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Abstract

We propose a lag functional linear model to predict a response using multiple functional predictors 

observed at discrete grids with noise. Two procedures are proposed to estimate the regression 

parameter functions: (1) an approach that ensures smoothness for each value of time using 

generalized cross-validation; and (2) a global smoothing approach using a restricted maximum 

likelihood framework. Numerical studies are presented to analyze predictive accuracy in many 

realistic scenarios. The methods are employed to estimate a magnetic resonance imaging (MRI)-
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based measure of tissue damage (the magnetization transfer ratio, or MTR) in multiple sclerosis 

(MS) lesions, a disease that causes damage to the myelin sheaths around axons in the central 

nervous system. Our method of estimation of MTR within lesions is useful retrospectively in 

research applications where MTR was not acquired, as well as in clinical practice settings where 

acquiring MTR is not currently part of the standard of care. The model facilitates the use of 

commonly acquired imaging modalities to estimate MTR within lesions, and outperforms cross-

sectional models that do not account for temporal patterns of lesion development and repair.

Keywords

Functional data analysis; functional linear model; magnetization transfer ratio; image analysis

1. Introduction.

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system in 

which the myelin sheaths around the axons of the neurons in the brain and spinal cord 

are damaged. Focal areas of tissue damage in the brain and spinal cord are known as 

“lesions.” These lesions appear in various locations in the brain at different time points. 

Magnetic resonance imaging (MRI) is sensitive to these lesions and is the most important 

tool used by clinicians to diagnose and monitor the disease. One benchmark diagnostic 

criterion that is observed via MRI is the number of white matter lesions [McDonald et al. 

(2001), Polman et al. (2005)]. Conventional MRI modalities that are used in routine clinical 

practice to observe lesions are T1-weighted (T1w), T2-weighted (T2w) and T2-weighted 

fluid attenuated inversion recovery (FLAIR) images. However, it has been argued that 

rudimentary measures of lesion burden, including the number and volume of lesions, only 

moderately correlate with disability [Barkhof (2002), Brex et al. (2002), Hawkins et al. 

(1990), Schmierer et al. (2004)]. Therefore, much research in the field has centered on 

investigating the use of images that quantify tissue damage (e.g., white matter) and are 

believed to correlate with disability, such as magnetization transfer ratio (MTR) maps, which 

are sensitive to the degree of demyelination as well as lesion remyelination. Axons of the 

neurons in the white matter of the brain are insulated with a myelin sheath, which increases 

the speed at which impulses propagate along the axon. Demyelinating diseases, such as MS, 

destroy this layer of myelin, in a process called demyelination. Remyelination is the process 

of creating new myelin sheaths along these axons.

Here, we estimate MTR within lesions after lesion incidence using only the T1w and 

FLAIR images. MTR is not typically acquired in clinical settings, yet it would be a valuable 

addition to the typically acquired images and is believed to contain information about the 

disease process in MS [Chen et al. (2007, 2008)]. While MTR is not typically collected in 

clinical practice, the FLAIR and T1w volumes are routinely collected. Prediction of MTR in 

lesions will be useful in research applications where MTR was not acquired, as well as in 

clinical practice settings where acquiring MTR is not currently part of the standard of care. 

In practice, MTR is also an imaging sequence known to contain much noise [Reich et al. 

(2015)]. Predicting MTR within lesions with the longitudinal information in the FLAIR and 

T1w volume could therefore potentially provide a less noisy measurement of the MTR.
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We propose a voxel-level model that uses sparsely sampled functional measurements of the 

T1w and FLAIR images over a fixed window of time to predict MTR within lesions. The 

model yields improvement over cross-sectional models that do not account for temporal 

patterns of early lesion evolution. This will ultimately allow researchers to study the effect 

of treatments on tissue damage in patients with MS.

We analyze data that were obtained from a group of 53 MS patients at the National Institute 

of Neurological Disorders and Stroke (NINDS). Each patient was scanned between 9 and 38 

times over a period of 5.5 years. In this longitudinal study, the number of visits varies for 

each patient; MTR maps, T1w, and FLAIR images were acquired at each of the visits. For 

our analysis, the voxels in all of the images are temporally registered to obtain voxel-level 

intensity trajectories over time. The images are also segmented to obtain the set of voxel 

trajectories that correspond to areas of white matter containing MS lesions. Our objective is 

to relate current MTR intensity in a given voxel (within a lesion) to the T1w and FLAIR 

intensities in the same voxel observed over time. The observed voxel-level trajectories are 

discrete observations arising from a continuous process over time. Therefore, to predict 

MTR, we employ a function-on-function regression framework.

We propose a model for prediction of the functional response (MTR) beginning 6 months 

after lesion incidence, using the prior six months of the observed intralesional functional 

predictors (T1w and FLAIR) at the voxel level. As documented by Van Den Elskamp et 

al. (2008), MTR values may decrease subtly in areas of future lesion formation within a 

six-month period. Current methods in the functional data analysis literature do not model the 

relationship between a functional response and more than one functional predictor when it is 

assumed that only the recent past of the predictors affect the current value of the response. 

We develop a model that is able to use only the intensity of the T1w and FLAIR images 

observed in the previous six months of historical data to predict MTR at the current time 

point.

Functional data analysis has been a very active research area due to a surge of applications; 

see Besse and Ramsay (1986), Ferraty, Vieu and Viguier-Pla (2007), Horváth and Kokoszka 

(2012), Ramsay and Silverman (2005), Rice and Silverman (1991), to name a few. In 

particular, function-on-function regression has attracted increasing interest, starting with 

the functional linear model introduced in Ramsay and Silverman (2005) for which Scheipl 

and Greven (2015) address identifiability issues. Meyer et al. (2015) proposes a multilevel, 

wavelet-based, Bayesian function-on-function regression framework. Additionally, Scheipl, 

Staicu and Greven (2015) proposed a framework that incorporates additive regression 

models in penalized function-on-function regression. Recently, Ivanescu et al. (2015) 

developed a penalized regression method for association models between functional 

responses and multiple functional predictors, where the current response is allowed to 

depend on the entire trajectory of the predictor. Until recently, the work related to function-

on-function regression has been able to account for only one functional predictor; see He et 

al. (2010), Ramsay and Dalzell (1991), Ramsay and Silverman (2005), Wu, Fan and Müller 

(2010), Yao, Müller and Wang (2005b). For a complete review of the current literature in 

this area, see Morris (2015).
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Motivated by the medical application, we focus on the scientific problem of estimating the 

functional response at a specific time point using only a fixed window of history of the 

functional predictors. To address this problem when there is only one covariate, Malfait and 

Ramsay (2003) introduced the Historical Functional Linear Model (HFLM). In their model, 

they represent the coefficient function using a triangular basis function that is estimated 

using information from the predictor, and estimate a coefficient function at each observation 

point. Harezlak et al. (2007) present a penalized approach that allows for varying lags for 

the HFLM. Kim, Şentürk and Li (2011) propose a least-squares approach to fitting this 

model by estimating the coefficient function at each timepoint known as the Recent HFLM. 

