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A B S T R A C T

In the context of global pandemic Coronavirus disease 2019 (COVID-19) that threatens life of all human
beings, it is of vital importance to achieve early detection of COVID-19 among symptomatic patients. In this
paper, a computer aided diagnosis (CAD) model Cov-Net is proposed for accurate recognition of COVID-19
from chest X-ray images via machine vision techniques, which mainly concentrates on powerful and robust
feature learning ability. In particular, a modified residual network with asymmetric convolution and attention
mechanism embedded is selected as the backbone of feature extractor, after which skip-connected dilated
convolution with varying dilation rates is applied to achieve sufficient feature fusion among high-level semantic
and low-level detailed information. Experimental results on two public COVID-19 radiography databases have
demonstrated the practicality of proposed Cov-Net in accurate COVID-19 recognition with accuracy of 0.9966
and 0.9901, respectively. Furthermore, within same experimental conditions, proposed Cov-Net outperforms
other six state-of-the-art computer vision algorithms, which validates the superiority and competitiveness of
Cov-Net in building highly discriminative features from the perspective of methodology. Hence, it is deemed
that proposed Cov-Net has a good generalization ability so that it can be applied to other CAD scenarios.
Consequently, one can conclude that this work has both practical value in providing reliable reference to the
radiologist and theoretical significance in developing methods to build robust features with strong presentation
ability.
1. Introduction

In the past few years, the coronavirus disease 2019 (COVID-19)
has posed a world-wide threat to the life of all human beings which
leads to millions of deaths. According to report of the World Health
Organization (WHO), up to May 2022, there have been over 513
millions confirmed cases covering hundreds of countries (real-time
data can be traced at https://covid19.who.int). Consequently, there
has been constant and increasing focus on mechanisms for coping
with this disaster, for example through development and application
of effective diagnostic tools, treatments, and vaccination programmes.
As part of this, the role of early-stage detection of COVID-19 has been
fundamental in facilitating timely treatment and reducing transmission
through isolation (Shaban et al., 2021; Vianello et al., 2021; Yu et al.,
2021).
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Currently in practice, reverse transcription-polymerase chain re-
action (RT-PCR) is the most popular screening method of COVID-19
detection since the beginning of the epidemic, which is regarded as
a reliable gold-standard. While in addition, imaging can serve as a
complementary method to assist radiologist in diagnosing COVID-19
so as to achieve greater diagnostic certainty (Ai et al., 2020; Ismael &
Şengür, 2021; Kassani et al., 2021), where the most remarkable mer-
its include convenient acquisition and time-saving detection (Keidar
et al., 2021). Consequently, the application of computer aided diag-
nosis (CAD) framework incorporating chest X-ray (CXR) or computed
tomography (CT) images can circumvent issues associated with existing
diagnostic procedures and enable enhanced recognition of COVID-19.

Deep learning methods in modeling and classification have been
successfully applied in a variety of fields especially medical imaging
domain (Albu et al., 2019; Borlea et al., 2021; Hsiu-Sen et al., 2014;
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Fig. 1. Three categories of chest X-ray images, which from left to right are normal case, viral pneumonia and COVID-19, respectively.
Leong et al., 2013; Upadhyay & Nagpal, 2020; Zeng et al., 2021b). In
the context of early COVID-19 diagnosis, CXR imaging methods are
generally formulated as a classification problem, as shown in Fig. 1
where three categories are included. It should be pointed out that so
far plenty of researches have been carried out on identifying COVID-
19 from CXR images (Bouchareb et al., 2021; Chandra et al., 2021; Fan
et al., 2021; Fusco et al., 2021; Roberts et al., 2021; Signoroni et al.,
2021; Xu et al., 2021).

In Hu et al. (2021), the authors establish a deep convolutional
neural network (CNN) structure. Specifically, LeNet-5 framework is
employed as the backbone to learn features from X-ray images, and
a single-layer extreme learning machine serves as the classifier to
differentiate normal case, viral pneumonia, and COVID-19. A deep-
learning based multi-modal system is proposed in Sait et al. (2021),
which makes use of not only CXR images but also the breathing sounds
for COVID-19 diagnosis, whereas the feature extractor therein is the
CNN model as well.

In Minaee et al. (2020), by means of transfer learning, an end-to-end
framework for COVID-19 prediction from chest X-ray images without
additional feature extraction steps is proposed, where performances of
several classical CNN variants have been evaluated, including CNN with
residual, dense block and ‘‘fire’’ module (i.e., the ResNet, DenseNet
and SqueezeNet), respectively. Furthermore, in Signoroni et al. (2021),
another end-to-end deep learning architecture is developed, which
realizes a multi-regional scoring system so that degree of lung injury
in COVID-19 patient could be estimated in a semi-quantitative manner.
According to the real-world application results, it is proven a reliable
and practical method with significant prognostic value.

Another notable thing is that transfer learning paradigm has been
adopted in Minaee et al. (2020) to overcome the data-imbalanced
problem. In Sheykhivand et al. (2021), generative adversarial network
(GAN) is employed to generate CXR images of COVID-19 category,
which has enlarged the sample capacity to nearly 7 times and fa-
cilitated more robust feature learning. Notice that the relatively less
COVID-19 training samples can lead to model bias, and aiming at this
phenomenon, work (Garcia Santa Cruz et al., 2021) has presented a
systematic inspection on public COVID-19 X-ray imaging datasets and
provided effective guidance accordingly.

