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How expensive is the astrocyte?

LF Barros

Abstract

The energy cost of information processing is thought to be chiefly neuronal, with a minor fraction attributed to glial

cells. However, there is compelling evidence that astrocytes capture synaptic Kþ using their Naþ/Kþ ATPase, and not

solely through Kir4.1 channels as was once thought. When this active buffering is taken into account, the cost

of astrocytes rises by >200%. Gram-per-gram, astrocytes turn out to be as expensive as neurons. This conclusion

is supported by 3D reconstruction of the neuropil showing similar mitochondrial densities in neurons and astrocytes,

by cell-specific transcriptomics and proteomics, and by the rates of the tricarboxylic acid cycle. Possible consequences

for reactive astrogliosis and brain disease are discussed.
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Introduction

The notion that neurons are the major energy sink in
brain tissue appears solid enough. Neurons spend con-
siderable energy on the recovery of cation gradients
challenged by excitatory postsynaptic potentials
(EPSPs) and action potentials, while the neuronal
signaling suppression by deep anesthesia or by phar-
macological inhibition of the Naþ/Kþ ATPase pump
(NKA) reduces brain metabolism by 50–60%.1

Accordingly, a seminal bottom-up analysis based
on the microscopic properties of ion channels, trans-
porters and pumps concluded that 95% of the energy
expenditure of gray matter signaling is neuronal
and 5% is glial.2 When action potentials were later
found to be more efficient than anticipated,3 the
budget was modified, with 70% ascribed to dendrites,
15% to axons, and 7% to astrocytes.4 In line with the
energetic prominence of dendrites, glucose consump-
tion in gray matter is several times higher than that
in white matter.5

There is however evidence that astrocytes use the
NKA to capture the Kþ that is released by neurons
during neurotransmission.6 Here I discuss why
this active process, together with fresh insights on
astrocytic oxidative metabolism, prompts a revision
of the energy budget of gray matter.

Kþ buffering is chiefly mediated by the
astrocytic NKA

The EPSP is the transient dendritic depolarization
caused by Naþ and Ca2þ entry through AMPA and
NMDA receptors. Less widely appreciated is that
these ionotropic glutamate receptors are permeable to
Kþ, and that during neurotransmission the inward
movement of cations is mirrored by the release of
Kþ.2,7 The journey of Naþ in the aftermath of the
EPSP is straightforward. It diffuses along the dendritic
shaft to be pumped out later on by the NKA.8

The EPSP lasts for a few milliseconds, whereas the
extrusion of Naþ by the sluggish NKA takes seconds
to minutes.8 Most of the Ca2þ load is transformed by
the Naþ/Ca2þ exchanger NCX into a Naþ load, which
is then dealt with by the NKA. Hence, the energy
burden of the Naþ and Ca2þ load is carried entirely
by the postsynaptic neuron. The fate of the Kþ

is more convoluted. After leaving the dendrite,
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Kþ enters an intricate space bounded by many different
cells, mostly neurons and astrocytes. Assuming a
square law for the escalation of cell surface and a
typical diffusional distance of 100 micrometers,8,9 it
can be calculated that<0.01% of the surface screened
by the Kþ belongs to the neuron that released it. In
fact, it is well established that most of the Kþ released
by synaptic activity is not cleared by neurons, but by
astrocytes, a phenomenon known as Kþ buffering.6,10

The molecular mechanism responsible for Kþ

buffering is paramount to this article’s main point.
Over the years, three candidates were considered: the
Naþ-Kþ-2Cl� co-transporter NKCC, the Kþ channel
Kir4.1 and the NKA. The NKCC hypothesis, based on
culture experiments, lost impetus when it was realized
that the NKCC is not significantly expressed in adult
gray matter, although the NKCC may play a role in
development, in white matter oligodendrocytes and in
glioma cells.6,11 The second candidate, Kir4.1, mediates
a form of Kþ buffering termed spatial buffering.
According to this hypothesis, Kþ can be captured by
astrocytes via constitutively open Kir4.1 channels and
at the same time an identical amount of Kþ leaves dis-
tant astrocytes, also via Kir4.1. This long-range elec-
trotonic phenomenon requires gap junction coupling
between astrocytes.10 Because permeation across ion
channels does not involve ATP hydrolysis, spatial buff-
ering is costless, which explains the minor role attrib-
uted to astrocytes in various energy budgets.2,4,12

