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Abstract

Variability in expressive and receptive language, difficulty with pragmatic language, and prosodic 

difficulties are all features of autism spectrum disorder (ASD). Quantifying language and voice 

characteristics is an important step for measuring outcomes for autistic people, yet clinical 

measurement is cumbersome and costly. Using natural language processing (NLP) methods 

and a harmonic model of speech, we analyzed language transcripts and audio recordings to 

automatically classify individuals as ASD or non-ASD. One-hundred fifty-eight participants (88 

ASD, 70 non-ASD) ages 7 to 17 were evaluated with the autism diagnostic observation schedule 

(ADOS-2), module 3. The ADOS-2 was transcribed following modified SALT guidelines. Seven 

automated language measures (ALMs) and 10 automated voice measures (AVMs) for each 

participant were generated from the transcripts and audio of one ADOS-2 task. The measures 

were analyzed using support vector machine (SVM; a binary classifier) and receiver operating 

characteristic (ROC). The AVM model resulted in an ROC area under the curve (AUC) of 0.7800, 

the ALM model an AUC of 0.8748, and the combined model a significantly improved AUC of 

0.9205. The ALM model better detected ASD participants who were younger and had lower 

language skills and shorter activity time. ASD participants detected by the AVM model had 

better language profiles than those detected by the language model. In combination, automated 

measurement of language and voice characteristics successfully differentiated children with and 

without autism. This methodology could help design robust outcome measures for future research.
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People with autism often struggle with communication differences which traditional clinical 

measures and language tests cannot fully capture. Using language transcripts and audio recordings 

from 158 children ages 7 to 17, we showed that automated, objective language and voice 

measurements successfully predict the child’s diagnosis. This methodology could help design 

improved outcome measures for research.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by a 

range of impairments in communication and social interaction, as well as restricted and 

repetitive patterns of interests and behavior (American Psychiatric Association, 2013). 

Recent reviews have placed the worldwide prevalence rate between 0.043% and 2.68% 

(Fombonne et al., 2021), with prevalence in the United States estimated to be 2.3% 

(Maenner et al., 2021). While reasons for the increasing prevalence rate are uncertain 

(Fombonne, 2018), this growing detection and awareness of autism requires thoughtful 

and respectful research to help facilitate communication between people with and without 

autism.

Communication differences are a core feature of autism with a highly variable presentation 

across individuals (Gernsbacher et al., 2016; Meir & Novogrodsky, 2020). Autistic children 

have variable expressive and receptive language skills and near-universal difficulties with 

pragmatic language (Andrés-Roqueta & Katsos, 2017; Tager-Flusberg & Caronna, 2007). 

Expressive and receptive language abilities are associated with cognitive level and several 

domains of executive functioning in autistic children (Akbar et al., 2013; Kjellmer et 

al., 2012). Ellis Weismer et al. (2018) showed that clinical evaluation of language 

fundamentals-4 (CELF-4; Semel et al., 2004) scores predicted the outcomes of nonverbal 

executive functioning tasks in autistic children. As well, Levinson et al. (2020) found 

that semantic, syntactic, and pragmatic language could predict parent- and teacher-reported 

social skills in autistic children. Autistic individuals also demonstrate a large variability in 

production of paralinguistic features, such as prosody (Globerson et al., 2015; Grossman et 

al., 2010); these differences are often only revealed using acoustic analysis (Loveall et al., 

2021).

Current methods for quantifying language and voice characteristics are costly, difficult to 

administer, and of limited accuracy. Furthermore, the heterogeneity of language use among 

autistic people warrants development of accessible outcome measures that are easy to obtain, 

can accommodate a wide range of abilities, and are sensitive to change (Barokova & Tager-

Flusberg, 2020). Conventional standardized tests like the CELF-4 and the peabody picture 

vocabulary test (PPVT; Dunn & Dunn, 2007) evaluate structural aspects of language and 

are useful as one source of information within a larger developmental framework (Tager-

Flusberg et al., 2009); however, such clinical assessments must be augmented by outcome 
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measures derived from natural language samples and parent and individual reports. One 

such parent-reported measure is the commonly-used children’s communication checklist-2 

(CCC–2) (Bishop, 2003), yet there are limitations to the validity of such measures as 

illustrated in treatment studies that have shown caregiver reports to be susceptible to the 

placebo effect (Guastella et al., 2015). There are limited options for clinicians and caregivers 

to evaluate quantifiable vocal differences, as reflected by both the autism diagnostic 

observation schedule (ADOS) and social responsiveness scale (SRS) which include only 

one item each on voice quality (Asgari et al., 2021), despite the fact that prosodic differences 

are often cited as a specific characteristic of autism (Fusaroli et al., 2017; Paul et al., 2005). 

Some clinical measures are available to assess prosodic skills in children with ASD (Peppé 

et al., 2007; Shriberg et al., 2010); however, researchers have called for automated voice 

measures as a means of quicker, more accurate methodologies for classifying prosody in 

natural language (Bone et al., 2014).