The role that attention mechanism plays in images classification is
highlighted in literature (Fan et al., 2021), where spatial and chan-
nel attention mechanism with multi-kernel-size is adopted to obtain
abundant semantic information over multiple scopes so as to promote
accurate detection of COVID-19. In Xu et al. (2021), the authors pro-
pose a mask attention mechanism, which is used to achieve segment-
based classification of COVID-19 on CXR images. Generated masks are
regarded as spatial attention maps and subsequently the CNN is able to
concentrate more on specific regions (like lesions) for classification. A
multi-receptive field attention module is proposed in Ma et al. (2021).
Although the data used in Ma et al. (2021) are CT images of COVID-19,
2

the common idea is applying spatial and channel attention mechanism
to make extracted features focus more on lesion areas so as to improve
the final classification performance. Moreover, comprehensive reviews
on applications of artificial intelligence method for COVID-19 recogni-
tion from radiological images are presented in Fusco et al. (2021) and
Bouchareb et al. (2021) where one can find more related works.

From above discussions, it is found that a feature extractor together
with a classifier constitutes a universal structure for COVID-19 recogni-
tion from CXR images. Consequently, the most challenging issue is how
to build strong and robust features with abundant information and high dis-
crimination from the relatively limited COVID-19 samples, so as to facilitate
a highly-efficient feature learning and achieve accurate classification results.
As is shown in Fig. 1, there is high similarity in CXR images between
COVID-19 and viral pneumonia (Lascu, 2021; Nabizadeh-Shahre-Babak
et al., 2021), thus discriminative features with strong presentation
ability no doubts can benefit an accurate classification.

To handle above challenge in COVID-19 recognition from CXR
images, a computer vision (CV) based model Cov-Net is proposed in
this study, of which the primary motivation is to make full use of
CV techniques to build robust and highly-distinctive features, so that
eventual classification results can provide more accurate and reliable
reference for the radiologists. It should be pointed out that some of
our previous works have already laid solid foundation and accumulated
valuable experiences for this study (Wu et al., 2022; Zeng et al., 2021a,
2021b, 2022).

Particularly, in our previous work (Wu et al., 2022), an effective
self-attention mechanism is developed in proposed model FMD-Yolo
to detect face masks and is proven efficient; in Zeng et al. (2022)
a practical feature fusion method is put forward to realize precise
localization and recognition of tiny objects, which also turns out a
successful implementation. Mainly inspired by above two instances, in
proposed Cov-Net, a feature learning and a feature fusion module are
meticulously designed, and it is the delicate implementation manner of
the two modules that makes Cov-Net distinct and superior.

To be specific, residual network (ResNet) structure, a well-known
CNN variant, is adopted as the backbone of Cov-Net to extract features,
where asymmetric convolution substitutes the vanilla configurations,
which can adapt to the disturb noises introduced by various shooting
angles. Attention mechanism is realized by squeeze-and-excitation op-
eration which enables the network to focus more on the lesion areas
so that strengthen the discrimination ability. Moreover, in order to
fully excavate representative features in COVID-19 samples like bilat-
eral pulmonary parenchyma ground-glass and consolidative pulmonary
opacities (Yu et al., 2021), a feature fusion module is deployed after
above backbone, which applies skip connection among a set of dilated
convolution kernels with varying dilation rates.

It should be pointed out that it is the powerful feature extraction
ability that is concentrated on while establishing the Cov-Net. Com-
pared with other existing works, innovations of Cov-net are reflected on
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the subtly designed components therein, which are eventually proven
effective, superior and practical. More importantly, this study mainly
aims at providing a complementary method to commonly used diagno-
sis tool of COVID-19 like RT-PCR, so that greater diagnostic certainty
can be achieved. For a better view of this paper, major contributions
of proposed Cov-Net have been summarized as follows:

(1) Building highly discriminative features from chest X-ray images to
boost classification of COVID-19 is emphasized in this work, and proposed
Cov-Net is proven reliable and effective on two radiography databases.

(2) Feature learning ability is enhanced by a meticulously designed attention
mechanism, which applies asymmetric convolution operations in a residual
structure.

(3) A set of skip-connected dilated convolution kernels with different dilation
rates is deployed to sufficiently fuse multi-scale feature maps including both
high-level textural and low-level morphological information.

The rest of this paper is organized as follows. Preliminaries of this
work are outlined in Section 2. The complete Cov-Net architecture is
elaborately presented in Section 3. Experimental results have been re-
ported in Section 4, and comprehensive discussions on both advantages
and disadvantages of proposed model are offered. Finally, conclusions
are drawn in Section 5.

2. Preliminaries

In this section, some brief preliminaries of proposed Cov-Net are
provided for a better understanding, including background information
about the residual building block, dilated and asymmetric convolution.

2.1. Residual Network (ResNet)

Convolutional neural network and its variants have been acknowl-
edged making great progresses in computer vision, where one of the
famous structures is known as residual network (ResNet) which is
firstly designed to handle the degradation problem in network training,
i.e., accuracy will decline with the depth of a network increases (He
et al., 2016). Formally in a residual structure, a mapping relationship
𝐻(𝑥) will be recast into 𝐹 (𝑥) + 𝑥 via a shortcut connection, where 𝐹 (⋅)
is the so-called residual. It is assumed that fitting the mapping 𝐹 (⋅) is
much easier than approximating 𝐻(⋅) during the same training process,
while effects of two learning are equivalent essentially. Furthermore,
even under an extreme case where 𝐹 ≡ 0, both input and output of the
structure are 𝑥, which at least will not lead to worse results.

2.2. Dilated convolution

Dilated convolution (Yu & Koltun, 2016) extends the local receptive
field by adding a hyper-parameter 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 on standard kernel,
of which the physical meaning refers to distance between adjacent
parameters, hence in a standard convolution kernel, 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 is
default as 1. The most advantage of dilated convolution is that it can
provide a larger receptive field under same computational condition,
given a dilation rate 𝑑 = 𝑘 (𝑘 ∈ Z+), then an 𝑛×𝑛 kernel will generate a
receptive field with size of [1+𝑘(𝑛−1)]×[1+𝑘(𝑛−1)], whereas the number
of kernel parameters remains 𝑛×𝑛 because all added ‘‘holes’’ are padded
with 0. However, it should be pointed out that a large dilation rate is
not always beneficial, which may lead to severe loss of information.