However, spatial buffering and Kir4.1 channels are no
longer regarded as the main mechanisms of Kþ buffer-
ing, a conclusion reached from anatomical and physio-
logical considerations and the outcome of
pharmacological and genetic manipulation of gap junc-
tions and Kir4.1 9,.11,13–18 The participation of Kir4.1 in
Kþ buffering has been analized in depth by Nanna
MacAulay.6 Revised roles for Kir4.1 in astrocytes and
oligodendrocytes are in setting the membrane potential,
limiting the amplitude of the Kþ rise at high frequency
stimulation, and mediating the delayed release of astro-
cytic Kþ, which is then captured by neurons to complete
the cycle. Thus, Kir4.1 remains an integral element of the
Kþ cycle. Spatial buffering is still thought to be domi-
nant in the highly polarized retina.19

The lion’s share of Kþ buffering in brain tissue is
nowadays attributed to the astrocytic NKA.6

The NKA is an oligomeric enzyme consisting of one
catalytic subunit a (four isoforms) and one regulatory
subunit b (three isoforms). The preferential role
of astrocytes over neurons in Kþ buffering is explained
by NKA subtype allocation.16,20–22 At 3mM resting
Kþ, the neuronal NKA (a3b1) is saturated with
Kþ and therefore primed to respond to variations
in intracellular Naþ, for which it has low affinity.
The neuronal NKA behaves as a true Naþ pump,

that is, driven by Naþ, with Kþ playing a permissive
role. Conversely, the major astrocytic NKA (a2b2) is
primed by intracellular Naþ and ready to respond to
extracellular Kþ, for which it has low affinity.
Moreover, a2b2 is dormant at resting membrane
potential and is activated by depolarization, which is
not the case for the neuronal pump.16,22 Because of
parallel sodium and chloride conductances, the mem-
brane potential of neurons is four times less sensitive to
[Kþ]e than the astrocytic membrane potential.23

The compounded effect of NKA sensitivity to Kþ,
NKA sensitivity to membrane potential, and mem-
brane potential sensitivity to Kþ, is that a physiological
rise in Kþ from 3 to 6mM will stimulate the astrocytic
NKA by 107% but the neuronal NKA only by 6%
(Figure 1), an 18-fold difference. Driven by intracellu-
lar Naþ, the NKA of the stimulated dendrite would
be more efficient at buffering Kþ than the non-
stimulated neurons, but this uptake occurs in delayed
fashion and far from the active zone.8

The astrocytic NKA should perhaps be best under-
stood as a Kþ pump, whose permissive co-factor
is intracellular Naþ. The NKA exchanges three
Naþ ions per two Kþ ions and therefore leads to cell
shrinkage. Yet, synaptic activity is accompanied by
astrocytic swelling,24 which is partly explained by par-
allel influx of Naþ and bicarbonate via the NBCe1, and
partly by metabolic stimulation.25,26 The Naþ/gluta-
mate cotransport is deemed a minor contributor, as
only 3 Naþ ions are imported per glutamate, compared
with the 150 Naþ ions per glutamate exported by
the NKA. Additional Naþ influx is provided by
voltage-sensitive Naþ channels, TRP channels and
the Naþ/Ca2þ exchanger.11,27–29

Astrocytes as major energy spenders

How much energy is consumed by astrocytes?
According to the current budget, most Kþ is passively
buffered via Kir4.1, and astrocytes use just 7% of the
signaling budget, for glutamate recycling and mem-
brane potential generation (Figure 2(a)). At the oppo-
site end of the possibility spectrum, if all synaptic Kþ

were cleared by the NKA, astrocytes would spend 37%
of the ATP (Figure 2(b)). With the NKA and Kir4.1
contributing equally, a conservative estimate, astro-
cytes would use 25% of the ATP (Figure 2(c)), plus a
minor contribution from the astrocytic Ca2þ pumps.30

In light of the experimental evidence cited above show-
ing that the NKA surpasses Kir4.1 in the buffering of
Kþ, it seems safe to state that astrocytes account for at
least 25% of the ATP spent in gray matter signaling,
i.e. more than 200% higher than previously thought. In
this hybrid model, the NKA would possibly cater for
low and moderate activity and be supplemented by
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Kir4.1-mediated Kþ buffering during high frequency

stimulation,6 thus limiting maximum energy demand.

Brain tissue must also spend energy for protein and

lipid turnover, membrane trafficking, amino acid and

nucleotide metabolism, pH regulation, cytoskeleton

remodeling, etc, collectively estimated at 20–30%

of the total tissue ATP turnover.2,4,30 Several of these

housekeeping functions have been evolutionary out-

sourced from neurons to astrocytes, including control

of interstitial fluid composition, glycogen storage

and mobilization, supply of energy substrates and

precursors for biosynthesis, and the recycling of

neurotransmitters, oxidized lipids and scavengers, and

other waste products.31–33 The astrocytic share of the

housekeeping cost might be even larger than its share

of the signaling cost, further supporting the case for the

expensive astrocyte.