However, their methods do not account for more than one predictor.

In this paper we study function-on-function regression where the response and predictors 

are functions defined on the same domain, multiple functional predictors are considered, 

and the response depends solely on a fixed window of the functional predictors. To estimate 

the regression parameter functions, we propose two methods: (1) a semi-local smoothing 

approach; and (2) a global smoothing approach.

We introduce the modeling framework in Section 2. Two estimation procedures are 

presented in Sections 2.1 and 2.2. Medically relevant extensions to sparse and noisy 

predictors are discussed in Section 2.3. We evaluate the proposed methods in a simulation 

experiment in Section 3. In Section 4, the proposed estimation approaches are then applied 

for predicting MTR trajectories using the recent past of T1w and FLAIR voxel-level 

intensities.

2. Methodology.

Suppose we observe data, [Yij, tij : i ∈ {1, …, n} and j ∈ {1, …, m0i}], [X1ij, r1ij : i ∈ {1, 

…, n} and j ∈ {1, …, m1i}] and [X2ij, r2ij : i ∈ {1, …, n} and j ∈ {1, …, m2i}], where 

tij, r1ij, r2ij ∈ T, a bounded and closed interval. For example, Yij corresponds to the MTR 

measurement at voxel i at time tij. In our data, there are n voxels under consideration and 

m0i observations for voxel i. The variables X1ij and X2ij correspond to the smooth T1w and 

FLAIR intensities for voxel i at times r1ij and r2ij, respectively. Our data analysis relies on 

the working assumption that the measurements are independent across voxels. Additionally, 

we assume the voxels in the scans of patients are properly registered over time. Throughout 

the rest of this section we consider r1ij = tij and r2ij = tij, and make use of r1ij and r2ij again in 

Section 3 where we present simulations.

Let X1ij = X1i(tij) and X2ij = X2i(tij), and assume that X1i(·) and X2i(·) are independent and 

square-integrable random smooth functions over T. Without loss of generality, let us assume 

E[X1i(t)] = E[X2i(t)] = 0. Assume that the predictor functions are observed on a dense grid 

of points and without noise, and the response is observed on a dense and equidistant grid of 

points tij = tj; more realistic sampling designs and scenarios will be considered in Section 

2.3. We assume the fixed-lag HFLM with multiple covariates for the response Yij,
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Y ij = fi tj + εi tj ,

fi tj = β0 tj + ∫
0

Δ1
β1 s, tj X1i tj − s ds

+∫
0

Δ2
β2 s, tj X2i tj − s ds,

(2.1)

where i ∈ {1, …, n}, j ∈ {1, …, mi}, β0:T ℝ and β1, β2: [0, Δ] × T ℝ are continuous 

functions, and εi(·) is an independent (across i) measurement error with zero-mean and 

covariance σε2. εi(·)is also assumed to be independent of X1i(·) and X2i(·).

This model (2.1) is used throughout the paper. For intuition, notice that 

fi tj = β0 tj + ∫tj − Δ1
tj β1 tj − s, tj X1i(s)ds + ∫tj − Δ2

tj β2 tj − s, tj X2i(s)ds. The model assumes 

that, given the entire predictor trajectories, the response is affected by the predictor values 

over only recent time windows of length Δ1 and Δ2, respectively; these lag parameters 

are chosen based on scientific knowledge. For simplicity of illustration, we let Δ = Δ1 = 

Δ2. The time-varying coefficient functions, β1(·, ·) and β2(·, ·), weigh the predictor values 

over the Δ lag-window, and quantify the effect of the predictors on the current response. 

While historical functional linear models have been presented in the current literature [Kim, 

Şentürk and Li (2011), Malfait and Ramsay (2003)] they have not accounted for multiple 

covariates as model (2.1) does.

We discuss two approaches for estimating the model parameters β0(·), β1(·, ·) and β2(·, ·). 

The first approach considers a pointwise (PW) estimation procedure for each observed time 

point tij. The second approach considers a basis function expansion using prespecified bases 

for each model parameter and conceptually controls the smoothness over T globally (GB). 

The two approaches are detailed in the next two sections.

2.1. PW model representation.

Model assumption.—As is common in the nonparametric regression literature, we 

assume that smooth coefficient functions can be represented using a basis function 

expansion. Specifically, let {Bs1,k(s)}k and {Bs2,k(s)}k be two prespecified functional bases 

on [0, Δ]. Then β1(s, t) is assumed to be represented as a tensor product of the form 

β1(s, t) = ∑k = 1
K1 Bs1, k(s)α1k(t), where K1 is large enough to capture the flexibility of the 

model and the α1k(t)’s are unknown time-varying coefficient functions defined on T. We 

use a similar basis expansion for β2(s, t) = ∑k = 1
K2 Bs2, k (s)α2k(t), where α2k(t)’s are unknown 

functions defined on T.

Without loss of generality, we assume that K1 = K2 = K. Although many choices for basis 

functions are possible, we use B-spline functions of degree 4 with 6 equally spaced interior 

knots over [0, Δ], which correspond to K = 10, as the sets {Bs1,k(s)}k and {Bs2,k(s) k}. 

B-splines are determined by the degree of the polynomial, and the number and location of 

the knots. The degree usually does not have a strong effect on the model performance [Wood 
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(2006)]. Typically the knots are placed at equally spaced locations or equally spaced quantile 

locations. Furthermore, it is common practice to use a large number of basis functions and 

use a smoothness parameter to determine the smoothness of the fit [Ruppert, Wand and 

Carroll (2003)]. The value of K in our application was selected empirically. Substituting the 

expressions for the coefficient functions into equation (2.1) yields

fi tj = β0 tj + ∑
k = 1

K
α1k tj ∫

0

Δ
X1i tj − s Bs1, k(s)ds

+ ∑
k = 1

K
α2k tj ∫

0

Δ
X2i tj − s Bs2, k(s)ds .

(2.2)

Furthermore, by denoting X1k, i tj = ∫0
ΔX1i tj − s Bs1, k(s)ds and X2k, i similarly, equation 

(2.2) reduces to

fi tj = β0 tj + ∑
k = 1

K
X1k, i tj α1k tj + ∑

k = 1

K
X2k, i tj α2k tj . (2.3)

Fitting.—This representation captures the dependence between the precomputed covariates 

(X1k, i and X2k, i) and the response using a varying-coefficient model. Nevertheless, when 

the functional predictors are observed at sparse sampling points for each i and possibly 

contaminated with error, these derived quantities may not be directly computable. In this 

section, we develop an estimation procedure of the HFLM model that depends on the 

continuous second moments of the additive predictors. It does not require direct computation 

of Xpk, i(t) and accounts for the correlation between the functional predictors. A working 

independence assumption over time for the error process εi(·) is assumed for fitting. 