2.3. Asymmetric convolution

Asymmetric convolution network (Ding et al., 2019) adopts 1-
dimensional kernels to strengthen central skeleton parts of traditional
convolution kernels, which usually occur in the form of squares with
size 𝑛 × 𝑛. There is evidence showing that 𝑛 × 𝑛 convolution can be
3

Fig. 2. Reinforced square-convolution-kernel with two 1-rank filters.

factorized into two 1-rank filters in order of a vertical filter 1× 𝑛 and a
horizontal 𝑛 × 1 one as follows (Jaderberg et al., 2014):

𝐾𝑛×𝑛 ∗ 𝐼 = 𝑘𝑛×1 ∗ (𝑘1×𝑛 ∗ 𝐼) (1)

where 𝐼 is input, symbol ∗ denotes convolution operator, 𝐾 and 𝑘
stand for kernels with scale marked in subscript. Albeit computational
complexity becomes less with parameters shrunk from 𝑛2 to 2𝑛, perfor-
mance also declines to some extend (Jin et al., 2014), hence a better
alternative is to combine the factorized components with initial square
kernels as shown in Fig. 2. Mathematically, the dark synthetic skeleton
kernel is obtained as:

𝐾1◦𝐼 +𝐾2◦𝐼 = (𝐾1 +𝐾2)◦𝐼 ≜ 𝐾3◦𝐼 (2)

where ◦ is the hadamard product operator, 𝐼 is input and 𝐾𝑖 (𝑖 = 1, 2)
denotes the two 1-rank filters.

3. Detailed implementations of proposed Cov-Net

In this section, proposed Cov-Net is elaborated with details, and
specifically, major innovations of Cov-Net have been highlighted. As
aforementioned, the core components in Cov-Net contain one feature
learning module used to extract abundant and valuable information
from input chest X-ray images, and another feature fusion module
set for further generating and merging multi-level feature maps. It
is noteworthy that both high-level architectures and low-level units
in proposed Cov-Net have been comprehensively presented, and an
illustration of the overall framework is shown in Fig. 3, where boxes in
the top right part reveal the implementation details of applied blocks
with corresponding color. Following subsections will provide more
explicit explanations around Fig. 3 combining with the specific work
procedure.

3.1. Modified residual structure for feature extraction

Feature learning module in Cov-Net consists of stacked bottlenecks
where residual structure is adopted to eliminate degradation as the
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Fig. 3. Framework of the proposed Cov-Net, via matching color with boxes one can find implementation details of corresponding applied blocks.
network deepens. Unlike traditional ResNet deployment, asymmet-
ric convolution has been employed for enhanced feature extraction
(𝐴𝐶_𝐶𝑜𝑛𝑣 block in Fig. 3). To be specific, after incorporating two 1-
dimensional kernels, a square kernel with reinforced skeleton part is
obtained which enables greater focus on center areas in corresponding
receptive fields. During convolution, a kernel will slide over the input
feature map with a fixed stride. Pixels can therefore serve as both center
and corner during an entire convolution procedure. It is believed that
in each individual receptive field, center areas take more important
information while the corners can be relatively ignored. A reinforced
skeleton part makes it possible to strengthen partial connections be-
tween a convolution kernel and input feature map, resulting in more
concentrated and efficient learning without laying extra computational
burdens.

Given that COVID-19 samples are relatively limited, it is desirable
to build highly-distinctive features by making full use of finite images.
It is a challenging task and is further compounded by the high visual
similarity between COVID-19 and viral pneumonia classes. That is,
some features observed in most COVID-19 cases can also be seen in
other pneumonia, which no doubts makes the accurate diagnosis a
dilemma. Over-focusing on common features may lead to misclassifi-
cation but paying less attention to them can result in information loss.
4

It is desirable to focus more on the unique characteristics of COVID-19
such as the ground-glass opacity and pleural effusion.

To circumvent these issues, attention mechanism is introduced to
the Cov-Net feature learning module after asymmetric convolution
(𝑆𝐸_𝑂𝑃 block in Fig. 3). Essentially, the squeeze and excitation are
two cascaded fully connected layers (denoted as 𝑓𝑐1 and 𝑓𝑐2). Firstly a
global average pooling is performed to shrink input in the spatial, then
refined feature map will be forwarded to the 𝑓𝑐 layers for element-
wise weight generation. Following equations describe above squeeze
and excitation process (Hu et al., 2017):

𝑧𝑘 = 1
𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝒖𝑘(𝑖, 𝑗)

𝒔 = 𝜎(𝑾 2𝛿(𝑾 1𝒛)) (3)
�̃�𝑘 = 𝑠𝑘𝒖𝑘

where 𝐻 and 𝑊 are number of channels, 𝑾 1 and 𝑾 2 are two matrices,
𝜎 and 𝛿 denotes activation functions. 𝒖 is initial input feature maps and
𝒔 stands for the weights. Notice that symbols written in boldface refer
to vectors, and others are scalars.

Applying attention mechanism mainly aims at suppressing unim-
portant information and simultaneously highlighting important ones,
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which reassigns weights of different feature maps according to their
importance so that selective integration of abundant information is
possible and finally feature maps with significant specificity of COVID-
19 can be acquired. In Algorithm 1, complete workflow of designed
feature learning module is provided.
Algorithm 1 Feature learning procedure in proposed Cov-Net
Input:

Chest X-ray images
Output:

Highly-distinctive feature maps
1: Perform down-sampling operation to preserve information and

obtain primary feature maps 𝐹0
2: 𝐹0 enters the first bottleneck (the total number of bottlenecks is 16)
3: Initialize a counter 𝑖 = 1
While 𝑖 ≤ 16 do

4: Perform asymmetric convolution on 𝐹0 and obtain 𝐹1
5: Apply attention mechanism on 𝐹1 to acquire weighted feature map

