Hrdy et al.
2004; Kosiol et al. 2004; Susko and Roger 2007); converting align-
ments among the following formats: FASTA, Clustal, MAF,
Mauve, PHYLIP, PHYLIP-sequential, PHYLIP-relaxed, and
Stockholm; extracting entries in FASTA files; removing entries
from FASTA file; removing short sequences from a FASTA file;
and others.

We highlight the alignment_summary function, which calcu-
lates numerous summary statistics for a multiple sequence
alignment, a common step in many molecular evolutionary anal-
yses (Plomion et al. 2018; Winterton et al. 2018). More specifically,
the alignment_summary function calculates:

• alignment length: the total number of sites in an alignment;
• number of taxa: the total number of sequences in an align-

ment;
• number of parsimony-informative sites: a site in an align-

ment with at least 2 distinct nucleotides or amino acids that
each occur at least twice;

• number of variable sites: a site in an alignment with at least 2
distinct nucleotides or amino acids;

• number of constant sites: sites with the same nucleotide or
amino acid (excluding gaps); and

• the frequency of all character states: the fraction of occur-
rence for all nucleotides or amino acids (including gap char-
acters represented as “–” or “?” in an alignment).

Like the genome_assembly_metrics function, each metric can be
calculated individually (e.g. the constant_sites function calculates
the number of constant sites in an alignment and the character_-
frequency function calculates the frequency of all character
states). We anticipate the alignment_summary function will assist
researchers in statistically evaluating the properties of their
alignments, which may help guide subsampling strategies in phy-
logenomic studies (Edwards 2016; Mongiardino Koch 2021). Other
pieces of software that perform similar operations include AMAS
(Borowiec 2016) and Mesquite (Mesquite Project Team 2014). One
advantage of BioKIT compared with other software [such as
Phyutility (Smith and Dunn 2008)] the ability to calculate diverse
summary statistics.

Implementing high standards of software
development
Archival instability is a concern for bioinformatic tools and
threatens the reproducibility of bioinformatic research. For ex-
ample, in an analysis that aimed to evaluate the “installability”
of bioinformatic software, 28% of over 36,000 bioinformatic
tools failed to properly install due to implementation errors
(Mangul, Mosqueiro, et al. 2019). To ensure archival stability of

Table 1. (continued)

Function name Description Type of function Input data Citation Example software that
performs this function

sequence_length Calculate the length of
each FASTA file

Analysis FASTA file NA bioawk (https://github.
com/lh3/bioawk)

single_line_to_multi-
ple_line_fasta

Reformat sequences to
be represented on
multiple lines

Processing FASTA file NA FASTX-Toolkit (http://
hannonlab.cshl.edu/
fastx_toolkit/)
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BioKIT, we implemented a previously established protocol
(Steenwyk et al. 2020; Steenwyk, Buida, et al. 2021; Steenwyk,
Goltz, et al. 2021; Steenwyk and Rokas 2021b) for high stand-
ards of software development and design practices. More spe-
cifically, we wrote 339 unit and integration tests that ensure
faithful functionality of BioKIT and span 95.35% of the code-
base. We also implemented a continuous integration pipeline,
which builds, packages, installs, and tests the functionality of
BioKIT across Python versions 3.6, 3.7, 3.8, and 3.9. To accom-
modate diverse installation workflows, we also made BioKIT
freely available under the MIT license across popular platforms
including GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi
(https://pypi.org/project/jlsteenwyk-biokit/), and the
Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteen
wyk-biokit). To make BioKIT more user-friendly, we wrote on-
line documentation, user tutorials, and instructions for
requesting new features (https://jlsteenwyk.com/BioKIT). We
anticipate our strategy to implement high standards of soft-
ware development, coupled to our approach to decrease bar-
riers to software usage (e.g. easy installation and extensive
documentation), will address instabilities observed among
many bioinformatic software and increase the long-term us-
ability of BioKIT.