Measurement of voice and language features has progressed with natural language 

processing (NLP) and voice analysis quantitative methodologies. Using a range of 

approaches, studies have examined linguistic features and voice characteristics both alone 

and in conjunction in order to predict diagnosis or screen for early signs of disease. For 

example, Alhanai et al. (2017) found that combining audio and text features increased 

detection of cognitive impairment in a large, longitudinal population study over both 

baseline demographic performance and over feature grouping. When applied to autism, 

NLP methods have also been used efficiently to characterize language profiles (Chojnicka & 

Wawer, 2020; Salem et al., 2021). Likewise, voice analyses have been performed showing 

discriminant prosodic patterns in autistic versus non-autistic participant groups (Asgari et 

al., 2021; Kiss et al., 2012; Li et al., 2019). The methodology of these initial investigations 

has been variable with respect to both the number and variety of features extracted from 

voice and language samples, and to the sampling contexts from which voice and language 

data were acquired. Some studies used small corpora and included a wide variety of both 

voice and language features to discriminate between autistic or typically developing children 

(Cho et al., 2019; Tanaka et al., 2014). In contrast, Parish-Morris et al. (2016) selected 

several specific features to analyze in a pilot study. They encouraged other researchers to 

add layers of analysis to a single, large, shared corpus of language transcripts, in order to 

facilitate a shared understanding of overarching patterns.

In previous work, we have used NLP methodologies and established their ability to 

differentiate between diagnostic groups (Adams et al., 2021; MacFarlane et al., 2017; Salem 

et al., 2021; van Santen et al., 2013). Salem et al. (2021) examined seven automated 

language measures (ALMs) and found them able to accurately classify already-diagnosed 

children into ASD and non-ASD groups even after controlling for age and IQ. Separately, 

we have also analyzed acoustic features of speech to evaluate their discriminant ability 

across diagnoses: Asgari, Chen, and Fombonne et al. (2021) found that a harmonic model 

of speech could accurately differentiate between children with ASD and those who were 

typically developing (TD); again, results held true after further adjustment on IQ.

In the present study, we aimed to confirm the performance of the automated voice and 

language measurements as previously established by Asgari et al. (2021) and Salem et 
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al. (2021), and further, to evaluate any potential gains derived from their combination. 

Specifically, our approach is to estimate the accuracy of a combined voice and language 

model in correctly classifying ASD status in a mixed sample of already-diagnosed children 

and a non-autistic comparison group, approaching this work with a streamlined, purposeful 

inclusion of established voice and language measures. This work (past and current) is 

not currently intended to be employed for diagnostic or screening purposes. Rather, our 

methodology uses already-established diagnosis as an external criterion against which we 

can validate (in the sense of discriminant validity) these voice and language measures. 

More than simply combining two types of measures, this approach offers an integrated, 

automated way of evaluating communication in general by accessing both voice and 

language characteristics.

Our study had three specific aims. First, we wanted to replicate the findings of the voice 

model described by Asgari et al. (2021) and of the language model described by Salem et al. 

(2021), and compare their relative discriminant validity using the same methodology within 

the same sample. Second, we wanted to measure where gains in accuracy could be obtained 

by combining all features from both the voice and language models when compared to that 

of single modality models. Third, we planned to conduct exploratory analyses of the clinical 

characteristics of participants who were or were not correctly classified by the automated 

models.

METHODS

Participants

Participants aged 7 to 17 years with either ASD, attention deficit hyperactivity disorder 

(ADHD), or TD were recruited for an fMRI study by community outreach and referrals from 

Oregon Health & Science University’s specialty clinics. Parents completed a developmental 

and medical history survey at the first visit. Potential participants were screened for 

exclusion criteria: seizure disorder, cerebral palsy, pediatric stroke, history of chemotherapy, 

sensorimotor handicaps, closed head injury, thyroid disorder, schizophrenia, bipolar 

disorder, current major depressive episode, fetal alcohol syndrome, Tourette’s disorder, 

severe vision impairments, Rett syndrome, current use of psychoactive medications, non-

English speaker, or an IQ below 70. All children in the ASD and ADHD groups 

were directly assessed by experienced child psychiatrists and clinical psychologists who 

confirmed their diagnosis based on DSM-IV-TR criteria (American Psychiatric Association, 

2000). The research diagnostic team reviewed results of the standardized diagnostic 

assessments (both videos and scored protocols) and used best estimate procedures to confirm 

the diagnosis. ASD was ruled out in the TD and ADHD groups based on the ADOS, clinical 

interview, and parent-completed autism questionnaires.

Of 289 screened participants, 104 were ultimately excluded from this study for not meeting 

strict diagnostic criteria and another 10 for failing to complete the initial assessment 

procedures, leaving a sample of 175 subjects (102 ASD, 45 ADHD, 28 TD) included in 

the main neuroimaging study. Of these, we excluded a further six subjects with ASD due 

to an untranscribable ADOS session, either for poor sound quality or non-compliance. 