𝐹2 according to Eq. (3)
6: If size of 𝐹2 and 𝐹0 are not same

Resize 𝐹0 to make the size consistent with 𝐹2
EndIf

7: 𝐹0 ← 𝐹0 ⊕ 𝐹2, where ⊕ denotes element-wise addition
8: Change the counter 𝑖 = 𝑖 + 1
EndWhile

9: Output the 𝐹0 obtained from the last bottleneck

3.2. Skip-connected dilated convolutions for feature fusion

In proposed Cov-Net, a feature fusion module is concatenated after
the feature learning module to further merge extracted information
of different levels. A set of dilated convolution kernels with varying
dilation rates is applied to acquire higher-level features based on ex-
tracted maps (𝐷𝐶_𝑂𝑃 block in Fig. 3). Multiple dilation rates enable
focus on lesions of different size and overcome the drawback of local
information loss in large receptive field. Moreover, this setting enables
generation of multi-scale feature maps, which is helpful for building
distinctive features and beneficial when tackling the similarity between
COVID-19 and viral pneumonia images.

As shown in Fig. 3, let 𝐷𝑐𝑖(⋅) (𝑖 = 1, 2, 3, 4, 5) denote operation of five
ilated convolution blocks (𝐷𝐶_𝑂𝑃 ) from left to right, respectively. 𝐼1
nd 𝑂1 are input and output of 𝐷𝑐1, and so on. Obviously 𝐹0 is 𝐼1, which

is the final output of feature learning module mentioned in Algorithm
1. Based on above annotations, for each block there is:

𝑂𝑖 = 𝐷𝑐𝑖(𝐼𝑖), 𝑖 = 1, 2, 3, 4, 5 (4)

According to Fig. 3, dilation rates increase as the structure deepens;
and consequently, output of each dilated convolution block will be
gradually shrunk in size. Hence a larger receptive field is helpful for
capturing more global information in later stage, which to some extent
avoids losing information so that a through coarse to fine feature
extraction is realized. In addition, dropout technique is introduced in
each dilated convolution block with a probability of 0.1 to alleviate
the over-fitting problem. Simultaneously, generated feature maps are
in different sizes and include both high-level semantic information
and low-level detail features. Furthermore, skip connection has been
applied in designed feature fusion module, which can be reflected by:

𝐼1 = 𝐹0

𝐼𝑗 = 𝐼𝑗−1 ⊕𝑂𝑗−1, 𝑗 = 2, 3, 4, 5 (5)

here ⊕ is element-wise addition.
The application of skip connection among multi-scale feature maps

acilitates the sufficient integration between high-resolution textural
nd low-resolution morphological features, which also contributes to
ecovering the lost information during the down-sampling procedure.
5

Algorithm 2 Feature fusion procedure in proposed Cov-Net
Input:

𝐹0 obtained from feature learning module
Output:

Sufficiently fused features with strong presentation ability
1: Initialize a counter 𝑖 = 1 and 𝐹𝑜𝑢𝑡 ← ∅
While 𝑖 ≤ 5 do

2: Determine the input 𝐼𝑖 of current dilated convolution block
according to Eq. (5)

3: Obtain the output 𝑂𝑖 of current dilated convolution block based on
Eq. (4)

4: 𝐹𝑜𝑢𝑡 ← 𝐹𝑜𝑢𝑡 ⊕𝑂𝑖, meanwhile save 𝐼𝑖 and 𝑂𝑖
5: Change the counter 𝑖 = 𝑖 + 1
EndWhile

6: Output 𝐹𝑜𝑢𝑡

Afterwards, the final output of the feature fusion module can be ob-
tained as:

𝐹𝑜𝑢𝑡 = 𝑂1 ⊕𝑂2 ⊕𝑂3 ⊕𝑂4 ⊕𝑂5 (6)

So far, an input image has been successively fed into the feature
learning and fusion modules, resulting in 𝐹𝑜𝑢𝑡. After normalization, 𝐹𝑜𝑢𝑡
is fed into a fully connected layer for final classification. Algorithm 2
presents the work principles of designed feature fusion module.

3.3. Supplementary explanations of computational details

In addition to the information outlined above, this subsection con-
stitutes additional details which supplement Fig. 3 for a comprehensive
understanding of the proposed Cov-Net.

• Before entering the first bottleneck, the input has been performed
a down-sampling operation (7 × 7 convolution and max-pooling),
which not only preserves initial information but also decreases
the computational complexity via dimension reduction.

• Considering the problem of gradient vanishing in training process,
Relu is adopted as the activation function, of which the derivation
always equals to 1 in the positive real number domain.

• 1 × 1 convolution is applied for the purpose of adjusting channels
so as to guarantee different feature maps can be added in element
wise.

• In order to accelerate the training and facilitate the convergence,
normalization techniques are also employed in proposed Cov-Net,
i.e., 𝐵𝑁 and 𝐺𝑁 in Fig. 3, which stand for batch and group
normalization, respectively.

• Since the COVID-19 classification task has three categories, the
output layer of the classifier correspondingly has three neurons
(𝐹𝐶_𝑙𝑎𝑦𝑒𝑟 ∶ 𝑠𝑖𝑧𝑒 = 3 in Fig. 3), and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is used for
calculating the category probability.

Notice that specific configurations of entire Cov-Net are deter-
mined empirically, including structures of modules and the blocks
therein. Whereas partial hyper-parameters are finally selected via sev-
eral attempts with the best performance, like dilation rate, dropout
probability, etc.