This representation of the function-on-function regression model will allow us to obtain 

smooth pointwise estimates for the coefficient functions. A similar approach was considered 

by Kim, Şentürk and Li (2011) for the recent history functional linear model with one 

functional predictor. Here we present estimation of the coefficient functions and prediction 

of the response for the dense case; and extensions to more realistic settings are considered in 

Section 2.3.

Fix tj, and define α1kj = α1k(tj) and α2kj = α2k(tj). Notice that β0(tj) = E[Yij], and thus β0(·) 

can be estimated by smoothing Yij ’s and using a working independence assumption. By 

an abuse of notation, in the rest of the subsection, let Yij denote Y ij − β0 tj , where β0( ⋅ ) is 

a smooth estimator of β0(·). We estimate α1kj ’s and α2kj ’s by minimizing the following 

penalized criterion:

∑
i

Y ij − fi tj 2 + λ1∑
k

α1kj
2 + λ2∑

k
α2kj

2 , (2.4)

where λ1 > 0 and λ2 > 0 are the regularization parameters. Let αpj = [αp1j ⋯ αpKj]⊤ for p = 

1, 2. Then the minimizer is
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α1j
α2j

= Zj
⊤Zj +

λ1IK 0
0 λ2IK

−1
Zj

⊤ Yj − μY tj , (2.5)

where IK is the K × K identity matrix, Yj is the vector of all observations at time tj, μY (t) = 

E[Y (t)], and

Zj =
X11, 1 tj ⋯ X1K, 1 tj X21, 1 tj ⋯ X2K, 1 tj

⋮ ⋮ ⋮ ⋮
X11, n tj ⋯ X1K, n tj X21, n tj ⋯ X2K, n tj

. (2.6)

For fixed tj, the analytic solution (2.5) is the solution in a ridge regression framework for 

fixed values of the tuning parameters λ1 and λ2. In our case, α1kj ’s and α2kj ’s represent the 

evaluations of smooth functions α1k(t) and α2k(t) at times t = tj. However, selecting optimal 

values of λ1 and λ2 for each t could lead to high variability of the tuning parameters over 

t. One approach to accommodate this situation is to assume that the tuning parameters are 

constant across t.

The parameter functions α1k(t) and α2k(t) can be estimated using the probability limits of 

the standardized block submatrices, Zj
⊤Zj and Zj

⊤Y j, that are included in expression (2.5). 

Specifically, for arbitrary t,

α1(t)
α2(t) =

G11(t) G12(t)
G21(t) G22(t)

+

λ1
n IK 0

0 λ2
n IK

−1

G1Y (t)
G2Y (t)

, (2.7)

where GpY (t) = GpY 1(t)⋯GpY K(t) ⊤ is a vector, GpY l(t) is an estimator of 

GpY l(t) = cov Xpl, i(t), Y i(t) , Gpq(t) = GXpl, Xqk(t) kl is a K × K matrix, and GXpl, Xqk(t) is 

an estimator of GXpl, Xqk(t) = cov Xpl, i(t), Xqk, i(t)  for p, q ∈ {1, 2}. Although the model 

framework and estimation are discussed for two functional predictors, it is straightforward to 

extend it to accommodate three or more functional predictors.

To obtain the necessary quantities, observe that

cov Xpl, i(t), Xqk, i(t)

= ∫
0

Δ∫
0

Δ
E Xpi t − s1 Xqi t − s2 Bsp, l s1 Bsq, k s2 ds1ds2

= ∫
0

Δ∫
0

Δ
GXpXq t − s1, t − s2 Bsp, l s1 Bsq, k s2 ds1ds2,

(2.8)
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where GXpXq s1, s2  is the covariance between Xpi(s1) and Xqi(s2). Similarly, we also 

have that cov Xpl, i(t), Y (t) = ∫0
ΔGXpY (t − s, t)Bsp, l(s)ds, where GXpY s1, s2  is the covariance 

between Xpi(s1) and Yi(s2).

To use expression (2.7), we first need to obtain estimates of G11(t), G12(t), G21(t), G22(t), 
G1Y (t) and G2Y (t). Once estimates of α1(t) and α2(t) are available, estimates for the 

coefficient functions are given by β1(s, t) = ∑k = 1
K1 Bs1, k(s)α1kj(t) and similarly for β2(s, t). 

We note that this estimation is restricted to the class of regression parameter functions that 

can be expanded using Bs1,k(s) and Bs2,k(s) for k ∈ {1, …, K}. It follows that the response 

for the ith voxel can be predicted at any time point t by

Y i(t) = ∫
0

Δ1
β1(s, t)X1i(t − s)ds + ∫

0

Δ2
β2(s, t)X2i(t − s)ds . (2.9)

Selection of the smoothing parameters λ1 and λ2 is very important. To ensure that the 

regularization parameters are the same for all tj, these parameters can be selected using 

cross-validation (CV) to minimize an error-based criterion that we call the Normalized 

Prediction Error,

NPE λ1, λ2 = 1
n ∑

i = 1

n 1
m ∑

j = 1

m
Y ij − Y ij / 1

m ∑
j = 1

m
Y ij ; (2.10)

a similar criterion is used in Kim, Şentürk and Li (2011). The algorithm for fitting of the 

model using the PW approach is included in the Supplementary Material [Pomann et al. 

(2016)].

2.2. GB model representation.

Model assumption.—In this section, we propose the BG method, which takes 

a global smoothing approach to estimate the regression coefficient functions of the 

HFLM. This method estimates all the parameter functions β0(·), β1(·,·) and β2(·,·) 

simultaneously. To do this, we assume an expansion of the coefficient functions of the form 

β0(t) = ∑l = 1
M0 Bt0, l(t)b0l, β1(s, t) = ∑l = 1

M1 B1, l(s, t)b1l, and β2(s, t) = ∑l = 1
M2 B2, l(s, t)b2l, where 

M0, M1 and M2 are large enough constants to capture the variability of the coefficient 

functions. The discussion on the choice of K in the PW approach is applicable for M0, M1 

and M2. {Bt0,l(·)}, {B1,l(·, ·)} and {B2,l(·, ·)} are preselected basis functions; and b0l, b1l and 

b2l are unknown basis coefficients. For this study, the bivariate thin plate regression splines 

(TPRS) are selected as the sets {Bp,l(·, ·)} with M1 = M2 = 30, and one-dimensional TPRS 

are chosen as the set {Bt0,l(·)} with M0 = 10. These basis functions are commonly used in 

the literature, and they are the default choices for the package mgcv [Wood (2006, 2011)] in 

R that is used in our study. As in the PW approach, other choices of basis functions could 

also be used with this framework.

Similar to Section 2.1, the conditional mean, fi(tj), can be represented as
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fi tj = ∑
l = 1

M0
B0t, l tj b0l + ∑

l = 1

M1
X1l, i tj b1l + ∑

l = 1

M2
X2l, i tj b2l, (2.11)

where X1l, i tj = ∫0
ΔX1i tj − s B1, l s, tj ds and X2l, i tj  is defined analogously. This 

representation is inspired by Ivanescu et al. (2015), which presents a penalized function-

on-function regression framework that uses the entire range for the predictor functions. 