Finally, for analysis, we excluded 11 more participants (eight ASD, three non-ASD): six 
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participants with undefined um proportion (for whom um and uh did not occur in the 

Friends, Relationships, and Marriage Conversation; see below), four participants who did 

not have IQ results, and one participant who had an acoustically-corrupted file. Sample 

characteristics for the final 158 participants (88 ASD, 70 non-ASD) are given in Table 1. 

More details about the study sample have been described previously by Salem et al. (2021), 

where it was initially used. A subset of this sample was also used in Asgari et al. (2021).

In this study, we will refer only to ASD and non-ASD groups. The ADHD and TD groups 

of the original study were combined into a non-ASD group for our analyses for two reasons: 

1) preliminary analyses indicated that the TD and ADHD groups were not significantly 

different from each other for any of the ALMs; 2) our focus was on detecting autism-specific 

features and including a non-autistic clinical group alongside TD participants provided an 

opportunity to more adequately test for the specificity of the results with respect to the 

presence or absence of autism.

Instruments

The autism diagnostic observation schedule (ADOS) (Lord et al., 2000) is a semi-structured, 

standardized assessment in which a trained examiner engages participants in activities 

that are designed to elicit social and communication behaviors indicative of symptoms 

of ASD as defined in the DSM-IV-TR (American Psychiatric Association, 2000) and 

DSM 5 (American Psychiatric Association, 2013). All participants were administered the 

ADOS-2 Module 3. All ADOS interviews were administered by research assistants or a 

senior clinical psychologist trained to research reliability level. All administrations were 

videotaped and later transcribed. The microphone was suspended in a cage and placed on a 

table approximately 3 feet from where the child sat. This allowed the recording to accurately 

capture the child’s language, even if, as is common in ADOS Module 3 administrations, 

the child sometimes moved around the room before being reminded to sit down. The social 

affect (SA) score (10 items; range 0–20) and the restricted and repetitive behavior (RRB) 

score (4 items; range 0–8) were used in these analyses (Gotham et al., 2009). Higher scores 

indicate more severe ASD symptoms.

Intellectual level of participants was estimated with a short form of the Wechsler Intelligence 

Scale for Children 4th Edition (WISC) (Wechsler, 2003). Three subtests were administered: 

Information, Block Design, and Vocabulary, allowing a full scale IQ to be estimated from 

the sum of scaled scores of the three subtests according to the formula set out by Sattler and 

Dumont (2004). Separate verbal and non-verbal IQ estimates cannot be derived from this 

short form.

Language characteristics and linguistic pragmatic abilities were assessed using the parent-

completed children’s communication checklist, second edition (CCC-2) (Bishop, 2003). 

The CCC-2 is a widely-used, 70-item standardized checklist of pragmatic and social 

communication behaviors applicable to children ages 4:0 to 16:11. Caregivers are asked to 

make a frequency judgment about how often behaviors occur on 4-point scale. The CCC-2 is 

divided into 10 subscales measuring: (A) speech, (B) syntax, (C) semantics, (D) coherence, 

(E) inappropriate initiation, (F) stereotyped language, (G) the use of context, (H) non-verbal 

communication, (I) social relationships, and (J) interests. The first four subscales (A–D) 
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evaluate articulation and phonology, language structure, vocabulary, and discourse; four 

other subscales (E–H) evaluate pragmatic aspects of communication as well as stereotyped 

language with atypical or unusual expressions and use of nonverbal communication like 

facial expressions, bodily movements, and gestures. The last two subscales (I and J) measure 

behaviors characteristic of children with ASD. Each subscale raw score is converted to 

age-standardized scores (mean = 10; SD = 3). A Structural Language scale score is derived 

by averaging scores A to D, and a pragmatic language scale score is obtained by averaging 

scores E to H. Lower scores are indicative of more problems.

Data

The steps to prepare and analyze the data are illustrated in Figure 1.

Transcription

All ADOS administrations were audio and video recorded. The audio was transcribed 

according to modified SALT guidelines (systematic analysis of language transcripts) (Miller 

& Iglesias, 2012) by a team of trained research assistants who were blind to the participants’ 

diagnostic status and intellectual abilities. Speech was split into communication units (c-

units) consisting of a main clause and any subordinate, modifying clauses, or of speech 

fragments that constitute a whole utterance such as responses to questions. Special attention 

was paid to notation of disfluencies (mazes) and any unintelligible speech was marked. Any 

disagreements between transcribers were resolved through discussion with a clinician and 

a consensus judgment. Transcribers participated in biannual consistency checks to review 

protocol and ensure continued standardization. Lab transcription guidelines are available 

upon request from the first author.

In their study examining voice measures, Asgari et al. (2021) found the Friends, 

Relationships, and Marriage Conversation task (hereafter “Friends task”) of the ADOS 

to most strongly discriminate between ASD and TD groups. Likewise, Salem et al. 