3.4. Loss function and optimizer of Cov-Net

Proposed Cov-Net belongs to the supervised learning model, thereby
training samples should be equipped with corresponding labels, and
each training sample can be denoted as (𝒙𝑖, 𝑦𝑖) where 𝑦𝑖 is the ground-
truth label. During model training, the loss function adopts following
cross-entropy form:

𝐿𝑐 (𝜃) = −
∑

𝑦𝑖𝑙𝑜𝑔(�̃�𝑖) (7)

𝑖
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Fig. 4. Data partition for training and testing.
se
Fig. 5. Illustration of confusion matrix, where 1 and 0 stand for positive and negative,
respectively.

where �̃�𝑖 is the predicted result of sample 𝒙𝑖, and 𝜃 denotes all training
parameters in Cov-Net. It is noteworthy that applying cross-entropy loss
function can effectively alleviate the vanishing gradient problem.

Essentially, training the Cov-Net is equivalent to find the optimal
𝜃 so that 𝐿𝑐 (𝜃) reaches its minimal value. To this end, the stochastic
gradient descent algorithm with momentum is employed as optimizer
of Cov-Net to update 𝜃 in following manner:

𝒗𝑡+1 = 𝜖𝒗𝑡 − 𝜂∇𝐿𝑐 (𝜃𝑡)

𝜃𝑡+1 = 𝜃𝑡 + 𝒗𝑡+1 (8)

where Hamilton operator ∇ refers to the gradient, 𝒗 is velocity vector
for update; 𝜖 and 𝜂 stand for momentum and learning rate, respectively.

Moreover, it should be pointed out that learning rate 𝜂 has played
an important role in the optimizer. To promote convergence and main-
tain a stable performance simultaneously, in this study, 𝜂 is set to
decay in cosine manner, one can refer to Bello et al. (2017) for more
information.

4. Experiments and discussions

In this section, proposed Cov-Net is comprehensively evaluated on
two public COVID-19 radiography datasets (Chowdhury et al., 2020;
Rahman et al., 2021) and the experimental results have been reported
in detail. To begin with, a brief introduction of the experiment environ-
ment is provided, including database information, evaluation metrics
and experimental settings. Afterwards, in-depth discussions around re-
ported results are presented, and comparisons with other six advanced
machine vision models are carried out. At last, limitations existing in
this study are discussed and an outlook of potential improvements in
future works has been provided.

4.1. Experiment environment

4.1.1. Databases
Two public COVID-19 radiography datasets available on website

https://www.kaggle.com/tawsifurrahman/covid19-radiography-databa
have been adopted to evaluate performance of proposed Cov-Net,
which are denoted as D1 and D2, respectively. It should be pointed
out that both D1 and D2 are created by integrating multiple accessible
data sources including publicly available datasets, online repository,
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and published articles, etc. Moreover, severity of the COVID-19 disease
is not marked in neither database, hence regarding to clinical practice,
applied datasets may not be authoritative enough to make an objective
evaluation. However, it is remarkable that benchmark evaluations in
this work mainly orient to examine the classification accuracy of pro-
posed Cov-Net, which is closely related to its feature extraction ability,
while to build highly discriminative features with strong presentation
ability is right the main contribution of Cov-Net.

In particular, classification task on D1 contains three categories, in-
cluding COVID-19, normal and viral pneumonia. The latter two classes
are collected from Kaggle chest X-ray database which has totally 5247
CXR images with different resolutions, whereas the former one is
established by collecting data from other five COVID-19 sub-databases,
and more information can refer to Chowdhury et al. (2020). Database
D2 provides a four-category classification problem, which has an extra
lung opacity class in comparison to D1 and hence is more challenging.
To be specific, samples of normal and lung opacity classes are selected
from RSNA pneumonia detection challenge dataset, while the left two
classes are built by integrating different data sources, and more details
can be found in Rahman et al. (2021).

In addition, specific sample capacity of both D1 and D2 is shown
in Fig. 4. Details of data partition for training and testing are also
presented in Fig. 4, which is based on the ratio 8 ∶ 2. Notice that
regular hold-out validation is performed during the model training,
where 10% of training samples are selected for independent validation.
It is also noteworthy that basic data augmentation operations including
flipping and cropping have been performed on the training images,
which enlarge the sample capacity to some extend and hence benefit a
more robust feature learning.

4.1.2. Evaluation metrics
COVID-19 detection is essentially a classification problem, hence

confusion matrix has been selected as the fundamental metric, which
is illustrated in Fig. 5 where ‘‘0’’ and ‘‘1’’ are two labels.

Furthermore, based on the confusion matrix, following indica-
tors have been adopted for evaluation and comparison, which are
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 𝑆𝑐𝑜𝑟𝑒, respectively.
The definitions of mentioned metrics are provided as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(12)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(13)

For all the five indices above, the larger their values are, the better
performance a model will have. In particular, false positive is a vital
concept in clinic, which is also known as the misdiagnosis. Based
on Eq. (10), the false positive rate can be obtained as 𝐹𝑃𝑅 = 1 −
𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦. Accordingly, false negative rate (i.e., the missed diagnosis)
is calculated as 𝐹𝑁𝑅 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Table 1
Experimental settings of proposed Cov-Net.

Parameters Settings

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 0.0375, and decays in cosine manner
𝐵𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 4 in training and 1 in testing stage
𝐸𝑝𝑜𝑐ℎ𝑠 20
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝐿2 regularization and 𝜆 = 10−7

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 Stochastic gradient descent (SGD) with momentum

Table 2
Confusion matrix of Cov-Net on database D1.

Ground-truth Prediction results

COVID-19 Normal Viral
pneumonia

COVID-19 43 0 1
Normal 0 269 0
Viral pneumonia 1 1 267

Table 3
Confusion matrix of Cov-Net on database D2.

Ground-truth Prediction results

COVID-19 Lung opacity Normal Viral
pneumonia

COVID-19 702 12 8 2
Lung opacity 10 1045 148 0
Normal 10 96 1930 3
Viral pneumonia 0 0 8 261

4.1.3. Experimental settings
Table 1 presents the specific experimental settings of training the

proposed Cov-Net, other implementation details including structural
configuration and model training have already been elaborated in
Section 3, which will hence not be repeated here.

