
NeuriteNet: A convolutional neural network for assessing 
morphological parameters of neurite growth

Joseph T. Vecchia, Sean Mullanb, Josue A. Lopeza, Marlan R. Hansena, Milan Sonkab, Amy 
Leec,*

aDepartments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and 
Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, 51 
Newton Rd. Iowa City, Iowa, 52242

bIowa Institute for Biomedical Imaging, Electrical and Computer Engineering, University of Iowa, 
169 Newton Rd. Iowa City, Iowa, 52242

cDept of Neuroscience, University of Texas-Austin, 100 E. 24th St. Austin, TX 78712, USA

Abstract

Background: During development or regeneration, neurons extend processes (i.e., neurites) via 

mechanisms that can be readily analyzed in culture. However, defining the impact of a drug or 

genetic manipulation on such mechanisms can be challenging due to the complex arborization and 

heterogeneous patterns of neurite growth in vitro.

New Method: NeuriteNet is a Convolutional Neural Network (CNN) sorting model that uses a 

novel adaptation of the XRAI saliency map overlay, which is a region-based attribution method. 

NeuriteNet compares neuronal populations based on differences in neurite growth patterns, sorts 

them into respective groups, and overlays a saliency map indicating which areas differentiated the 

image for the sorting procedure.

Results: In this study, we demonstrate that NeuriteNet effectively sorts images corresponding 

to dissociated neurons into control and treatment groups according to known morphological 

differences. Furthermore, the saliency map overlay highlights the distinguishing features of 

the neuron when sorting the images into treatment groups. NeuriteNet also identifies novel 

morphological differences in neurons cultured from control and genetically modified mouse 

strains.

Comparison with Existing Methods: Unlike other neurite analysis platforms, NeuriteNet 

does not require manual manipulations, such as segmentation of neurites prior to analysis, and is 
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more accurate than experienced researchers for categorizing neurons according to their pattern of 

neurite growth.

Conclusions: NeuriteNet can be used to effectively screen for morphological differences in a 

heterogeneous group of neurons and to provide feedback on the key features distinguishing those 

groups via the saliency map overlay.
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Machine learning; high-content image analysis; neurite outgrowth; automatic classification; axon; 
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1. Introduction

To process diverse forms of information, neurons extend processes (i.e., neurites) from 

their soma in patterns that are sometimes quite complex. A variety of assays involving 

cultured neurons in vitro are used to study the mechanisms that regulate neurite growth 

and branching during development and in response to injury or disease. This type of 

analysis is relevant for research aimed at treating or preventing peripheral neuropathies 

(1,2), directing neurite growth toward a desired target (3), and uncovering genes involved in 

neuropsychiatric/neurodevelopmental diseases (4,5). However, the heterogeneity of neurons 

isolated from the central and peripheral nervous systems and their complex morphology 

complicate efforts to identify the impact of experimental manipulations on neurite growth 

in culture. Large sample sizes and dramatic alterations in morphology are often required to 

identify a significant effect of an experimental manipulation on neurite growth properties.

While a variety of strategies are available for quantitative analysis of neurite growth, 

they are not without shortcomings. For example, methods like Sholl analysis (6) require 

significant manual effort and thus are time-intensive, prone to bias, and results can vary 

pending investigator experience. These issues can be overcome by automated approaches 

that involve generating neurite tracings (7–11), which still require significant pre-processing 

of images and often need calibration by manual procedures. Moreover, the kinds of output 

generated by automated procedures are generally pre-determined metrics such as the number 

of branchpoints and terminals or lengths of primary and secondary neurites. Subtle, yet 

biologically significant, morphological changes resulting from an experimental manipulation 

may be missed with this type of analysis.

Some of the aforementioned limitations can be overcome with machine learning approaches 

which have been used to sort neurons into sub populations based on their morphology 

(12,13), classify the dendritic structure of neurons (14,15), and distinguish cancer cells from 

healthy cells (16). Procedurally, these approaches are advantageous as manual manipulations 

and other user-dependent measurements are not needed. In particular, convolutional neural 

networks (CNNs) have proven successful in image classification tasks for many different 

image modalities (16). Here, we describe a novel CNN model, NeuriteNet, that classifies 

images of neurons based on their patterns of neurite growth. The CNN utilizes a branching 

structure to enable consideration of different spatial resolution levels while learning features 

of the neurons. This approach allows differentiation of the target categories (e.g., genotype, 
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treatment, sex, etc.) based on global and local features of the image. We present evidence 

that NeuriteNet can accurately sort images of neurons into their respective categories based 

on features extracted from their neurite growth patterns, with a saliency map overlay 

identifying areas of the images that were used for the sorting.