Results
Relative synonymous codon usage in 107
budding yeast and filamentous fungi
To demonstrate the utility of BioKIT in analyzing protein coding
sequences, we calculated the relative synonymous codon usage

of all codons in the protein coding sequences of 103
Eurotiomycetes (filamentous fungi) and 68 Saccharomycetes
(budding yeasts) genomes obtained from the RefSeq database of
NCBI (Fig. 1). This example also demonstrates the flexibility of
BioKIT to account for nonstandard genetic codes, which are ob-
served among some budding yeasts that use the CUG codon to
encode a serine or alanine rather than a leucine (Krassowski et al.
2018). Hierarchical clustering of relative synonymous codon us-
age values per codon (columns in Fig. 1) revealed similar patterns
across groups of codons. For example, CUA, AUA, and GUA—3 of
the 4 codons that end in UA—were underrepresented in all fungi.
Hierarchical clustering of relative synonymous codon usage val-
ues per species (rows in Fig. 1) revealed filamentous fungi and
budding yeasts often clustered separately. For example, UGA,
GUG, AAC, UAC, AAG, UUC, UCC, ACC, GCC, CGC, CUG, AUC,
GUC, CUC, and GGC are more often overrepresented among fila-
mentous fungi in comparison to budding yeasts; in contrast,
UUG, GUU, CCA, and GGU are more often overrepresented among
budding yeasts in comparison to filamentous fungi. Variation
within each lineage was also observed; for example, UUA was un-
derrepresented in most, but not all, budding yeasts. These find-
ings demonstrate how BioKIT can be used to examine patterns of
RSCU in a single genome or across species.

Patterns of gene-wise codon usage bias can be
used to assess codon optimization and predict
steady-state gene expression levels
To evaluate the utility of BioKIT in examining gene-wise codon
usage biases, we calculated the mean and median gRSCU value,
a novel metric introduced in the present manuscript, for
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individual protein coding genes in the genome of the baker’s

yeast Saccharomyces cerevisiae (Fig. 2a). Mean and median gRSCU
values were often, but not always, similar—the average absolute

difference between mean and median gRSCU is 0.05 6 0.04. In S.

cerevisiae, as well as other organisms, genes encoding ribosomal
components and histones are known to be codon optimized and

highly expressed (Sharp et al. 1986; Hershberg and Petrov 2009;

LaBella et al. 2021). Therefore, we hypothesized that genes with
high gRSCU values will have functions related to ribosomes or

histones because patterns of gene-wise codon usage bias may be

indicative of codon optimization. Supporting this hypothesis, ex-

amination of the 10 genes with the highest mean gRSCU revealed
5 genes with ribosome-related functions [RPL41B (YDL133C-A),

mean gRSCU: 1.60; RPL41A (YDL184C), mean gRSCU: 1.58; RPS14A

(YCR031C), mean gRSCU: 1.44; RPS9B (YBR189W), mean gRSCU:
1.43; and RPL18A (YOL120C), mean gRSCU: 1.43] and 4 genes with

histone-related functions [HHF1 (YBR009C), mean gRSCU: 1.45;

HTA2 (YBL003C), mean gRSCU: 1.44; HHF2 (YNL030W), mean
gRSCU: 1.43; and HTA1 (YDR225W), mean gRSCU: 1.43].

Examination of the 10 most optimized genes according to median

gRSCU revealed similar observations wherein 9 genes had
ribosome-related functions [RPS14A (YCR031C), median gRSCU:

1.48; RPS12 (YOR369C), median gRSCU: 1.40; RPS30B (YOR182C),

median gRSCU: 1.40; RPP2A (YOL039W), median gRSCU: 1.40;

RPL18A (YOL120C), median gRSCU; RPS3 (YNL178W), median

gRSCU: 1.40; RPL13B (YMR142C), median gRSCU: 1.40; RPP0

(YLR340W), median gRSCU: 1.40; and RPS0B (YLR048W), median

gRSCU: 1.40]. More broadly, genes associated with the 60S and

40S ribosomal units (gold color in Fig. 2a) tended to have high

gRSCU values. These results suggest gRSCU values may be useful

for estimating codon optimization.
To further explore the relationship between gRSCU and codon

optimization, we compared gRSCU values to the values of the

tRNA adaptation index, a measure of codon optimization (Sabi

and Tuller 2014), in S. cerevisiae as well as in steady state gene ex-

pression data from Saccharomyces mikatae (LaBella et al. 2019). In S.