Additionally, since it is the feature learning ability of Cov-Net
that has been emphasized in this work, other six state-of-the-art com-
puter vision models have been employed for comparison to estimate
performance of Cov-Net from the perspective of methodology, which
are denoted as ResNet50_vd (He et al.), MobileNetV2 (Sandler et al.,
2018), DarkNet53 (Redmon & Farhadi, 2018), GhostNet (Han et al.,
2020), InceptionV4 (Szegedy et al., 2017) and DenseNet161 (Huang
et al., 2017), respectively. For the sake of fairness, above models are
trained and tested on same data shown in Fig. 4, and all of them
are parameterized according to corresponding literature. Moreover, all
experiments are run under the paddlepaddle 1.8.0 framework with a
NVIDIA Tesla V100 GPU (32 GB).

4.2. Experimental results and discussions

4.2.1. Classification results
At first, confusion matrix obtained by proposed Cov-Net on database

D1 is provided in Fig. 6, where Figs. 6(a) and 6(b) show the ratio
and specific number respectively. Corresponding data have also been
provided in Table 2 for a better inspection.

As shown in Fig. 6, the misclassification rates for samples of normal
and viral pneumonia classes are 0% and 0.74% respectively, which
implies that extracted features from these two classes of images already
possess high discrimination. When it comes to COVID-19 samples, this
value raises to 2.27%, however, only 1 sample is wrongly recognized
as the viral pneumonia class, which further validates that it is the
similarity between COVID-19 and viral pneumonia that makes the
differentiation a tough work. In general, proposed Cov-Net has obtained
satisfactory results on database D1.

In the same way, confusion matrix on D2 and corresponding data
are shown in Fig. 7 and Table 3. Notice that classification task on
database D2 has four categories, where the extra lung opacity category
7

Fig. 6. Confusion matrix of proposed Cov-Net on database D1, where class 0, 1, 2
stand for COVID-19, normal, viral pneumonia, respectively.

brings more difficulties in accurate recognition. As is shown, most
misclassifications occur between lung opacity and normal category,
which may call for a more targeted preprocessing, but the overall
performance is still satisfactory. In particular, only 2 COVID-19 cases
are wrongly regarded as viral pneumonia, and none of the latter is
misclassified. As a result, one can still conclude that Cov-Net performs
well on database D2 with total 20 misdiagnosis and 22 missed diagnosis
in terms of COVID-19, which demonstrates that Cov-Net does have a
remarkable feature learning ability.

In addition, loss function curve of proposed Cov-Net during the
training on database D2 is presented in Fig. 8, from which one can see
that the model has a well convergence trend.
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Fig. 7. Confusion matrix of proposed Cov-Net on database D2, where class 0, 1, 2, 3 stand for COVID-19, lung opacity, normal, viral pneumonia, respectively.
Table 4
Class-wise performance of proposed Cov-Net on database D1.

Metrics COVID-19 Normal Viral pneumonia All

Cov-Net Cov-Net* Cov-Net Cov-Net* Cov-Net Cov-Net* Cov-Net Cov-Net*

Sensitivity 0.9772 1 1 0.9814 0.9926 0.9814 0.9948 0.9828
Specificity 0.9981 0.9926 0.9968 0.9872 0.9968 0.9936 0.9974 0.9914
Precision 0.9772 0.9167 0.9963 0.9851 0.9963 0.9925 – –
Accuracy 0.9966 0.9931 0.9983 0.9845 0.9948 0.9880 0.9966 0.9885
F1 Score 0.9772 0.9565 0.9981 0.9832 0.9944 0.9869 – –

† Cov-Net* means there is no data augmentation applied.
Table 5
Class-wise performance of proposed Cov-Net on database D2.

Metrics COVID-19 Lung opacity Normal Viral
pneumonia

All

Sensitivity 0.9696 0.8687 0.9465 0.9703 0.9299
Specificity 0.9943 0.9644 0.9253 0.9987 0.9766
Precision 0.9723 0.9063 0.9217 0.9812 –
Accuracy 0.9901 0.9372 0.9355 0.9969 0.9649
F1 score 0.971 0.8871 0.9339 0.9757 –

4.2.2. Comprehensive and in-depth discussions
On the basis of fusion matrix, evaluation metrics in Eqs. (9)–(13)

are calculated, and notice that all of the metrics are presented in class-
wise. Obtained results on database D1 are reported in Tables 4 and 5,
respectively, and Fig. 9 has presented an intuitive illustration.

It should be pointed out that the last column ‘‘All’’ in Tables 4
and 5 represents the global classification results without considering
specific class, which can be regarded as an evaluation of the model
performance. In this way, while calculating based on the confusion
matrix, 𝐹𝑃 and 𝐹𝑁 will always be equal; consequently values of
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐹1 𝑆𝑐𝑜𝑟𝑒 will be same. Hence for simplicity,
when referring to overall performance of a model, only 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,
𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 three indicators are reported in this work.

As can be seen, proposed Cov-Net provides an outstanding over-
all performance on both datasets, especially on the viral pneumonia
and COVID-19 classes. To be specific, five metrics all exceed 0.99
in recognizing viral pneumonia on D1, and the worst score occurs
in recognizing COVID-19 on D2 is the sensitivity of 0.9696, which
implies only 3.04% false negative rate, hence it is still a remarkable
achievement. Another noteworthy phenomenon is that sensitivity of
normal class on D1 reaches 100%, which indicates that proposed Cov-
Net generates no misclassification of normal cases on this database.
However, as for database D2, it is found that almost all indicators have
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degradation to different extent, which implies that the extra category
does bring more challenges in accurate diagnosis, and in future work,
more robust preprocessing like Gamma correction (Rahman et al.,
2021) and subtler feature fusion deserve more attentions. From the
overall performance, Cov-Net still achieves accuracy of 96.49% on the
much harder dataset D2, which demonstrates that Cov-Net is able to
construct robust features for classification.