(2021) also found the Friends task to provide a reliable source for language analysis. 

This conversational activity is administered in the second half of the ADOS, after the 

“warm up” period of the testing situation, and consistently yields the most c-units of all 

ADOS tasks. This activity has a high standardization of conversational questions, leading 

to good comparability between participants. The examiner uses pre-established, open-ended 

interview questions which are designed to facilitate the flow of conversation. Accordingly, 

we analyzed recordings of the Friends task of the ADOS for this study.

Audio pre-processing

The pipeline of harmonic feature extraction comprised three modules: audio segmentation, 

recording denoising, and harmonic feature extraction. First, the audio segmentation module 

split the recording into multiple frames (chunks of sound) based on timestamps. Only frames 

that belonged to the child and occurred during the Friends task were retained. Then, the 

denoising module removed background noise from the selected frames. Recordings from 

both groups contain similar, ubiquitous noise not caused by participants. If denoising is not 

performed, the acoustic features mainly represent the noise instead of participants and the 

classifier cannot distinguish between groups. Denoising was performed with a pre-trained, 
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fully automated, deep neural network-based denoiser (Defossez et al., 2020); thus, no 

parameters were identified or set for this step. Then, we extracted 10 harmonic features 

(described below) from each denoised frame. Finally, for each participant, for each harmonic 

measure, we averaged the extracted feature over all frames in the Friends task.

Automated language measures (ALMs)

We generated seven expressive language measures as described in Salem et al. (2021): 

Mean Length of Utterance in Morphemes (MLUM; calculated on all complete, fluent, and 

intelligible c-units), Number of Distinct Word Roots (NDWR; calculated on all complete, 

fluent, and intelligible c-units), um proportion (total number of um divided by the total 

number of um + uh), content maze proportion (number of content mazes [non-filler 

disfluencies] divided by the number of content mazes + the number of fillers), unintelligible 

proportion (number of partially or fully unintelligible c-units divided by the total number of 

c-units), c-units per minute (CPM; number of attempted c-units per minute), and repetition 

proportion (number of child words that are repeated in a set of two or more from the 

examiner’s immediately preceding turn, divided by the total number of child words).

Automated voice measures (AVMs)

We analyzed 10 voice measures as described in Asgari et al. (2021): Cepstrum, delta 

cepstrum, delta delta cepstrum, log spectral entropy, F0, jitter, shimmer, harmonic-to-noise 

ratio (HNR), H1H2, root mean square (RMS). Cepstrum is the shape of the spectral 

envelope that is extracted from cepstral coefficients. Thirteen cepstral coefficients of each 

frame were augmented with their first- and second-order time derivatives. The derivatives 

are named as delta cepstrum and delta delta cepstrum. Spectral entropy is a proxy for cues 

related to voicing and quality. It can be used to characterize speechiness of the signal and 

has been widely employed to discriminate speech from noise. As such, we computed the 

entropy of the log power spectrum for each frame, where the log domain was chosen to 

mirror perception. F0 is the frequency of the vocal cords’ vibration when voiced sounds 

are produced. It is also known as the fundamental frequency or “pitch.” Jitter is the small 

cycle-to-cycle fluctuations in the glottal pitch period. Shimmer is the small cycle-to-cycle 

fluctuations in amplitude. Standard methods for calculating jitter and shimmer are sensitive 

to the pitch estimation. We therefore adopted a model-based approach for jitter and shimmer 

estimation, which produces measures of short-term pitch and amplitude variation for an 

estimation of jitter and shimmer, respectively (Asgari & Shafran, 2010). HNR is a quantity 

to measure the amount of noise in voice to assess the degree of hoarseness. H1H2 is an 

indicator of breathiness. RMS is the root means square energy of each frame and captures 

loudness.

Descriptive statistics for these seven ALMs and 10 AVMs are provided for each participant 

group, as well as between-group statistical comparisons, in the supplemental information 

(Table S1).

Statistical analyses

To evaluate how well the AVMs and ALMs each captured characteristics of ASD, we tested 

their ability to classify ASD status. We used a linear binary classifier called a support 
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vector machine (SVM). As noted by Ben-Hur and Weston (2010), SVMs are commonly 

used in machine learning and the sciences in general due to their high accuracy, ability 

to handle large sets of features, and flexibility to diverse types of data. They have been 

used successfully in previous research on speech and ASD, such as Pokorny et al.’s (2017) 

study on early identification of ASD using vocalizations and Asgari et al.’s (2021) study 

on acoustic features in ASD. SVMs find the optimal hyperplane to separate data into 

two classes, based on determining “support vectors,” or critical data points that define the 

separating hyperplane. For the SVM training, we used a linear kernel and picked the best 

soft-margin constant C (an SVM hyperparameter) in each model: C = 10 for AVM, C = 1 

for ALM and C = 100 for combined. We chose to report this SVM configuration due to 

its high performance, but comparisons of these results with non-linear SVMs and formal 

hyperparameter tuning can be found in Table S2. As is common practice for SVMs, we also 

normalized all our ALM and AVM features to be between 0 and 1 before they were passed 

to the SVM. First, we trained two separate SVMs to predict ASD status: one that used 

only the ALMs and a second that used only the AVMs. Then, to estimate the advantages 

of examining both voice and language features of children with ASD, we trained a third 

combined SVM to predict ASD status using the ALM and AVM measures together.