2. Materials and Methods

2.1 Animals

All procedures involving animals were conducted in accordance with the NIH Guide for 

the Care and Use of Laboratory Animals and were approved by the University of Iowa 

Institutional Animal Care and Use Committee. All mice were maintained on a C57BL/6 

(Envigo) background, housed in groups on a standard 12:12 hour light: dark cycle with food 

and water provided ad libitum, and used at 4 to 6 weeks of age to create 3 experimental 

replicates for each condition studied. The characterization of CaBP1 KO (C-KO) mice 

(RRID: MGI: 5780462) was described previously (17).

2.2 Neuronal Cultures

Primary dorsal root ganglion neuron (DRGN) cultures were prepared according to 

previously published protocols (18,19). One day before culture preparation, cloning 

cylinders (Bellco 2090–01010) were placed onto sterile cover glass (25mm2 12–548-CP 

Fisher Scientific) and coated with poly-L-ornithine (0.1 mg/ml in 10 mM borate buffer, pH 

8.4, P4957, Sigma) for 1 hour at room temperature (RT), rinsed with Milli-Q H2O three 

times, and coated with laminin (20 μg/ml in Hank’s Balanced Salt Solution, 11243217001, 

Sigma) for 24 h at 4°C. The next day, mice were anesthetized with isofluorane and subjected 

to cervical dislocation and decapitation. Lumbar DRGs were harvested into Neurobasal™ 

media (Cat #21103049, ThermoFisher) and DRGNs were dissociated in 0.125% Trypsin-

EDTA (Cat #25200056, ThermoFisher) and 0.1% collagenase type I (1 mg/mL in HBSS 

without calcium or magnesium (−/−)), Cat #17100, ThermoFisher) for 40 min. After 

addition of 10% FBS to inactivate the proteases, the cell suspension was centrifuged at 

168 × g for 5 min. The cells were resuspended in Neurobasal™ media supplemented with 

1% L-glutamine (Cat #25030081, ThermoFisher) and 2% N-21 (Cat #SCM081, Millipore 

Sigma), plated at a density of 0.5 ganglia per cloning cylinder, and cultured for 24 h.

For the replating assay, DRGNs were cultured for 72 h prior to dissociation with TrypLE™ 

Express (Cat #12604013, ThermoFisher), replated as described previously (20), and were 

cultured for an additional 24 h.

2.3 Immunofluorescence

After 24 h in culture, media was removed and washed three times with Phosphate-Buffered 

Saline without Calcium and Magnesium (PBS(−/−)). Cells were fixed by adding 4% 

paraformaldehyde in PBS(−/−) (Cat #AAJ19943K2, Fisher Scientific) for 20 min at RT. 

Following this, cells were washed with PBS(−/−) three times and then blocking buffer 

(5% normal goat serum [Cat #PCN5000, ThermoFisher], 0.2% Triton™ X-100 [Cat #9002–

93-1, Fisher Scientific], and 1% BSA [Cat #9048–46-8, Research Products International] 

in PBS[−/−]) was added for 30 min. Chicken polyclonal antibody to NF200 (RRID: 
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AB_2313552, Aves) was then added (1:800 in blocking buffer) and incubated at RT for 

2 hours. Culture surface was washed 3 times with PBS (−/−) followed by addition of Goat 

anti-Chicken Alexa Fluor®546 (RRID: AB_2534097, ThermoFisher) (1:1000) for 1 hour 

at RT in the dark. Following this, cells were washed with PBS (−/−) three times and then 

cells were mounted using Fluoromount-G® (SouthernBiotech) in the dark for 24 h before 

imaging.

2.4 Image Processing

Greyscale images, 1024×1360 in resolution, were taken using an Olympus BX53 

microscope equipped with Olympus DP72 camera and CellSens Standard imaging software 

(RRID: SCR_014551). To reduce noise from unrelated background features, the magnitude 

of the image gradients was estimated using the combination of horizontal and vertical Sobel 

kernels G = Gx2 + Gy2  )(21). Additionally, each image was rescaled to values between 

0 and 1 based on individual minimum and maximum pixel values pre- and post- gradient 

magnitude estimation.