4.2.3. Influences of data augmentation
Another issue should be pointed out is that fundamental data aug-

mentation process has been applied to Cov-Net during training, which
is regarded especially helpful on database D1 due to the relatively
limited samples (see Fig. 4) since deep learning model works mainly
in data driven way. To find out whether this operation is helpful,
comparison results are reported in Table 4 as well, where Cov-Net*
stands for training the model on database D1 without further data
augmentation.

Apparently, Cov-Net outperforms Cov-Net* regarding to all metrics
of almost each category, which implies that diversifying training images
can benefit learning more robust features so as to promote the final
classification accuracy. In addition, it is found that after introduc-
ing data augmentation, the sensitivity value of COVID-19 class even
declines from 1 to 0.9772. This phenomenon may be explained as
data augmentation operations enlarge the number of training samples
but not limited to the COVID-19 category, which is highly possible
to exacerbate the data-imbalance problem and leads to a even worse
performance.

Given that the calculation of sensitivity is 𝑇𝑃
𝑇𝑃+𝐹𝑁 , hence there

is none of 𝐹𝑁 samples in Cov-Net* because sensitivity equals to 1.
Therefore, the only way to reduce sensitivity value is to generate new
𝐹𝑁 samples. As aforementioned, it is the similarity between viral
pneumonia and COVID-19 that makes them tough to differentiate,
and as a result, one can infer that data augmentation has generated
more viral pneumonia samples, which leads to over-fitting problem in
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Table 6
Comparison on overall performance among different computer vision models.

Databases Metrics Models

ResNet50_vd MobileNetV2 DarkNet53 GhostNet InceptionV4 DenseNet161 Cov-Net

D1
Specificity 0.9872 0.9880 0.9828 0.9725 0.9725 0.9759 0.9974
Sensitivity 0.9656 0.9759 0.9656 0.9450 0.9450 0.9519 0.9948
Accuracy 0.9771 0.9840 0.9771 0.9633 0.9633 0.9679 0.9966

D2
Specificity 0.9690 0.9601 0.9609 0.9485 0.9592 0.9665 0.9707
Sensitivity 0.9318 0.9109 0.9140 0.8734 0.8982 0.9215 0.9388
Accuracy 0.9628 0.9529 0.9530 0.9380 0.9497 0.9594 0.9649
Fig. 8. Loss function curve of Cov-Net.

Cov-Net and eventually, partial COVID-19 instances are recognized as
viral pneumonia ones. This analysis indicates that above inference of
intensifying data-imbalance is reasonable; and moreover, it also implies
that handling the mentioned imbalanced data distribution in COVID-19
recognition will also be a promising work.

To sum up, according to Table 4, one can conclude that applying
data augmentation is helpful, which increases sensitivity, specificity
and accuracy by 1.2%, 0.6% and 0.81% on database D1, respectively.
Although it only brings in a slight improvement, it suggests another
beneficial work direction. To be specific, in addition to simply enlarging
data capacity, one can also generate multi-modal samples to encourage
building more robust and discriminative features, which will also be
useful to deal with challenges in database D2, where multi-modal in-
formation can be considered to integrate characteristics of lung opacity
and normal samples so as to facilitate more accurate recognition.

4.2.4. Comparisons with other state-of-the-art models in machine vision
areas

In this part, six state-of-the-art models in machine vision areas have
been trained and tested on the same database. It is remarkable that
the major purpose is to validate the effectiveness and superiority of
proposed Cov-Net from the perspective of methodology via comparing
the experiment results under the same condition. For fairness, data
partition and relevant experimental settings both maintain unchanged,
and each comparison model is parameterized according to correspond-
ing literature. In particular, comparison results on overall performance
are presented in Fig. 10 and Table 6, whereas Fig. 11 and Table 7
have presented the comparison results in terms of the classification
performance on COVID-19 category.

As illustrated in Fig. 10, proposed Cov-Net has overwhelmed the
other six popular methods in terms of three metrics on both datasets.
To be specific, proposed Cov-Net achieves the highest accuracy of
99.66% on D1, which exceeds the second one 98.40% by 1.26%; and
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Fig. 9. Class-wise evaluations of proposed Cov-Net on two datasets.

moreover, sensitivity and specificity of Cov-Net also rank first on D1 as
shown in Table 6, which surpasses the second one by 1.89% and 0.94%
respectively. Whereas on database D2 where the task is more tough,
above three metrics have all degraded to different extent. However,
proposed Cov-Net still performs best out of the seven models. These
results imply that the feature extractor along with the feature fusion
module in Cov-Net does accomplish a comprehensive and sufficient
feature learning so that constructed features are highly discriminative
for accurate classification.

Furthermore, considering that the overall performance is regardless
of specific class whereas the accurate COVID-19 recognition is of vital
significance in practice, especially the discrimination between COVID-
19 and viral pneumonia patients, it is necessary to figure out how
proposed model performs on COVID-19 recognition.
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Fig. 10. Comparisons on overall performance between proposed Cov-Net and other state-of-the-art models.
Fig. 11. Comparisons on classification performance of COVID-19 category between proposed Cov-Net and other state-of-the-art models.
Table 7
Performance comparison on COVID-19 recognition among different computer vision models.