cerevisiae, strong correlation was observed between mean gRSCU

and tRNA adaptation index values (Fig. 2b) and a less robust, but

still significant, correlation was observed between median gRSCU

and tRNA adaptation index values (Fig. 2c). Examination of

gRSCU and gene expression data from S. mikatae revealed a ro-

bust correlation (Fig. 2, e and f) suggesting gRSCU, and in particu-

lar the mean gRSCU, can serve as a measure of gene-wise codon

optimization.
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Genome assembly quality and characteristics
among 901 eukaryotic genomes
Other functions in BioKIT can facilitate, but are not limited to, ex-
amining data quality, a prerequisite for many downstream analy-
ses. For example, BioKIT can be useful in examining genome
assembly quality and characteristics. To do so, we calculated 14 di-
verse genome assembly metrics among 901 scaffold-level haploid
assemblies of eukaryotic genomes, which were obtained from NCBI,
and span 3 major classes of animals (Mammalia; N¼ 350), plants
(Magnoliopsida; N¼ 336), and fungi (Eurotiomycetes; N¼ 215).
Genome assembly properties exhibited variation both within and
between the 3 classes (Fig. 3). For example, fungi had the smallest
average genome size of 32.716 7.04 Megabases (Mb) whereas mam-
mals had the largest average genome size of 2,645.506 487.48 Mb.
Extensive variation in genome size within each class corroborates
previous findings of extreme genome size variation among eukar-
yotes (Elliott and Gregory 2015). Variation in GC content, a genome
property that has been actively investigated for decades (Galtier

et al. 2001; Romiguier et al. 2010; Serres-Giardi et al. 2012), was ob-

served among the 3 eukaryotic classes—animals, plants, and fungi

had an average GC content of 0.40 6 0.04, 0.35 6 0.04, and

0.49 6 0.03, respectively. Lastly, there was wide variation in genome

assembly metrics associated with continuity of assembly. For ex-

ample, the average N50 values for animals, plants, and fungi were

12,287.646 25,317.31 Mb, 5,030.156 19,358.58 Mb, and

1,370.77 6 1,552.13 Mb, respectively. Taken together, these results

demonstrate BioKIT can assist researchers in examining genome

assembly quality but can also be used for studying genome evolu-

tion—such as the evolution of genome size and GC content.

Properties of multiple sequence alignment from
10 phylogenomic studies
The properties of multiple sequence alignments are routinely

used to evaluate aspects of alignment information content (Shen,

Salichos, et al. 2016)—such as in phylogenomic and systematic

studies (Oliveira et al. 2011; Pyron et al. 2013). To demonstrate the
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Fig. 3. Summary of genome assembly metrics across 901 genomes from 3 eukaryotic classes. Nine hundred and one scaffold-level genome assemblies
from 3 major eukaryotic classes [215 Eurotiomycetes (kingdom: Fungi), 336 Magnoliopsida (kingdom: Plantae), 350 Mammalia (kingdom: Animalia)]
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utility of BioKIT in calculating summary statistics for multiple se-
quence alignments, we calculated 6 properties across 10 previ-
ously published phylogenomic data matrices of amino acid
sequences (Misof et al. 2014; Nagy et al. 2014; Borowiec et al. 2015;
Chen et al. 2015; Struck et al. 2015; Whelan et al. 2015; Yang et al.
2015; Shen, Zhou, et al. 2016, 2018; Steenwyk et al. 2019) (Fig. 4).
Phylogenomic data matrices varied in the number of taxa (mean-
¼ 109.50 6 87.26; median¼ 94; max¼ 343; min¼ 36). Alignment
length is associated with greater phylogenetic accuracy and bi-
partition support (Shen, Salichos, et al. 2016); however, recent
analyses suggest that in some instances shorter alignments that
contain a wealth of informative sites (such as parsimony-
informative sites) harbor robust phylogenetic signal (Steenwyk
et al. 2020). Interestingly, the longest observed alignment
(1,806,035 sites; Chen, Vertebrates in Fig. 4) (Chen et al. 2015) con-
tained the highest number of constant sites (N¼ 610,994), which
are phylogenetically uninformative, as well as the highest num-
ber of variable sites (N¼ 1,195,041), which are phylogenetically
informative (Shen, Salichos, et al. 2016). In contrast to the multi-
ple sequence alignment of vertebrate sequences, the second lon-
gest alignment of budding yeast sequences (1,162,805 sites; Shen,
332 Yeast in Fig. 4) has few constant sites (N¼ 2,761) and many
parsimony-informative (N¼ 1,152,145) and variable sites
(N¼ 1,160,044). This observation may be driven in part by the
rapid rate of budding yeast evolution compared to animals (Shen
et al. 2018). These results demonstrate BioKIT is useful in summa-
rizing properties of multiple sequence alignments.