In order to limit over-fitting to the idiosyncratic characteristics of our participants, we 

performed leave-one-subject-out cross validation when evaluating SVM performance. This 

method involves repeated training of an SVM on all data except one participant, and 

then testing on the left out participant. When repeated for each subject, we can then use 

the combined predictions from each leave-out to estimate accuracy and other classifier 

evaluations. This form of cross validation is recommended by Saeb et al. (2017), due to 

its approximation of the clinically relevant use-case of diagnosis in unseen participants. 

We tested the robustness of this approach by comparing its results to those of a 10-fold 

cross-validation.

We calculated accuracy, sensitivity, and specificity of our SVM classification predictions. 

We also calculated receiver operating characteristic (ROC) curves for each model based 

upon the prediction probabilities from the three SVM models, and their corresponding area 

under the curve (AUC) values and 95% confidence intervals. To test whether the combined 

SVM model was significantly better performing than the individual AVM or ALM models, 

we employed the DeLong test for comparison of AUC from correlated ROC curves (DeLong 

et al., 1988). We further examined whether performance varied by sex and trained the 

combined model separately for boys and girls. Finally, in order to evaluate the respective 

contributions of each single feature comprised in the combined model, we used multiple 

support vector machine recursive feature elimination (mSVM-RFE; Duan et al., 2005).

To evaluate which participant characteristics the AVM and ALM features were picking up 

on, we used four clinical scores: two language scores (structural and pragmatic CCC-2 

scales) and two measures of autism symptom severity (ADOS-2 SA and RRB scores). 

We also computed objective measures of language output as observed during the ADOS-2 

administration of the Friends task. These Friends task indices were: total number of c-units, 

total number of words, and activity time (length in minutes); higher scores represent more 

language output. We then computed means for age, IQ, the four clinical scores, and 
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the three task indices of participants with ASD who were detected (correctly classified 

as ASD) or missed (incorrectly classified as non-ASD) for each of the three models. 

Statistical comparisons of mean scores were performed with the nonparametric Mann–

Whitney/Wilcoxon rank sum test (Neuhäuser, 2011) for each model. Similar analyses were 

performed comparing detected and missed participants without ASD; these results are 

described in Table S3.

A p-value of <0.05 was retained as a level of statistical significance. All analyses were 

performed using R statistical computing software (RCoreTeam, 2017).

RESULTS

Discriminant validity of ALMs and AVMs

To address our first aim, we trained two separate SVMs to classify ASD status: one that 

used the AVMs and one that used the ALMs. The results for the language-only and voice-

only models are summarized in Table 2. The voice SVM obtained an accuracy of 0.7215, 

with sensitivity 0.7500 and specificity 0.6857. This model thus performed satisfactorily at 

identifying ASD participants, but less so at identifying non-ASD participants. The ALM 

model obtained an accuracy of 0.7975, with sensitivity 0.7727 and specificity 0.8286. This 

model performed similarly well at correctly identifying participants with ASD and much 

better at correctly identifying non-ASD participants than the voice model. When evaluated 

with ROC analysis, the discriminant performance of the language model was significantly 

better than that of the voice model, as measured by the AUCs (see Table 2; DeLong p = 

0.036).

Combining ALMs and AVMs

To address our second aim, we trained an SVM on both the AVMs and the ALMs to see 

how well the combination of these two types of features predicted diagnostic status. The 

classification results of the combined SVM are summarized in Table 2. This combined 

model obtained an accuracy of 0.8671, with sensitivity 0.8977 and specificity 0.8286, 

demonstrating substantial improvement over both the AVM SVM alone and the ALM SVM 

alone.

We calculated ROC curves for the voice model, the language model, and the combined 

model from the prediction probabilities. The three curves are plotted in Figure 2. AUC 

values and confidence intervals from these ROC curves are shown in Table 2. Again the 

combined model performed best, with an AUC of 0.9205 that was significantly higher than 

that of 0.7800 for the AVM model and that of 0.8748 for the ALM model (DeLong tests: 

p < 0.001 and p = 0.033, respectively). Using an alternative cross-validation method, the 

ROC AUC value for the 10-fold combined model was 0.9235 (95% CI 0.8801–0.967), in 

comparison to 0.9205 (95% CI 0.8768–0.9641) for the leave-one-out cross-validation, a 

non-significant difference (p = 0.9219).