Equation (2.11) looks similar to equation (2.3); the main difference is that the unknown 

coefficients, b0k, b1k and b2k are not time varying. This modeling approach ensures 

smoothness of the regression parameter functions β1(s, t) and β2(s, t) over both s and t.

Fitting.—The coefficient vectors, b0 = b01⋯b0M0
⊤, b1 = b11⋯b1M1

⊤ and 

b2 = b21⋯b2M2
⊤, are estimated by minimizing the following penalized criterion:

∑
i, j

Y i tj − fi tj 2 + λ0P0 b0 + λ1P1 b1 + λ2P2 b2 , (2.12)

where λ0, λ1 and λ2 are smoothing parameters and P0, P1 and P2 

are the penalty terms [Ivanescu et al. (2015), Wood (2011)]. In particular, 

the integral of the square of the second derivative is a common 

measure for smoothness, in which case P0 b0 = ∫T β0′′(t)
2dt = b0

⊤S0b0 and 

Pp bp = ∫T∫0
Δ ∂2βp(s, t)/ ∂s2 2 + ∂2βp(s, t)/ ∂s ∂t 2 + ∂2βp(s, t)/ ∂t2 2 dsdt = bp

⊤Spbp, where 

S0 and Sp are penalty matrices specified by the choice of basis functions for p = 0, 1, 2 

[Wood (2006)]. A working independence assumption over time for the error process εi(·) is 

assumed for fitting.

Selection of the optimal regularization parameters can be done via generalized cross-

validation (GCV). However, empirical evidence suggests that GCV leads to undersmoothing 

[Reiss and Ogden (2009), Wood (2011)]. Instead, the problem can be posed as a mixed 

model of the form Xf bf + Zbr, where bf contains the fixed effect parameters and br is a 

random effect vector [Wood (2006, 2011)]. In this context, λ0, λ1 and λ2 represent variance 

components of the random effect covariance structure. This framework allows us to use a 

restricted maximum likelihood (REML) to estimate λ0, λ1 and λ2 [Reiss and Ogden (2009), 

Wood (2006, 2011)]. This approach is also more robust to nonindependent error assumptions 

[Ivanescu et al. (2015), Krivobokova and Kauermann (2007)]. The algorithm for fitting of 

the model using the GB approach is included in the Supplementary Material [Pomann et al. 

(2016)].

Predictions of the functional response can be obtained using the same methodology 

presented for the PW method. In particular, given that β0(t) = ∑l = 1
M0 Bt0, l(t)b0l

and β1(s, t) = ∑l = 1
M1 B1, l(s, t)b1l with a similar expression for β2(s, t), then 

Y i(t) = β0(t) + ∫0
Δ1β1(s, t)X1i(t − s)ds + ∫0

Δ2β2(s, t)X2i(t − s)ds.
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2.3. Noisy and sparsely observed data.

The estimation approach presented above is applicable to smooth predictors observed on 

a fine grid of time points. However, the response MTR and both covariates T1w and 

FLAIR are observed at few time points for each voxel. Additionally, the measurements are 

contaminated with noise. To accommodate this situation, let Wpi(t) Xpi(t) εpi(t) for p = 1, 

2, where εpi(·) is a zero mean white noise process with variance σp2. Assuming the same 

sampling design for the functional covariates, we distinguish 4 different scenarios according 

to whether the response is sparse or dense, and whether the functional predictors are sparse 

or dense. Namely, the scenarios are as follows: sparse/sparse, dense/sparse, sparse/dense and 

dense/dense. In the following we discuss in detail the case sparse/sparse which is the most 

relevant for our application; the remaining cases are detailed in the Supplementary Material 

[Pomann et al. (2016)].

PW method.—This approach requires smooth estimators of GX1X1 s1, s2 , GX2X2 s1, s2 , 

GX1X2 s1, s2 , GX1Y s1, s2  and GX2Y s1, s2 , which can be obtained using functional 

principal component analysis (FPCA). Mercer’s theorem yields the spectral decomposition 

of the covariance GXpXp s1, s2 = ∑l = 1
∞ ωplψpl s1 ψpl s2  in terms of non-negative 

eigenvalues ωp1 ≥ ωp2 ≥ ⋯ ≥ 0 and orthogonal eigenfunctions ψpl(t) with 

∫Tψpl(t)ψpl′(t)dt = 1 l = l′ , where 1(l = l′) is the indicator function which equals 1 when 

l = l′ and 0=otherwise [Bosq (2000)]. Given that E [Xpi(t)] = 0, the above decomposition 

of the covariance implies that Xpi (t) can be represented via the Karhunen–Loève (KL) 

expansion as Xpi(t) = ∑l = 1
∞ ζpl, iψpl(t), where ζpl, i = ∫TXpi(t)ψpl(t)dt are commonly called 

the functional principal component (FPC) scores and are uncorrelated random variables with 

zero mean and variance equal to ωpl. For practical and theoretical reasons, the KL expansion 

is often truncated [Di et al. (2009), Hall, Müller and Wang (2006), Yao, Müller and 

Wang (2005a)]; let X1i
L1 = ∑l = 1

L1 ζ1l, iψ1l(t) and X2i
L2 = ∑2i

L2ζ2l, iψ2l(t) be the truncated KL 

expansions of X1(t) and X2(t), respectively, for finite L1 and L2. The spectral decomposition 

of the smooth estimates of GX1X1 s1, s2  and GX2X2 s1, s2  yields the pairs of estimated 

eigenfunctions and eigenvalues ψ1l, ω1l l and   ψ2l, ω2l l, respectively. Then one can obtain 

consistent estimators of the scores ζ 1l, i = ∫TX1i(t)ψ1ldt and ζ 2l, i = ∫TX2i(t)ψ2ldt [Hall, 

Müller and Wang (2006), Zhang and Chen (2007)].

Since the response is observed on a sparse grid of points, bivariate kernel smoothing 

[Yao, Müller and Wang (2005a)] or spline-based smoothing [Wood (2006)] can be used 

to estimate the covariance functions. In our implementation, we make use of B-spline-based 

smoothing techniques [Crainiceanu, Staicu and Di (2009), Di et al. (2009)]. To account for 

the measurement error, the diagonal elements are left out when smoothing is carried out. 

The resulting covariance estimator is adjusted to be symmetric and positive semidefinite. 