2.5 CNN Architecture of NeuriteNet

The network architecture of NeuriteNet is illustrated in Figure 1. In order to preserve 

the fine details of the neurites, the images were not down sampled to resolutions more 

commonly used for image classification (i.e., 224×224 in implementations of the Vgg16 

architecture) (22). Instead, the source resolution of 1024×1360 pixels was preserved.

The central structure of the network is a series of paired strided and non-strided 

convolutional layers, starting with a strided layer. The strided convolutional layer has a 

2×2 stride, reducing the spatial dimensions of the feature maps by half at each step. The first 

pair of layers uses 4 filters, and then every pair of layers thereafter doubles in depth up to 

64. The first convolutional layer uses a 5×5 kernel, and every subsequent convolutional layer 

uses a 3×3 kernel.

After each non-strided convolution, side branches of the network are created using max-

pooling layers to pass the representation of each scale forward. Each pool is sized relative 

to the scale of the input so that all side branches have the same spatial dimensions. The side 

branches have a single non-strided convolution using 16 filters and are then concatenated 

together with the result of the main branch to merge the feature maps from each scale level 

of the network. This structure allows the model to capture the features of different scales 

and depths of representation. After a final convolution with 128 filters to further merge the 

feature maps, an average pooling layer is applied of size 32×43 to reduce the features to 

a single 128 feature vector. This pooling layer is followed by a 128 node fully connected 

layer. A 20 percent dropout layer is applied after the fully connected layer, and a final fully 

connected layer encodes the features into the two output decisions. Sigmoid activation was 

used to constrain the output prediction values to between 0 and 1. Except for the output, 

all of the convolutional and fully connected layers are followed by a ReLU activation and a 

batch normalization layer.
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2.6 Training NeuriteNet

The workflow for training NeuriteNet on the various data sets is illustrated in Figure 2. 

All training was done with a five-fold cross validation. For each iteration, a distinct subset 

(20%) of the training data was withheld to use for testing and no model was tested on the 

same data it trained on. The training set was extended using moderate image augmentation, 

which was randomly applied before each use of an image in training. Random horizontal 

and/or vertical flips were applied to the images as well as random in-frame horizontal and 

vertical shifts of up to 60 pixels using cropping and padding with black pixels.

NeuriteNet was trained using a batch size of 32 for 300 epoch, where one epoch used each 

image to train the model exactly once. Model loss was calculated using binary cross-entropy 

and considering each of the two outputs of the model as separate binary predictions. Model 

updates used the Adam optimization algorithm (23) and a learning rate of 0.0001. In 

initial tests involving sex and genotype as variables, NeuriteNet learned sex differences 

significantly faster than genotypic differences. To prevent NeuriteNet from over fitting on 

one label too quickly, the labels used for training were smoothed by 0.1 so that the “correct” 

values were 0.1 and 0.9 rather than 0 and 1. The source code fof NeuriteNet is available at 

https://github.com/Mullans/NeuriteNet.

2.7 Validating NeuriteNet using XRAI Saliency Map

By assigning a level of attribution for the model’s decision to input pixels from the 

image, image saliency techniques give insight into a model’s predictions and verify that 

their accuracy is not the result of unintended background correlations. For our work, an 

XRAI method of model saliency map acquisition was used (22). The XRAI method uses 

segmentation of an image to determine areas of attribution. This allows it to have a high 

level of detail when assigning attribution to easily segmented areas of an image, but can 

over attribute small segments surrounded by background, as is common in our images. To 

account for this issue, we only segmented the foreground of the images and did not segment 

the background.

For the XRAI saliency method, the source neuron image was over-segmented into many 

overlapping regions using the Felzenswalb graph-based segmentation method from the 

skimage python package (24). Segment boundaries generally align with edges like those 

formed by the neurites, so the segments were dilated by 5 pixels to include the body of the 

neurons. The saliency map for an image is then generated by iteratively occluding parts of 

the image and observing change in predictions (25). The segments are selectively added to 

a mask for the image based on their maximum gain in total attribution per area indicated 

by the saliency map and assigned a value equal to the average value of the saliency map 

area covered by each segment. The XRAI algorithm continues until it has covered the 

entire image or has run out of viable regions to add to the mask. The final saliency map 

is a combination of the XRAI foreground saliency map and the non-segmented background 

saliency map.