We ran an SVM on only the boys in our sample (n = 113), and then only the girls (n 
= 45). The ROC AUC for the boys was 0.8901 (95% CI 0.8261–0.9541), which was 

not significantly different from the ROC AUC for the SVM with our full sample (p = 
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0.4428). The ROC AUC for the girls was 0.8067 (95% CI 0.6493–0.964), which was 

also not significantly different from the ROC AUC for the full sample (p = 0.178). Thus, 

performance of the combined model was not significantly affected by child sex.

For the combined model, we initially included all features—including those that did not 

significantly differentiate groups since they may still have value in a larger model. To 

find the optimal subset of features, we used mSVM-RFE on the combined model to rank 

the features across 10-fold cross validation and then find the combination with the lowest 

generalization error. We chose to use 10-fold cross validation for this step because the 

software could not be applied to leave-one-out cross validation. The optimal model used 

the following 8 features: content maze proportion, c-units per minute, RMS, F0, MLUM, 

Shimmer, um proportion, and Log Spectral Entropy. However, when comparing ROC AUC 

of the optimal set of features using 10-fold (0.9344, 95% CI 0.8931–0.9757) and the original 

10-fold combined model (0.9235, 95% CI 0.8801–0.9670), they were not significantly 

different according to DeLong’s test (p = 0.1592).

Clinical features associated with model classification performance

Age, IQ, clinical scores, and Friends task indices of participants with ASD who were 

detected or missed by each set of features (ALMs and AVMs) alone, and by the combined 

model, are summarized in Table 3.

For the AVM model, there were no statistical differences between ASD participants 

correctly or incorrectly classified. In the ALM model, compared to the missed participants, 

those who were detected had significantly lower language skills as measured by both the 

structural and pragmatic CCC-2 scores, and less language output during the Friends task 

as measured by the three task indices; they were also younger, on average, by one year. 

A comparison of scores of the participants correctly classified by the ALM and by the 

AVM models shows that those identified by the AVM model had consistently higher mean 

scores than their counterparts on the two CCC-2 scores and the three indices measuring the 

Friends task language output. Therefore, the voice-only model appeared to capture more 

verbally fluent participants than the language-only model. As a result, when voice was added 

to language in the combined model, correctly classified participants had higher average 

language scores and more language output compared to those correctly identified by the 

language features only.

Lastly, there remained nine subjects (10.2%) who were missed by the combined model. 

Because of this small number, statistical power was reduced for further between-group 

comparisons between detected and missed participants. Nevertheless, it is notable that of all 

subgroup means evaluated in Table 3, this subset of nine subjects had the highest means 

for IQ (105.1), number of c-units (108.9) and number of words (627.2). Both number of 

words and number of c-units showed significant differences between detected and missed 

participants. Taken together, these findings confirm a general trend for participants with 

milder phenotypes and more typical language to be those more easily missed.

While language indices were significantly associated with performance of several models, 

ADOS scores and IQ were never significantly associated with classification in any 
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model. This suggests that our methodology captures specific communication characteristics 

associated with autism that are unconfounded by cognitive level and autism severity.

Clinical and task indices associated with misclassification among participants without ASD 

showed that non-ASD subjects misclassified with the ALM model tended to be younger and 

have lower language skills and output, with few differences otherwise (Table S3).

DISCUSSION

In this study, we first replicated results from Salem et al. (2021) and Asgari et al. (2021) 

showing that a defined set of language- and acoustic-based measures generated from 

transcripts and audio recordings from an ADOS-2 task classified individuals with and 

without ASD better than chance alone. Compared to the voice model, the language model 

had better accuracy due to much improved specificity. Combining both sets of features 

in the predictive model resulted in significantly improved performance when compared to 

either single-modality model, shown by a higher level of sensitivity and improved AUC. 

In follow-up exploratory analyses, we examined the characteristics of the ASD participants 

who were missed or detected by each model, and found that the language model detected 

ASD individuals with more marked language and pragmatic difficulties, while the voice 

model detected ASD participants with higher language ability.

While both the voice and language models were better than chance at correctly classifying 

ASD and non-ASD children (as shown in Figure 2), the model using automated language 

measures performed better on its own than the voice model. However, these two models 

were picking up on children with different language patterns, as shown in Table 3. 

Compared to those detected by the language model, participants detected by the voice model 

had consistently higher levels of language skills as measured by both a parental report of 

their language over the last 6 months (the CCC-2) and by objective indices of language 

output during the ADOS-2 task administration. During the Friends task, they produced 

more words and c-units and stayed on the task for a longer period of time. Furthermore, 

in the voice model, the CCC-2 scores and the Friends task indices did not differentiate 

correctly or incorrectly classified participants, indicating that the voice model assesses 

paralinguistic features (e.g., prosody, loudness) that are truly independent of language level 

and output. This has important implications for evaluating the quality of communication 

skills in individuals with autism. In particular, it emphasizes the need to include voice 

analysis to detect communication differences among subjects with ASD who have achieved 

high language skills in their development. It also concurs with the clinical observation 

that voice atypicalities often persist among older individuals who have achieved the most 

“typical” outcomes and show otherwise few language anomalies.