Then the variance of the noise, σ1
2 and σ2

2, can be estimated based on the difference 

between the empirical pointwise variance of the corresponding observed predictors and 

the estimated pointwise variance GX1X1 s1, s2 , GX2X2 s1, s2 , [Staniswalis and Lee (1998)]. 
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In this setting, the conditional expectation formula should be employed to estimating the 

scores, ζ 1l, i = E ζ1l, i ∣ W1i = η1lψ1l
⊤ GX1, X1 + σ1

2Im1i × m1i
−1W1i [Yao, Müller and Wang 

(2005a)]. Here W1i is a vector of length m1i containing the observed values of the first 

predictor function, ψ1l
⊤  is a vector of length m1i with the jth entry equal to ψ1l tij , GX1, X1 is 

a m1i × m1i-dimensional matrix with the (j, j′)th entry equal to GX1, X1 tij, tij′  and Im1i × m1i
is the m1i × m1i identity matrix. ζ 2l, i can be estimated similarly. Yao, Müller and Wang 

(2005a) showed that, under the assumption that the predictors and their errors are jointly 

Gaussian, this equation yields the empirical best linear unbiased predictor of the scores.

In this case, there is an alternative approach to predict the response trajectory. Specifically, 

let Xpi(t) = ∑l = 1
Lp ζpl, iψpl(t) be the KL expansion for the covariate functions. Then by 

substituting this into equation (2.2) we obtain

Y i(t) = β0(t) + ∑
k = 1

K
α1k(t)∫

0

Δ
∑
l = 1

L1
ζ 1l, iψ1l(t − s)Bs1, k(s)ds

+ ∑
k = 1

K
α2k(t)∫

0

Δ
∑
l = 1

L2
ζ 2l, iψ2l(t − s)Bs2, k(s)ds

= β0(t) + ∑
l = 1

L1
ζ 1l, iP1l(t) + ∑

l = 1

L2
ζ 2l, iP2l(t),

(2.13)

where α1k(t) and α2k(t) are the estimators of α1k(t) and α2k(t), respectively, 

P1l(t) = ∑k = 1
K α1k(t)∫0

Δψ1l(t − s)Bs1, k(s)ds and P2l(t) is defined similarly.

GB method.—Densely sampled covariate functions are needed for the GB method; 

hence, smooth estimators for the covariates can be obtained using the predicted scores, 

eigenfunctions and KL expansion; that is, Xpi(t) = ∑l = 1
Lp ζ pl, iψpl(t). The methodology can 

be applied by using the predicted functional covariates in place of the true smooth functions.

3. Simulation studies.

This section presents results from an extensive simulation study used to evaluate the 

predictive performance of the two proposed methods, PW and GB. We consider two 

settings for data generated as in model (2.1): (I) the response and functional predictors 

are observed densely so that m0i, m1i and m2i are large and the predictors are observed 

without measurement error; and (II) the functional predictors and response are observed on a 

sparse grid of points so that m0i, m1i and m2i are small and the predictors are observed with 

measurement error.

We first generate the response and predictor functions on a dense and equally spaced 

grid of points, tij ∈ T = j/99: j = 0, 1, 2, …, 99 . In setting (I), we generate observed data, 

{tij, Yij, W1ij, W2ij}j, where Yij is the response function and W1ij = X1i(tij) and W2ij 
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= X2i (tij) are the predictor functions measured without error. We define the predictors, 

X1i(t) = ∑k = 1
2 uik1sin(kπt) + uik2cos(kπt) and X2i(t) = ∑k = 1

3 vikcos(2kπt) for uik1, uik2 and 

vik1
 i . i . d .  N 0, 1/k4 . We use regression parameter functions β0(t) = e−(t − . 5)2, β1(s, t) = 

cos(2πt) cos(πs) and β2(s, t) = cos(πt) cos(πs). We take Δ = 0.4 so that β1, β2 : [0, 0.4] × 

[0, 1] → [0, 1] and β0 [0, 1] → [0, 1]. Illustrations of the simulated data and predictions are 

included in the Supplementary Material [Pomann et al. (2016)].

The response for voxel i ∈ 1, …, n is generated from model (2.1) via numerical integration 

for each tij ∈ T. The measurement error in model (2.1) is taken to be εi(t) = εa,i(t) + εg,i(t), 

where εg,i(t) is a zero-mean i.i.d. normal random variable with variance σε2/2, and εa,i(t) 

is a zero-mean AR(1) process with covariance structure given by Σ tj, tj′ = σε2/2 ρ tj − tj′

with ρ = 0.5. It follows that var εi(t) = σε2. Note that an AR(1) process is considered in the 

simulation study to analyze the effect of nonindependent (over time) noise structure in the 

fitting process. We simulate data under a framework similar to Ivanescu et al. (2015) and 

McLean et al. (2014) by using a version of the empirical signal to noise ratio (eSNRε), 

which we define as eSNRε = ∑i, j E Y ij − ∑iE Y ij /n 2/ σε2(n −  1) m . The value of σε2 is 

chosen by specifying the eSNRε for each Monte Carlo (MC) replication. In this section, we 

present results for eSNRε = 5. It was observed that the predictive error decreases (increases) 

as eSNRε is increased (decreased). Results for eSNRε = 1 as well as for responses generated 

with a white noise error process are included in the Supplementary Material [Pomann et al. 

(2016)].

In setting (II) the response and predictors are first generated as in setting (I). Then, to 

generate the sparse data, we evaluate the functions at points rik ∈ ℛi for a randomly sampled 

subset ℛi ⊂ T of size mi. To determine the number of observations for each voxel, we take 

mi
 i . i . d .   Uniform  on {10, 11, …, 15}. This level of sparsity is consistent with the 13.6 

average number of samples observed per curves in the real data (see the Data Analysis 

Details section in the Supplementary Material [Pomann et al. (2016)]). To generate the 

predictors that are observed with error, we take W1ik = X1i(rij) + ε1ik and W2ik = X2i(rij) + 

ε2ik, where ε1ik ~ N(0, 0.1) and ε2ik ~ N(0, 0.05). The latter error variances were selected to 

correspond to a signal-to-noise ratio of 5.

The main simulation factors of interest are the number of observations and the lag parameter 

used for fitting the model. We present results for n ∈ {20, 50, 100}. To understand how 

the model performs when the lag parameter is misspecified, we let ΔF be the lag parameter 

used for fitting the model and present results for ΔF ∈ {0.4, 0.6}. As expected, when ΔF 

< Δ, both estimation methods have poor predictive accuracy and results in increased bias. 

Intuitively, this case corresponds to fitting a misspecified model, as it enforces the two 

regression parameters to be null on domains where they are not. Namely, β1(s, t) = 0 and 

β2(s, t) = 0 are enforced for s ∈ [ΔF, Δ].

To fit the model, the predictors are first standardized to have a zero mean function and 

pointwise variance equal to 1. For the model using the PW method, we consider the 
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bases sets {Bs1,k} and {Bs2,k} to be the set of K = 10 B-spline basis functions o degree 

4 with 6 interior knots over [0, ΔF]. This value of K was selected empirically. We use 

one tuning parameter λ that is selected using a grid search over Iλ = [0.0001, 0.01] and 

cross-validation. The range was determined empirically. Using a larger range and two tuning 

parameters produced similar results. To obtain the smooth covariance and cross-covariance 

functions, GX1X1 s1, s2 , GX2X2 s1, s2 , GX1X2 s1, s2 , GX1Y s1, s2  and GX2Y s1, s2 , we use 

bivariate smoothing, via tensor products of 20 univariate cubic regression splines with 15 

equally spaced interior knots. The positive semidefiniteness of the covariance functions is 

ensured by truncating the eigenvalues to be positive.