After training NeuriteNet for each comparison, saliency masks were generated for a 

sampling of the best and worst predictions based on the loss value of the prediction. 
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The masks were generated for the sex and genotype predictions separately by using the 

gradients from only the prediction of interest. Each prediction was an output between 0 and 

1, so regions that provided a positive gradient were considered as indicative of the 1 class 

(replated, male, C-KO) while regions that provided a negative gradient were considered as 

indicative of the 0 class (control, female, and WT). Before visualization, the absolute values 

of each point of the masks were rescaled to between 0 and 1, and the signs of the values 

were preserved. Areas green in the saliency map suggest groups arbitrarily assigned to the 1 

class (replated, male, C-KO), while red suggests 0 class (control, female, and WT).

2.8 Human Sorting Test

To test the sorting efficacy of NeuriteNet, we compared the abilities of NeuriteNet and 

experienced researchers to sort neurons into their respective groups. For each comparison, 

a random sample of 50 images of each treatment group were placed into a folder and their 

name coded. Prior to sorting the images, the researchers were given a slide of relevant 

background material for the different groups, what the known differences between the 

groups are, and a labeled example image of a neuron from each group. They were then asked 

to indicate on a premade spreadsheet to which group each image belonged. They were told 

that each folder contains 50% samples of each group but were not strictly held to assigning 

half the images to each group. After sorting, images were un-coded and total performance 

scored.

2.9 Statistics

For comparing the accuracy of NeuriteNet and researchers in the sorting tasks, confusion 

matrices were generated for each sorting test and method. From each confusion matrix, 

Cohen’s Kappa statistic was calculated to compare the sorting efficiencies (26). This 

analysis was generated using the Real Statistics Resource Pack software.

3. Results

3.1 NeuriteNet is more accurate than humans in differentiating distinct patterns of neurite 
growth

In evaluating NeuriteNet, we used primary cultures of mouse DRGNs for two reasons. 

First, the culture of DRGNs is well-established and produces consistent results. Second, 

although DRGNs typically extend 2 neurites in vivo, when plated in culture, DRGNs 

display complex branching patterns and rates of neurite growth that vary predictably 

with experimental conditions (1). Third, DRGNs are challenging to analyze as they are 

functionally heterogeneous and mediate the sense of pain, temperature, and light touch, 

among other modalities. To establish the baseline accuracy of NeuriteNet using these 

neurons, an ideal comparison would involve DRGNs exposed to control conditions or an 

experimental manipulation that produces a known change in morphology. To this end, we 

used a replating assay that reproduces the in vivo “elongating” morphology of DRGNs 

which is readily distinguished from their “arborizing” morphology seen immediately 

after plating (see section 2.2) (20,27). These differences in morphology can be assessed 

qualitatively by eye such that the accuracy of NeuriteNet and researchers in sorting images 

corresponding to the naïve or replated DRGNs could be compared.
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The control and experimental groups corresponded to 137 naïve (control) and 101 replated 

neurons, respectively, which were cultured from DRGs from male mice (Fig. 3A,B). The 

neurons were immunolabeled with antibodies against neurofilament 200—a marker of 

medium to large diameter DRGNs (28). Epifluorescence images were obtained and subject 

to minimal manipulation prior to training. NeuriteNet was trained using 80% of the images 

and then tested on the remaining 20% (Fig.2, section 2.6). Following repetition with fivefold 

cross validation, we determined that NeuriteNet sorted the images into the control and 

experimental groups with an accuracy of 96% (Fig. 3C).

Next, we determined how the performance of NeuriteNet compared to that of researchers 

who were experienced with performing morphometric analyses of DRGNs in culture. For 

this purpose, two trained researchers were given a random sample containing 50 images of 

each condition and asked to assign the image to either the control or replated group. A third 

researcher then analyzed the fraction of images that were sorted correctly. The researchers 

sorted the images with a combined accuracy of 76% (Fig. 3C). NeuriteNet sorted with 

almost perfect accuracy with a kappa statistic with a 95% CI of (0.874, 0.972), while the 

trained researchers sorted the images less accurately with a 95% CI for the kappa statistic 

of (0.408, 0.642). NeuriteNet assigns a predicted class score that is less than or greater 

than 0.5 to images sorted to the control or replated groups, respectively (Fig. 3D). To gain 

insights into the features of an image that NeuriteNet learned to associate with these groups, 

individual correctly sorted images with strong predicted class scores (close to 0 or 1) were 

analyzed. With XRAI saliency map overlays, the regions and features that NeuriteNet used 

to assign each image to a particular group are color-coded, with the intensity of the color 

indicating the strength of the association. The saliency map strongly highlighted in red the 

densely branched regions for control DRGNs (Fig.3E) and long non-branching segments in 

green for the replated DRGNs (Fig. 3F). Thus, NeuriteNet learned to assign the images to 

the control and replated groups according to the established morphological differences that 

have been shown to distinguish these groups (20).