The voice model’s low specificity (0.69) indicated that, with a prediction based on voice 

features only, too high a proportion of false positives would occur. Further work should 

investigate which, if any, of the several voice features included in our AVM model 

accounted for misclassifying individuals without ASD. For instance, it could be that 

loudness is a general non-specific feature of young children interviewed on sensitive topics 

(as those covered by the Friends task) in an unfamiliar setting; if so, removal of these non-
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contributory features might improve the classification performance of voice-only models 

in the future. Likewise, the language model incorporated seven features that were shown 

in our previous work to have discriminant validity (Salem et al., 2021). However, they 

may have not equally contributed to the prediction of ASD since some measures were 

more discriminant than others (see Table S1). Indeed, results from our Recursive Feature 

Elimination analysis indicated that some features could possibly be excluded with small 

but insignificant gains in accuracy. Further investigations in more varied samples should be 

performed in the future to fully evaluate the predictive power of each single feature. We are 

in the process of generating and testing other features that could be added in future studies to 

potentially improve the accuracy of the language models.

The addition of voice to language features in the models led to a substantial gain of 

sensitivity, confirming that ASD individuals who were not initially detected by the language 

model were detected by the additional voice features. Notably, the specificity of the 

combined model was maintained at the same level as that of the language model, i.e. 

the addition of voice features did not increase misclassification among non-ASD children, 

despite that modality’s tendency towards false positives. Overall, the combined model 

had excellent performance with only 10.2% of individuals with ASD being misclassified. 

Despite the reduced statistical power of comparisons involving this small subset, we still 

noted that while missed participants performed better on objective Friends task indices 

of language output, their parent-reported language ability (as described by the CCC-2) 

was not different from their correctly classified peers. There are several possible reasons 

for this discrepancy. First, the parents’ CCC-2 scores could have been negatively biased 

in this subset due to their child’s ASD diagnosis. Alternatively, it could be that despite 

their persisting language difficulties, these intellectually-able participants have developed 

compensation strategies that allowed them to display proficient language in the ADOS-2 

testing situation. As well, as previously reported by Bone et al. (2012, 2014), examiners 

may have interacted with those participants in a way that facilitated and maximized their 

language output. Future research could elucidate this by including direct language testing 

and qualitative reviews of ADOS-2 administration.

The correctly classified ASD participants in the combined model had shorter transcripts, as 

defined by length of activity, number of words, and number of c-units. Despite the reduced 

language output, these participants still had sufficient language differences to be detected by 

our combined model. Therefore, it is unlikely that the missed participants were not detected 

due to a lack of language available for analysis or that extending the length of transcripts 

would reduce misclassification. On the other hand, one could argue that the high language 

output of the missed ASD participants in the combined model is a source of measurement 

error and that voice and language measures do not work well on longer language/voice 

samples. However, almost all of the voice and language measures were normalized by length 

of the sample through either being an average over frames or c-units, or a proportion that 

can be calculated on any length sample. The exception was NDWR, which could have a 

relationship with length of a sample; however, as shown in the supplemental information, 

NDWR was not an especially discriminant measure. Thus, it is highly unlikely that the 

measures did not perform well for high language output, and more likely that high IQ and 

older children had fewer communication difficulties, making them harder to detect.
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Our findings are in line with existing literature (Cho et al., 2019; Parish-Morris et al., 2016; 

Tanaka et al., 2014) in showing that objectively measured voice and language features can 

correctly discriminate ASD and TD children. Our results outperformed those from previous 

studies. Tanaka et al. (2014) examined language features and speech (voice quality, pitch, 

intensity, rate) to predict ASD diagnosis and reported an accuracy of 68.8% in combining all 

features, with no evidence of differential performance by type of features (language: 70.3%; 

speech: 67.6%). However, the sample size was extremely small (4 ASD, 2 TD) making 

the findings unreliable. Our combined predictive model performed better than a combined 

language and speech model by Cho et al. (2019) in terms of both accuracy (0.867 vs. 0.757, 

respectively) and AUC in ROC analyses (0.920 vs. 0.754, respectively). Unfortunately, Cho 

et al. did not report individual voice or language model results. It ought to be noted that the 

sampling contexts used to generate language and voice data in those studies were different 

than ours. Tanaka et al. (2014) used recordings of parent–child semi-structured interactions; 

Cho et al. (2019) used unstructured conversations between children with ASD and young 

adult confederates. Examination of contextual effects should be vigorously pursued in future 

studies.

Studies have also varied in their exploration of factors associated with correct or incorrect 

overall classification. Cho et al. (2019) reported that adding IQ in their predictive model 

worsened its performance. In our study, a remarkable result was that autism severity and 

intellectual level were never significantly associated with misclassification in any of the 

three models we tested. If replicated, this result could confirm that our voice and language 

measurement methodology specifically taps aspects of communication skills that are not 

confounded by autism severity or developmental delay. If so, automated language and voice 

analyses could be deployed in samples with wide age, cognitive, and symptom distributions, 

at least when defined by the same range of clinical characteristics as those of our sample.