For the GB method, the functions Bp,k(s, t) are chosen to be 30 thin plate spline basis 

functions with 30 knots equally spaced. The penalty for equation (2.12) is taken to be 

Pl bl = bl
⊤Slbl, where Sl is chosen to be the thin plate spline penalty [Wood (2006)]. In 

setting (II), the reconstructed trajectories are estimated using FPCA with 20 basis functions 

to smooth the covariance and cross-covariance functions; the percent variance explained is 

set to 99%. The smooth predictor trajectories are sampled over a grid of 100 equally spaced 

observation points on [0, 1]. To obtain the necessary smooth estimates, we use fpca.sc 
function of the package refund [Di et al. (2009), Goldsmith, Greven and Crainiceanu (2012), 

Staniswalis and Lee (1998), Yao, Müller and Wang (2005b)]. To obtain predictions, we use 

the gam function of the mgcv package [Wood (2006, 2011)].

The computational cost and empirical performance of the PW method depends directly on 

the range of values Iλ used to search for the optimal regularization parameter. Since the 

estimation of regression parameters for the PW method uses only the smooth covariance and 

cross-covariance estimates at each time tij, it is more computationally efficient than the GB 

method which uses large matrices that grow linearly with ∑i = 1
n mi; see the Supplementary 

Material [Pomann et al. (2016)] for algorithms that outline the implementation details.

3.1. Simulation results.

To evaluate model performance, we present the relative mean square error (reMSE) for 

Y (t) as reMSE(Y ) = ∑i∫Δ
T Y i(t) − fi(t) 2dt / ∑i∫Δ

T fi(t) 2dt . Since our main objective is 

prediction, we report the mean and standard error of the reMSE(Y) values over 500 

Monte Carlo (MC) replications. We compare the resulting prediction errors by evaluating 

improvement of quantity “A” over “B,” defined to be [(B − A)/B] 100%. The discussion in 

this section focuses on the comparison of the reMSE(Y) values found in the last column of 

the tables provided.

First we describe and compare the results for the two estimation methods under the dense 

setting. Table 1 reports the simulation results for the PW and the GB methods under setting 

(I). On average, the GB method yields an improvement of 92% over the PW method in 

reMSE of prediction for this setting. For both the PW and GB methods, the case ΔF = Δ 

has smaller prediction errors than the case when ΔF ≥ Δ. As expected, the prediction error 

decreases in both cases as the sample size increases. For the PW method, n = 50 yields 

an average improvement of 47% over the case of n = 20, and for n = 100 we observe 
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an improvement over the case when n = 50. Using the GB method with n = 50 yields an 

average improvement of 56% over the case when n = 20, and a clear improvement as the 

sample size increases.

Next, we compare performance under the dense and sparse settings for each of the 

estimation methods. As expected, the performance of both approaches is affected by the 

sparse sampling design of the functional covariates and response. For the PW method, 

prediction errors in setting (I) are on average 70% smaller than in setting (II). Similarly, for 

the GB method the prediction errors in setting (I) are on average 95% smaller than in setting 

(II).

Last, we describe and compare the results for the two estimation methods under the 

sparse setting (II) (see Table 2). On average, in these datasets, the GB method yields an 

improvement of 55% over the PW method. For PW, we observe that the case when ΔF = Δ 

has smaller prediction errors than the case when ΔF ≥ Δ. For GB, on average, having ΔF = Δ 

yields a slight improvement over having ΔF ≥ Δ. As expected, the prediction error decreases 

in both cases as the sample size increases.

4. Prediction of Magnetization Transfer Ratio within lesions of MS 

patients.

Recall that the data consist of MTR maps and T1w and FLAIR images obtained for 53 

MS patients who were imaged as part of a natural history study at the National Institute 

of Neurological Disorders and Stroke. Time to each observed scan is measured from the 

first scan after lesion incidence. With this definition of observation times, each patient had 

between 9 and 38 observed scans with the maximum time ranging from 20 weeks to 5.5 

years. Our objective is to predict MTR at voxels within lesions using the T1w and FLAIR 

measurements acquired within the previous six months. This is important as MTR is not 

typically acquired in clinical settings, yet it would be a valuable addition to the typically 

acquired images and is believed to contain information about the disease process in MS 

[Chen et al. (2007, 2008)]. Predicting the MTR in MS lesions from the T1w and FLAIR 

information will provide information within lesions, without needing to acquire the MTR 

volume. This information will be of use in research for retrospective analysis where the 

MTR is not available as well as in clinical practice in settings where the MTR is not 

acquired. For this model, the window is chosen to be six months because it has been 

reported that MTR values may decrease subtly in areas of future lesion formation within a 

six-month period [Van Den Elskamp et al. (2008)]. Previously, Mejia et al. (2016) proposed 

a cross-sectional model to predict quantitative T1 maps, which estimate T1 relaxation times 

as a function of T1-weighted, T2-weighted, PD-weighted and FLAIR images; and Suttner 

et al. (2015) applied this method to predict DTI measures. To the best of our knowledge, 

this is the only other work in the literature that has been presented to estimate images of 

quantitative MR values. Jog et al. (2013a) do attempt to estimate average quantitative tissue 

properties, but not the quantitative images themselves. In addition, work has been done 

to predict standard nonquantitative clinical images using cross-sectional models [Jog et al. 

(2013b); Roy, Carass and Prince (2011, 2013)].

Pomann et al. Page 14

Ann Appl Stat. Author manuscript; available in PMC 2022 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is common practice to use cross-sectional linear models to make other voxel-level 

predictions [Pomann et al. (2015), Sweeney et al. (2013a, 2013b)]. Therefore, we evaluate 

the performance of the proposed approaches against two cross-sectional models that do not 

take temporal dependence of the data into account. Section 4.1 discusses the preprocessing 

of the data, and Section 4.2 presents implementation details and results for this analysis.

4.1. Data processing.

Details about the data acquisition, preprocessing, image registration and normalization are 

provided in Sweeney et al. (2015). After image preprocessing, we temporally align the voxel 

trajectories by aligning the voxels to the time point when it first is identified as belonging 

to a new or enlarging lesion. We identify this time of incidence for each voxel using the 

Subtraction-Based Logistic Inference for Modeling and Estimation (SuBLIME) procedure 

[Sweeney et al. (2013a)]. For each voxel, we obtain the time marker that corresponds to 

the time when the voxel is first identified as being part of a lesion (“time zero”). We then 

measure all following time points as the time difference in weeks from this marker. The 

alignment is appropriate because our goal is to predict MTR in the time window after the 

lesion develops; see the Supplementary Material [Pomann et al. (2016)] for more details.