3.2 NeuriteNet can be trained to sort 2 binary variables simultaneously

We then challenged NeuriteNet to sort neurons into groups based on more subtle 

morphological differences than those distinguishing naïve and replated DRGNs. For this 

comparison, we turned to DRGNs from mice lacking the expression of calcium binding 

protein 1 (CaBP1, C-KO). We and others have established a role for CaBP1 in regulating 

the structural plasticity of neurites including those of spiral ganglion neurons (SGNs), which 

play analogous roles in hearing as DRGNs in somatosensation. In SGNs from C-KO mice, 

neurite regrowth is enhanced and insensitive to the inhibitory effects of depolarization (29). 

Thus, we hypothesized that DRGNs from C-KO mice may differ from wild-type (WT) 

controls in terms of their neurite growth patterns. To test this, we trained NeuriteNet with 

images of DRGNs from WT (295 images) and C-KO (326 images) mice. To enhance 

the rigor of this analysis, we added sex as a variable, using images of DRGNs from 

males and females (292 and 329 images respectively). NeuriteNet was trained and tested 

simultaneously on images from these 4 conditions: WT male, WT female, C-KO male, and 

C-KO female. For these data, NeuriteNet assigns a predicted class score greater than 0.5 for 

images sorted to male or C-KO groups, and less than 0.5 for images sorted to female or 
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WT groups. NeuriteNet successfully categorized most images according to sex and genotype 

(i.e., most images in bottom right quadrant are from female C-KO, Fig.4).

As shown in Fig. 5A–C, binning the assignments according to predicted class score revealed 

that 98% of the images corresponding to DRGNs were properly identified as belonging to 

males (>0.5) or females (<0.5). This sorting was qualitatively validated with XRAI saliency 

map overlays with red and green areas being interpreted as having traits characteristic of 

DRGNs from females and males, respectively. In representative images, the saliency map 

highlighted in red a mix of dense areas of neurites, the space between neurites, and random 

areas of background for the images from females (Fig. 5D). For the images from males, the 

map highlighted in green the peripheral neurites consistently (Fig. 5E). Thus, NeuriteNet 

was extremely accurate in terms of sorting images according to sex and could identify traits 

that were used for the sorting procedure.

Sorting images from WT (predicted class score < 0.5) and C-KO (predicted class score 

> 0.5) groups was more difficult for NeuriteNet as compared to the male vs female 

assignments, as images were only sorted 77% of the time correctly (Fig. 6A–D). In contrast 

to the symmetric distribution of the other comparisons (Figs.3D, 5C), NeuriteNet was more 

accurate in sorting images correctly to the C-KO than to the WT groups. WT images lacked 

a strong grouping near a score of 0 and many of these images were incorrectly identified as 

being C-KO (red on the right of the graph). XRAI saliency map overlays were once again 

employed to study correctly sorted images with strong predicted class scores (close to 0 or 

1) to gain insights into the features of an image that NeuriteNet learned to associate with 

WT (red) and C-KO (green) DRGNs. In both the WT and C-KO images, the saliency map 

overlay highlighted features specific to the neuron, which provided strong validation that 

NeuriteNet was utilizing neuronal morphological traits rather than non-specific signals in 

the background (Fig. 6E,F). As was done for the control vs. replated comparison, we also 

compared the performance of NeuriteNet with that of experienced researchers in classifying 

DRGNs as belonging to WT or C-KO groups. Remarkably, researchers did extremely 

poorly with this task, and sorted DRGNs correctly only 51% of the time, compared to 

the 77% accuracy of NeuriteNet in the same task (Fig. 6C). The kappa statistic 95% CI 

(−0.129, 0.149) indicated sorting accuracy no better than chance for our trained researchers, 

while NeuriteNet sorted the images with a kappa statistic of (0.460, 0.595), indicating 

moderate accuracy. These results indicate that NeuriteNet detects subtle morphological 

changes between WT and C-KO neurons that are not apparent to trained researchers.