There are several strengths of our study. First, we evaluated voice and language features 

alone and in combination. This approach to communication analysis is more ecological 

and makes use of a full spoken sample as opposed to only one aspect (language 

features discarding the voice component, or vice versa). Second, compared to previous 

investigations, our sample size was large, encompassing an age range including school age 

and teenage years. Third, unlike traditional clinical research testing, the voice and language 

features in our methodology were generated blind to diagnostic status. Our methods are 

objective, quantitative, and user-friendly; insofar as transcripts and audio recordings are 

available, they can also be repeated many times without being vulnerable to learning/

memory effects or attenuation.

We acknowledge several limitations as well. Our sample comprised children between the 

ages of 7 and 17; future language and voice studies should recruit adults and younger 

children. All participants had normal IQ range and all were fluent English speakers who 

could be assessed with the ADOS-2 Module 3. It is important for future studies to 

include individuals with lower IQ and less verbal participants. Participants were not tightly 

matched between groups which could result in reduced fit for analysis, although, as already 

noted, age, sex, and IQ were weakly related to model performance. The language and 

voice analyses were based on a limited set of robust, previously validated characteristics; 
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future analyses should expand on feature extraction through systematic testing of each 

component feature in order to improve the accuracy and sensitivity of each model. We do 

not know the full impact of denoising on voice features and results. Future studies should 

tightly control for microphone quality and placement, which may reduce the need for the 

denoising step. Our language and voice samples were derived from ADOS-2 administrations 

in a clinical research setting; therefore we cannot currently generalize these findings to 

different contexts. ADOS administration focuses on eliciting autistic features, thus it is 

possible that our results are overestimated compared to what would be obtained with 

more naturalistic conversational samples. It will be important to include other sampling 

contexts in future studies, aiming at minimizing interference by strangers and capturing 

naturally occurring conversations in the ecological niche of the participants. Although we 

are currently undertaking those studies, we do not yet know the reliability (test–retest) and 

short-term stability of the measures we generated from transcripts and audio recordings. 

Another limitation lies in the reliance of our language analysis methodology on manual 

transcription of recorded language samples, a costly and labor-intensive step. Moreover, 

though the transcribers went through extensive training and regular consistency reviews, we 

do not have transcription reliability results. However, we expect progresses in automatic 

speech recognition (ASR) methodology will bypass this inconvenient step and quickly 

increase the pace of research in this area. Future studies based on ASR transcription will 

need to re-evaluate performance of the models relying on ALMs.

Our findings provide preliminary but very encouraging results on the value of automated 

analysis of language and voice samples from children with ASD. In the future, our goal 

is to refine this methodology and translate it into the design of novel evaluation tools. 

These objective, automated, quantified, and user-friendly tools could be incorporated in 

randomized clinical trials or longitudinal studies to evaluate changes in communication 

skills as a function of intervention or maturation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Flowchart of study steps. ADOS, autism diagnostic observation schedule; ALM, automated 

language measure; AUC, area under the curve; AVM, automated voice measure; ROC, 

receiver operating characteristic; SVM, support vector machine

MacFarlane et al. Page 18

Autism Res. Author manuscript; available in PMC 2022 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
ROC curves for SVM models, evaluated on class probabilities. ALM, automated language 

measure; AUC, area under the curve; AVM, automated voice measure
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TABLE 1

Sample characteristics

ASD Non-ASD

n = 88 n = 70

Sex, # male 73 40

Age in years (SD) 11.4 (2.1) 11.5 (1.7)

IQ (SD) 99.5 (19.9) 112.1 (12.9)

Ethnicity

Hispanic, # 13 8

Non-Hispanic, # 74 62

Undeclared, # 1 0

Race

American Indian/Alaska Native 3 0

Asian 0 2

Black 0 1

Native Hawaiian/Pacific Islander 1 0

White 70 59

More than one 11 7

Undeclared 3 1

ADOS-2 scores 
a 

RRB (SD) 3.48 (1.60) 0.46 (0.64)

SA (SD) 9.31 (3.53) 1.13 (1.58)

CCC-2 scores

Structural score (SD) 6.53 (2.44) 10.21 (1.97)

Pragmatic score (SD) 4.92 (1.86) 10.24 (2.17)

Note: The Mann-Whitney/Wilcoxon rank sum test p-values for IQ, ADOS and CCC-2 scores were <0.001; the p-value for age was 0.6044. The 
Fisher’s Exact Test for Count Data p-value for sex was 0.0006496 (Sprent, 2011).

Abbreviations: ADOS, autism diagnostic observation schedule; ASD, autism spectrum disorder; CCC, children’s communication checklist; IQ, 
intelligent quotient; RRB, restricted and repetitive behavior; SA, social affect; SD, standard deviation.

a
Three non-ASD participants were missing ADOS-2 scores.
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