4.2. Model implementation and results.

After normalization and spatiotemporal registration, we measure time in weeks, and let Yij 

be the MTR at voxel i in the brain of a subject at week tij ∈ [0, 190]. Similarly, we let 

the predictors W1ij and W2ij be the normalized T1w and FLAIR intensities, respectively, 

of voxel i at time tij, which are assumed to be observed with noise. We consider these two 

predictors as they are commonly acquired images as part of clinical MRI studies. We omit 

times after 190 weeks, as there are too few observations beyond this point. After ΔF = 26 

weeks (approximately six months), lesion evolution is approximately stable [Meier, Weiner 

and Guttmann (2007)], which justifies our choice for lag window.

Figure 1 presents images for a lesion for one of the patients with MS in our study. From top 

to bottom, the FLAIR, T1w and MTR images are displayed for this patient obtained over 

time in weeks from left to right (indicated below in white text). Time zero corresponds to 

lesion incidence for each voxel. The lesion is the hypointense region in the center of the 

image on the T1w and MTR images and the hyperintense on the FLAIR. Figure 2(a), (b) and 

(a) present the corresponding T1w, FLAIR and MTR voxel-level trajectories for this image.

In order to determine the benefit of the HFLM model for predicting MTR, we compare its 

performance against a cross-sectional model (CS),

Y ij = β0 + β1W 1ij + β2W 2ij + εij . (4.1)

Additionally, we compare the performance against a cross-sectional nonlinear model 

(CSNL),

Y ij = β0 + g1 W 1ij + g2 W 2ij + εij, (4.2)
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where g1(·) and g2(·) are unknown nonlinear functions. These models do not account for any 

temporal dependencies that may be present in the data. To fit the cross-sectional models, the 

predictors are standardized to have a mean zero and standard deviation of one. Predictions 

for the CSNL model are obtained using the gam function of the mgcv package in R with 10 

thin plate basis functions with 10 equally spaced knots.

To fit the HFLM models, the predictors are first standardized to have a zero mean function 

and pointwise variance equal to 1. Prediction is performed only for voxels in lesions at times 

after the corresponding lesion incidence. The analysis is performed on the logit transform 

of the MTR trajectories since the response values lie in the range [0, 1]. The same analysis 

is also conducted on the raw data which yields comparable results (see the Supplementary 

Material [Pomann et al. (2016)]). There are some zero values in the response but no values 

of 1, and most of the MTR values are concentrated between 0.2 and 0.5. Hence, in order to 

avoid division by zero, we shift the data by 0.01 when performing the logit transformation; 

that is, for our analysis we define logit(y) = log (y + 0.01)
1 − (y + 0.01)  and logit−1(α) = eα

eα + 1
− 0.01. 

When using the logit option in the implementation, the response data is transformed before 

fitting the model. Then predictions are transformed back to the probabilities using the logit−1 

function. All analysis is conducted using R version 2.15.1.

For the PW method, the basis set Bs1, k(s) k = 1
K  and Bs2, k(s) k = 1

K  are taken to be the set 

of K = 10 B-spline basis functions of degree 4 with 6 interior knots over [0, 26]. The value 

of K was selected empirically. Similar results were observed for K = 20. We use one tuning 

parameter, λ, that is selected using GCV over [0.1,100]. To obtain the smooth covariance 

and cross-covariance functions, GX1X1 s1, s2 , GX2X2 s1, s2 , GX1X2 s1, s2 , GX1Y s1, s2 , and 

GX2Y s1, s2 , we use bivariate smoothing, via tensor products of univariate bases. The 

positive semidefiniteness of the covariance and cross-covariance functions is ensured by 

truncating the eigenvalues to be positive. The results are based on using the tensor product of 

20 univariate cubic regression splines with 15 equally spaced interior knots.

For the GB method, the functions Bp,k(s, t) are chosen to be 30 thin plate spline basis 

functions with 30 knots equally spaced. The penalty for equation (2.12) is taken to be 

Pl bl = bl
⊤Slbl, where Sl is obtained by using the thin plate spline penalty [Wood (2006)]. 

The reconstructed trajectories are estimated for tij ∈ [0, 190] using FPCA with 20 basis 

functions to smooth the covariance and cross-covariance functions and the percent variance 

explained set to 99%. To obtain the necessary smooth estimates, we use the fpca.sc function 

of the package refund. To obtain predictions, we use the bam function of the mgcv package 

[Wood (2006, 2011)].

Using this smoothing procedure, we are able to capture the natural variation in the predictor 

functions. To see this, we display a subset of voxels in the brain of a patient in this 

study; Figure 2(a) and (c) display the observed voxel-level predictor trajectories of the T1w 

and FLAIR images, respectively, and Figure 2(b) and (d) show the respective smoothed 

trajectories. The voxel-level trajectories in these figures correspond to the voxels in the 

lesion displayed on the observed images in Figure 1.
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Since the true underlying MTR functions are unknown, we perform a 10-fold cross-

validation of the data based on subject ID. The subject IDs are first randomly sorted, 

and then the corresponding voxel observations are split into groups. The first three groups 

consist of six subjects, and the other seven groups consist of five subjects. The validation 

was designed in this manner in order to produce a more realistic scenario in which imaging 

information is observed from entire subjects and prediction is also done for all voxels in 

the scan of a subject. Histograms of the number of voxels and observations per subject are 

included in the Supplementary Material [Pomann et al. (2016)].

We evaluate prediction by comparing the integrated mean squared error (MSE) of the 

models. We also compare this prediction error with the empirical measurement error of 

the MTR voxel-level trajectories. To do this, for each cross-validation step, we compute 

MSE/s0
2 such that s0

2 = ∑i = 1
n ∑j = 1

mi Y i tij − Y i tij
2 / ∑i = 1

n mi , where mi is the number 

of time samples per curve, and n is the total number of observed voxels, and Y i tij  are the 

smoothed response trajectories without noise. A ratio of 1 indicates that the prediction is 

as good as smoothing the observed data. The smooth trajectories are obtained by using the 

fpca.sc function in the refund package in R with 20 basis functions to smooth the covariance 

and 99% variance explained to obtain the number of eigenfunctions used to reconstruct the 

data.

Figure 3(a) and (b) display the observed and smoothed MTR voxel-level trajectories, 

respectively, for the voxels in the lesion of Figure 1. For these same voxel-level trajectories, 

Figure 3(c) and (d) present the predicted response trajectories from using the PW and GB 
methods. Due to the lag window being fixed at six months, the estimation is restricted to t > 

26 weeks. We see that the predictions obtained using our model are similar to the smoothed 

MTR trajectories.

Table 3 displays the prediction error results for the different approaches. The HFLM model 

consistently has higher predictive accuracy than the corresponding cross-sectional models. 

