TABLE 3.
Performance of machine learning models.
Model | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC-ROC | AUC-Lower | AUC-Upper |
LR | 0.8440 | 0.9878 | 0.4074 | 0.8351 | 0.9167 | 0.8159 | 0.7784 | 0.8635 |
RF | 0.8073 | 0.9634 | 0.3333 | 0.8144 | 0.7500 | 0.7827 | 0.7253 | 0.8202 |
NB | 0.8257 | 0.9634 | 0.4074 | 0.8316 | 0.7857 | 0.8205 | 0.7753 | 0.8756 |
SVM | 0.8165 | 0.9878 | 0.2963 | 0.8100 | 0.8889 | 0.7839 | 0.6981 | 0.8397 |
XGboost | 0.8780 | 0.9883 | 0.5190 | 0.8699 | 0.9318 | 0.8828 | 0.8572 | 0.9284 |