Discussion
The exemplary analyses discussed in the present manuscript
represent a small fraction of the ways to implement BioKIT. To
further demonstrate how BioKIT may be used in multistep bioin-
formatic workflows, we depict how BioKIT can be incorporated
into genome assembly workflows, genomic analysis pipelines,

and phylogenomic workflows (Fig. 5). Taken together, these anal-
yses demonstrate how BioKIT, alone or in tandem with other
software, can facilitate the execution of diverse bioinformatic
pipelines.

As noted throughout the manuscript, there are numerous
other tools that perform similar functions to BioKIT. Our intent is
not to replace these toolkits but provide a convenient package
that conducts diverse analyses. Toolkits that conduct diverse
analyses, like BioKIT, can help facilitate the long-term stability of
bioinformatic workflows—such as those created using
SnakeMake—by reducing the number of dependencies. We also
believe BioKIT can be used as an effective teaching tool. The first
step in teaching bioinformatics is often downloading and instal-
ling software, however, this step can be challenging and time-
consuming due to lack of experience, differing installation
requirements, and installation errors. Thus, BioKIT helps over-
come this hurdle in the classroom.

Future releases of BioKIT will likely feature improvements in
its scope and speed. BioKIT is a community-driven tool, thus,
users are encouraged to request new functions or contribute their
own. We recommend following standard GitHub operating proce-
dures when doing so. In brief, new functions can be requested as
GitHub issues and novel functions can be developed in a separate
branch and then integrated into the main branch (or the distrib-
uted package). To help ensure long-term stability of BioKIT, users
should write integration and unit tests for new functions prior to
requesting to add them to the main branch. Beyond other func-
tions, visualizing results will be considered in future releases of
BioKIT. For the present manuscript, visualization of results was
done with ggplot2 (Wickham 2009), pheatmap (Kolde 2012), and
ggpubfigs (Steenwyk and Rokas 2021a) in the R programming lan-
guage. Other future improvements may be related to the speed of
BioKIT. Although numerous functions are relatively fast—for ex-
ample, summarizing genome assembly metrics took 1.25 and
2.55 s for the genomes of S. cerevisiae and Aspergillus fumigatus—
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Fig. 4. Summary metrics among multiple sequence alignments from phylogenomic studies. Multiple sequence alignments of amino acid sequences
from 10 phylogenomic data matrices (Misof et al. 2014; Nagy et al. 2014; Borowiec et al. 2015; Chen et al. 2015; Struck et al. 2015; Whelan et al. 2015; Yang
et al. 2015; Shen, Zhou, et al. 2016; Shen et al. 2018; Steenwyk et al. 2019) were examined for 5 metrics: number of taxa, alignment length, number of
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Although excluded here for simplicity and clarity, BioKIT also determines character state frequency (nucleotide or amino acid) when summarizing
alignment metrics. This figure was made using ggplot2 (Wickham 2009) and ggpubfigs (Steenwyk and Rokas 2021a).
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some functions, especially those that process large files, such as

FASTQ files, may benefit from codebase modifications that im-

prove speed. Speed improvements will likely be guided by user

needs.

Conclusion
BioKIT is a multipurpose toolkit that has diverse applications for

bioinformatics research. The utilities implemented in BioKIT aim

to facilitate the execution of seamless bioinformatic workflows

that handle diverse sequence file types. Implementation of state-

of-the-art software development and design principles in BioKIT

help ensure faithful function and archival stability. BioKIT will be

helpful for bioinformaticians with varying levels of expertise and

biologists from diverse disciplines including molecular biology.

Data availability
BioKIT is freely available under the MIT license from GitHub

(https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/

project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://ana

conda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user

tutorials, and instructions for requesting new features are avail-

able online (https://jlsteenwyk.com/BioKIT).
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