Both estimation approaches for the HFLM model perform comparably. This model yields 

a 61% improvement over the CS model and a 48% improvement over the CSNL model. 

These improvements indicate the importance of accounting for temporal dependence over 

the previous six months when predicting MTR. Similar results were observed for the average 

in-sample error.

This analysis was repeated for a lag window of 3 and 9 months, and it was observed that 

the error between the different window sizes was the same up to the third significant digit 

for both methods. It may be of future interest to explore the model with interactions as 

well as other commonly acquired predictors such as proton density volumes or T2w images. 

This analysis can provide further insight regarding which commonly acquired images can 

be used to predict MTR and analyze tissue damage. Observe that using both predictors 

in the HFLM model yields a 9% improvement over the model with only one predictor 

(see the Supplementary Material [Pomann et al. (2016)]). However, when using the cross-

sectional models, this relationship is not maintained; each of the two-predictor models does 

not perform as well as the corresponding model with only the T1w intensities used as a 
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predictor. The models with only FLAIR intensities used as a predictor consistently do worse 

than all of the corresponding cross-sectional two-predictor models. These results confirm 

the qualitative assessment that the T1w image on its own contains detailed information 

about tissue damage. Furthermore, adding the FLAIR intensities to any of the cross-sectional 

models does not improve predictive power.

5. Conclusion.

We propose using the HFLM to estimate the current value of MTR in lesions using only 

the previous six months of both the T1w and FLAIR voxel intensities. We provide two 

methods to estimate the regression parameter functions: the PW method, a pointwise least 

squares approach; and the GB method, a global penalized functional regression approach. 

The PW method directly accounts for the covariance of the predictor functions by using 

a pointwise least squares approach to estimate the regression parameters. Additionally, in 

the case of sparse data, this method does not require the estimation of smooth trajectories 

as the GB method does. However, the GB method has a few advantages over the PW 
method. First, the performance of the PW method depends on the choice of the range of 

λ values for cross-validation. It was observed experimentally that if this range were not 

properly selected, then high out-of-sample prediction errors would be observed. Second, 

the PW method does not guarantee smoothness across time since estimated coefficients and 

predictions are performed at each time value. Finally, the PW method assumes that the β 
functions can be modeled as a sum of tensor products of basis functions, whereas the GB 
method makes use of general bivariate basis functions.

Our findings from the study suggest that the MRI signal within lesions depends on the local 

recent history of the signal at that location. Thus, the proposed model can facilitate the study 

of tissue damage in lesions of patients with MS. Furthermore, estimation of MTR using the 

HFLM model with the recent six months of both the T1w and FLAIR voxel trajectories 

outperforms cross-sectional models that do not take temporal dependence of the voxel-level 

trajectories into account. Future work will explore the use of this HFLM model to predict 

other quantitative imaging modalities and its application to other tissue classes. Estimability 

should be investigated further when making inference about the β coefficients is of interest.

The estimation of MTR in lesions using the traditional clinical FLAIR and T1w sequences 

has implications for both research and clinical practice. Estimating MTR within lesions 

with these sequences will provide additional information about lesions without needing to 

acquire MTR. As MTR has not been a traditional imaging modality, most retrospective 

data will not have MTR measured. Estimating the MTR in lesions may allow us to answer 

important research questions in large historical databases of MRI images. The proposed 

methods facilitate the estimation of MTR within lesions, providing additional information to 

clinicians to make treatment decisions in patients with MS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
From top to bottom, axial slices of an MS lesion in the FLAIR (A), T1w (B) and MTR 

(C) sequences. This MS patient is imaged over time in weeks from left to right. Time zero 

corresponds to lesion incidence, and the lesion on each sequence is denoted at time zero 

with a red arrow. On the MTR and T1w images the lesion is the hypointense region; on the 

FLAIR the lesion is hyperintense.
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Fig. 2. 
(a) Normalized T1w voxel intensities for a subset of the lesion voxels in the same patient 

as in Figure 1; (b) corresponding smoothed T1w voxel intensities using 20 basis functions 

to smooth all of the data; (c) corresponding FLAIR voxel intensities; (d) corresponding 

smoothed FLAIR voxel intensities using 20 basis functions to smooth all of the data. The red 

and blue curves are two particular curves.
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Fig. 3. 
(a) MTR voxel intensities for a subset of the lesion voxels in the same patient as in Figure 

1; (b) smoothed MTR voxel intensities using 20 basis functions to smooth all of the data; (c) 

predicted MTR voxel intensities using the GB method; (d) predicted MTR voxel intensities 

using the PW method. The values for the predicted MTR are not available for the first 

26 weeks since this is the window used for prediction. The red and blue curves are two 

particular curves.
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Table 1

Prediction Error—Setting (I), Average Error Variance = 0.012

n Δ ΔF reMSE(Y) (SE)—PW Method reMSE(Y) (SE)—GB Method

20 0.4 0.4 5.1e–3 (5.9e–3) 5.2e–4 (1.6e–4)

20 0.4 0.6 6.5e–3 (1.1e–2) 6.5e–4 (2.3e–4)

50 0.4 0.4 2.9e–3 (4.6e–3) 2.3e–4 (6.4e–5)

50 0.4 0.6 3.2e–3 (2.8e–3) 2.9e–4 (8.4e–5)

100 0.4 0.4 1.8e–3 (1.4e–3) 1.2e–4 (3.2e–5)

100 0.4 0.6 2.1e–3 (2.0e–3) 1.5e–4 (4.3e–5)
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Table 2

Prediction Error–Setting (II), Average Error Variance = 0.012

n Δ ΔF reMSE(Y) (SE)—PW Method reMSE(Y) (SE)—GB Method

20 0.4 0.4 1.6e–2 (2.4e–2) 7.1e–3 (1.9e–2)

20 0.4 0.6 2.2e–2 (7.7e–2) 9.0e–3 (6.1e–2)

50 0.4 0.4 9.6e–3 (4.3e–3) 4.2e–3 (3.2e–3)

50 0.4 0.6 1.0e–2 (4.6e–3) 4.0e–3 (2.4e–3)

100 0.4 0.4 6.7e–3 (4.3e–3) 3.6e–3 (5.7e–3)

100 0.4 0.6 7.1e–3 (3.1e–3) 3.2e–3 (3.9e–3)
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Table 3

Prediction error from 10-fold cross-validation on MTR data with T1w and FLAIR predictors. Integrated mean 

squared error (MSE) along with the average MSE/s0
2, where s0

2 is the estimated measurement error in the 

observed MTR voxel trajectories for all models and estimation approaches. The last two columns show the 

improvement for each approach over the CS and CSNL models

Model MSE[SE] · (103) MSE/s0
2 Imp. over CS Imp. over CSNL

CS 12.7 [3.4] 4.1 0% −32%

CSNL 9.6 [2.7] 3.1 31% 0%

HFLM (GB) 5.0 [2.1] 1.6 61% 48%

HFLM (PW) 4.9 [2.1] 1.6 61% 49%
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