4. Discussion

In this study, we present evidence supporting the value of NeuriteNet as a machine 

learning model that can detect and define differences in neurite growth patterns that are 

sex-dependent, and/or due to experimental or genetic modifications. Following training, 

NeuriteNet could correctly assign images to the control or replated groups nearly 100% of 

the time (Fig.3). While trained researchers were able to accomplish the same task, albeit 

with reduced accuracy, completion of the sorting task required 1–2 hours for the researchers 

while a comparison of the same size would take less than a second for NeuriteNet. Thus, 
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NeuriteNet can be used to expedite analyses of neurite growth differences based on robust 

morphological distinctions.

Our results also indicate that NeuriteNet can identify novel differences in neurite 

morphology between image sets from treatment groups. This is exemplified by the ability 

of NeuriteNet to accurately sort images by sex and genotype when presented with a mixed 

sample with respect to both variables (Fig. 4). Although demonstrated for other types of 

neurons (30,31), sex differences in the morphology of DRGNs have not been reported. 

Given that DRGNs are often used in various types of screening assays (32,33), our findings 

highlight the need to establish results using DRGNs from both sexes. Combined with our 

previous study documenting a neurite growth phenotype of auditory neurons from C-KO 

mice (29), the ability of NeuriteNet to sort images corresponding to DRGNs from WT and 

C-KO mice (Fig.6) suggests that CaBP1 may be a general modulator of neurite growth. 

Notably, CaBP1 has been shown to regulate actin remodeling (34) and the activity of Cav1 

L-type Ca2+ channels (35), both of which are implicated in controlling neurite growth 

dynamics (36,37). Thus, C-KO DRGNs may represent a new model in which to study Ca2+ 

signaling in relation to neurite growth.

NeuriteNet is not biased by pre-learned domain knowledge and is randomly initiated before 

training. Since the predictions are deterministic, the results are highly reproducible. These 

strengths of NeuriteNet offer the following advantages over other models. First, NeuriteNet 

does not require the user to manipulate images or manually alter analysis software, and 

thus is capable of producing results rapidly and with little variability. Most existing methods 

require intensive manual manipulations (38,39), which complicates analyses particularly 

if multiple researchers are involved in performing the same non-standardized procedure. 

Second, NeuriteNet is capable of robustly detecting subtle differences between groups. 

This is exemplified by its ability to define such differences even when analyzing images 

corresponding to a population of heterogeneous neurons such as DRGNs. Thus, NeuriteNet 

addresses a clearly established need for high-throughput, unbiased methods for assessing 

neuronal morphology. It is not feasible to analyze every comparison of interest using the 

traditional assays due to time limitations. The fact that most standard methods require 

a priori determinations regarding morphological features to be analyzed can introduce 

selection bias and prevent the discovery of more subtle distinguishing characteristics (Figs. 

3C and 6C).

Because the model’s structure captures features of different scales and depths of 

representation, NeuriteNet could be utilized to analyze the morphology of neurons other 

than DRGNs. For example, NeuriteNet would be well-suited for establishing molecular 

mechanisms underlying morphological distinctions between dendrites and axons. In cultures 

of hippocampal neurons, this could be accomplished by double-labeling for proteins that 

selectively mark dendrites or axons (e.g., MAP2 (40) and tau (41)). In addition, NeuriteNet 

could be adapted for high-throughput screening assays to identify compounds that may 

affect neurite growth or be neuroprotective (42), or to screen for the genetic underpinnings 

of neuropsychological or neurodevelopmental disorders which may be linked to alterations 

in neuronal morphology (5,43). From a clinical standpoint, these applications would be 

Vecchi et al. Page 9

J Neurosci Methods. Author manuscript; available in PMC 2022 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particularly impactful when utilizing neurons derived from induced pluripotent stem cells 

(44).

Despite the excellent performance of NeuriteNet in our applications, there are limitations 

in its current design including that it has been optimized for analysis of a highly restricted 

dataset. Comparisons were made on DRGNs that were cultured, fixed, labeled, and imaged 

all in the same manner, side-by-side. The model would have broader applicability if it 

could assess batches of previously collected images, such as those that could be made 

available in online datasets, which have been obtained by different researchers using various 

microscopes and magnifications. This could be accomplished by testing an adequately large 

number of images with careful assessment of the saliency maps to ensure NeuriteNet is 

sorting the images based on neuronal morphology. In our future work, NeuriteNet will be 

optimized to identify the impact of extrinsic factors on neurite growth. For example, it 

could be used to define differences in neurite alignment when neurons are plated on specific 

micropatterns or growth substrates (45). Lastly, the saliency map feature could be modified 

to report a quantifiable metric related to neurite morphology in addition to the heatmap. 