Databases Metrics Models

ResNet50_vd MobileNetV2 DarkNet53 GhostNet InceptionV4 DenseNet161 Cov-Net

D1

Sensitivity 0.9318 0.9545 0.9318 0.9318 1 0.9545 0.9772
Specificity 0.9926 0.9888 0.9963 0.9888 0.9628 0.9926 0.9981
Precision 0.9111 0.8750 0.9535 0.8723 0.6875 0.9130 0.9772
Accuracy 0.9880 0.9863 0.9914 0.9845 0.9656 0.9897 0.9966
F1 score 0.9213 0.9130 0.9425 0.9011 0.8148 0.9333 0.9772

D2

Sensitivity 0.9572 0.9448 0.9517 0.9213 0.8950 0.9613 0.9696
Specificity 0.9920 0.9886 0.9912 0.9826 0.9866 0.9912 0.9943
Precision 0.9612 0.9448 0.9569 0.9162 0.9324 0.9574 0.9723
Accuracy 0.9861 0.9811 0.9844 0.9721 0.9710 0.9861 0.9901
F1 score 0.9592 0.9448 0.9543 0.9187 0.9133 0.9593 0.9710
According to Table 7, Cov-Net has obtained four out of five and
all best results on database D1 and D2, respectively, which verifies
the superiority and competitiveness of Cov-Net in feature extraction
work. Additionally, it should be pointed out that it is generally hard
to make the trade-off between precision and sensitivity so as to form
a comprehensive evaluation, thus a harmonic average 𝐹1 𝑆𝑐𝑜𝑟𝑒 in
Eq. (13) is usually adopted in practice, which attaches equivalent
importance on both precision and sensitivity. On D1, in spite of that
InceptionV4 has ranked first in terms of sensitivity with 1, its precision
value is however only 0.6875. Consequently, InceptionV4 has obtained
the 𝐹1 𝑆𝑐𝑜𝑟𝑒 of 0.8148, which is inferior to Cov-Net by 16.62%.
While on the more tough four-category classification work, Cov-Net
also achieves the best 𝐹1 𝑆𝑐𝑜𝑟𝑒 of 0.9710 and exceeds the second
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one (0.9593 by DenseNet161) by 0.0117, which validates the well
generalization ability of proposed Cov-Net.

In addition, notice that Cov-Net possesses a specificity of 0.9981 on
D1 and 0.9943 on D2, which are 0.18% and 0.23% over the correspond-
ing second-ranked models (0.9963 by DarkNet53 on D1 and 0.9920 by
ResNet50_vd on D2), respectively. Due to higher specificity corresponds
to lower FPR, it is implied that proposed Cov-Net is competent in
accurate diagnosing COVID-19. Moreover, FNR provided by Cov-Net
are only 2.28% and 3.04% on D1 and D2, respectively. As a conclusion,
being able to generate less missed diagnosis and misdiagnosis instances
further demonstrates the practicality of proposed Cov-Net, which can
provide accurate and reliable reference to the radiologists as a helpful
CAD framework.
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4.3. Limitations and future outlooks

Albeit proposed Cov-Net has presented satisfactory performance,
there are spaces for further improvement. Consequently, this subsection
has discussed existing limitations and provided outlooks for future
enhancement.

4.3.1. Internal deficiencies
From the perspective of methodology, notice that the whole struc-

ture configuration of Cov-Net mainly relies on our previous studies,
which is empirically determined and only a few parameters have been
explored via trial and errors. Therefore in future work, applying swarm
intelligence based heuristic algorithm to realize structure or parameter
optimization of Cov-Net is a promising work, which can effectively
alleviate adverse effect caused by subjectivity.

Furthermore, it seems that inadequate data processing procedure
is implemented in the pipeline of Cov-Net, where only simple data
augmentation is performed. However, whether there is redundant infor-
mation has not been thoroughly inspected in both the feature leaning
and fusion module. Consequently, in future work, pipeline of Cov-Net
can be further enhanced by concatenating other data preprocessing or
postprocessing module to facilitate generating more class-dependent
robust features.

4.3.2. External limitations
In addition, it is remarkable that benchmark evaluations in this

study mainly concentrate on validating whether proposed Cov-Net has
the ability to build highly discriminative features for classification, and
the major challenges in public datasets lie in the similarity among
different classes. Therefore, obtained results can verify an outstanding
classification capability but may not be sufficient to prove the practi-
cality of Cov-Net in real-world application scenarios, and some related
important caveats can refer to (Maguolo & Nanni, 2021; Tabik et al.,
2020; Tartaglione et al., 2020).

Therefore, it is of vital importance to inspect and enhance the
clinical validity of proposed Cov-Net in future work, where validation
on some private databases of hospital may be helpful. Furthermore,
it is better to attach hierarchical scores on applied data according
to severity of COVID-19, and the database is also supposed to be
representative enough to cover a variety of patient information such
as gender and age, etc. In this way, one can further examine and
accordingly refine Cov-Net so as to make it a competent, reliable and
practical computer-aided diagnosis method.

5. Conclusion

In this paper, a novel computer aided diagnosis method Cov-Net
is proposed for accurate recognition of COVID-19 from chest X-ray
images, which can serve as a complementary diagnosis method to
current advanced techniques such as RT-PCR so that higher diagnos-
tic certainty can be achieved. In particular, proposed Cov-Net has
taken full advantages of machine vision methods, which implements a
modified residual network with asymmetric convolution and attention
mechanism for feature extraction, and employs skip-connected dilated
convolution with various dilation rates for feature fusion.

Experiments on two public COVID-19 radiography datasets have
demonstrated the practicality and reliability of proposed Cov-Net in
accurate COVID-19 recognition, which achieves overall accuracy of
0.9966 and 0.9649 on the three-category and four-category classifi-
cation problems, respectively. Furthermore, Cov-Net has presented an
overwhelming superiority in comparison to other six state-of-the-art
models in machine vision areas, which further verifies that Cov-Net is
competitive in building robust and highly discriminative features from
the perspective of methodology. Therefore, one can infer that proposed
Cov-Net can adapt to other task-specific scenarios via constructing
11

high-level semantic features with strong presentation ability.
In future works, optimizing the architecture and integrating other
data preprocessing process so as to improve performance of Cov-Net are
both promising. More importantly, it is quite essential to apply Cov-Net
into real-world applications, like training it on the private database of a
hospital, so that one can thoroughly inspect and accordingly enhance its
clinical validity. From the aspect of practicality, how to make Cov-Net
a competent CAD framework deserves further in-depth considerations.
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