This would be especially valuable in identifying potentially therapeutic compounds for the 

purposes of nerve regeneration (37).

5. Conclusions

NeuriteNet is a machine-learning platform that can be used to effectively screen for 

morphological differences in a heterogeneous group of neurons and to provide feedback 

on the key features distinguishing those groups via the saliency map overlay. The code for 

the model is publicly available here: https://github.com/Mullans/NeuriteNet.
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Figure 1. Architecture of NeuriteNet.
Boxes are color-coded based on their operational role, and arrows represent the flow of 

data within the network. Two adjacent boxes represent the result of a strided convolution 

followed by that of a non-strided convolution. The numbers of feature channels are shown 

below each box, and the spatial dimensions on the right-bottom edges. Shading of bands 

within a box represent stages of ReLU activation and batch normalization.
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Figure 2. Workflow of training and testing of NeuriteNet.
Greyscale images corresponding to a control and experimental group are preprocessed 

(sobel edges, normalization, etc.) and 80% of the images are then used to train the network 

to sort the images into the two groups. The remaining 20% of images are then used for 

testing of NeuriteNet on the sorting task. This process repeats 5 times for five-fold cross 

validation using a distinct fold for each trial. Image corresponds to a DRGN from a WT 

male mouse. Scale bar = 100 μm
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Figure 3. NeuriteNet effectively sorts images corresponding to control and replated DRGNs.
(A,B) Representative images of WT DRGNs from control (A) and replated groups (B). 

(C) Comparison of human and NeuriteNet performance. The percentage of total images 

(n = 238) sorted correctly as belonging to control or replated groups is shown along 

with kappa statistic. (D) Fractional distribution of predicted class scores. Color represents 

actual group (control or replated) to which the image corresponds. NeuriteNet sorted most 

images correctly (the small green bar at predicted class score of 0.2 (appears brown as it 

is overlaying the red) is a replated image falsely sorted as control). (E,F) Same images as 

in (A,B) that were correctly sorted as control (E) or replated (F). The intensity of the color 

indicates the relative importance of that area. Red and green indicate areas that were used by 

NeuriteNet to suggest the image belonged to control and replated groups, respectively. Scale 

bars = 100 μm.
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Figure 4. NeuriteNet sorts images on the basis of sex and genotype simultaneously.
The group to which the image actually corresponds is indicated in the legend. Predicted 

class scores for images sorted as male or female (y-axis) are plotted against predicted class 

scores for images sorted as WT or C-KO (x-axis). The overlayed grid indicates general 

grouping of images according to sex and genotype.
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Figure 5. NeuriteNet identifies sex difference in DRGN neurite growth pattern.
(A,B) Representative images corresponding to DRGNs from male (A) and female (B). (C) 

Fractional distribution of predicted class scores. Color represents actual group (male or 

female) to which the image corresponds. (D,E) Same images as in (A,B) that were correctly 

sorted as female (D) or male (E). The intensity of the color indicates the relative importance 

of that area. Red and green indicate areas that were used by NeuriteNet to suggest the image 

belonged to female or male groups, respectively. Scale bars = 100 μm
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Figure 6. NeuriteNet identifies difference in WT and C-KO DRGN neurite growth pattern.
(A,B) Representative images corresponding to DRGNs from WT (A) and C-KO (B). (C) 

Fractional distribution of predicted class scores. Color represents actual group (WT or 

C-KO) to which the image corresponds. For example, green bars with predicted class score 

of >0.5 represent images correctly sorted as C-KO. Brown is an artifact of overlapping green 

and red bars at a given score, i.e., at the predicted class score of 0.7, there are a fraction 

of 0.03 C-KO (correctly sorted) and 0.02 WT (sorted incorrectly). (D,E) Same images as 

in (A,B) that were correctly sorted as WT (E) or C-KO (F). The intensity of the color 

indicates the relative importance of that area. Red and green indicate areas that were used by 

NeuriteNet to suggest the image belonged to WT or C-KO groups, respectively. Scale bars = 

100 μm
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