Mitochondrial function and distribution

also point to expensive astrocytes

Lack of immunological and histochemical detection

of cytochrome oxidase led to the pervasive idea that

astrocytes do not possess significant oxidative

Figure 1. Astrocytes are poised to capture Kþ while neurons are not. (a) The postsynaptic neuron releases Kþ during excitatory
neurotransmission. (b) Compared to astrocytes, the active postsynaptic neuron represents a minor fraction of the cellular surface to
be screened by Kþ. Passive neurons are omitted for simplicity. (c) According to the Goldman-Hodgkin-Katz equation, membrane
potential Vm¼ 59 x log(PK x [Kþ]eþ PNa x [Naþ]eþ PCl x [Cl�]I/PK x [Kþ]Iþ PNa x [Naþ]Iþ PCl x [Cl�]e) where PK, PNa and PCl
(permeabilities) are assumed to be 1.0, 0.04 and 0.45 for neurons and 1.0, 0 and 0 for astrocytes,23 with resting concentrations (mM;
e, extracellular; i. intracellular) of [Kþ]e¼ 3, [Naþ]e¼ 140, [Cl�]I¼ 20mM, [Kþ]I¼ 110mM, [Naþ]I ¼10mM and [Cl�]e¼ 110mM.
Under these conditions, a [Kþ]e rise from 3 to 6mM will depolarize astrocytes by 17mV (�92mV to �75mV) and neurons by 4mV
(- 57mV to �53mV). These depolarizations will double the Kþ affinity of a2b2 without affecting a3b1 .16 With the compounded
effects of higher Kþ and higher affinity, a2b2 occupancy rises from 35 to 73% (a 107% increase), whereas a3b1 occupancy rises only
from 88 to 94% (a 6% increase).
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phosphorylation, OXPHOS,34 a conclusion supported
by the apparent absence of mitochondria in the astro-
cytic processes that surround synapses.35 In those days,
astrocytes were even thought to produce 100% of their
ATP in glycolysis.36 Later work has shown
otherwise. Even in culture, a condition that promotes
glycolysis via the Warburg effect, 75% of the astrocytic
ATP is generated by mitochondria.37 In vivo determi-
nations have shown that 20–33% of the brain
TCA cycle flux is glial.30,38–41 When these figures are
fed into mathematical models, once again, over 75% of
the astrocytic ATP is shown to be mitochondrial.12,42

Noticing that, relative to deep anesthesia, oxidative
glial ATP synthesis in awake animals is well in excess
of that required by glutamate recycling, Gulin Oz, Rolf
Gruetter and colleagues advanced that “glial oxidative
ATP synthesis sustains additional metabolic reactions in
the astrocyte that are related to overall brain activity
and not only those that maintain glutamatergic
action”.39 Kþ buffering fits the bill. And the anatomy
has also been revised. Refinements of electron
microscopy and targeted fluorescent markers have
detected abundant mitochondria in astrocytes.43–47

In fact, at 7–10%, the fraction of the cellular volume
occupied by mitochondria is similar in astrocytes
and neurons.48,49 Transcriptomics and proteomics con-
curred by showing similar expression of TCA cycle and
OXPHOS enzymes in astrocytes and neurons.43,50,51

On top of that is the ATP production of glycolysis,
for which astrocytes are better equipped.52–54

There are however qualitative differences in mito-
chondrial metabolism between the two cell types.
In neurons, OXPHOS complex I is predominantly
assembled into supercomplexes, whereas in astrocytes
the abundance of free complex I is higher, associated
with several-fold higher reactive oxygen species (ROS)
production compared with neurons.55 Neurons degen-
erate in response to partial genetic inhibition of
OXPHOS, whereas astrocytes upregulate glycolysis
and survive indefinitely, without ostensible functional
deficit.56,57 Astrocytes express PDK4, a kinase that
inhibits pyruvate dehydrogenase, and the anaplerotic
enzyme pyruvate carboxylase,50,58 suggesting tonic
deviation of pyruvate away from oxidation. Instead,
astrocytic mitochondria are better endowed than
those of neurons for fatty acid oxidation.59–61 Fatty
acids can be transferred from neurons to astrocytes in
an activity-dependent fashion32,62,63 and enter the TCA
cycle beyond the PDH blockage, as do ketone bodies,
fuels of pathophysiological and therapeutic rele-
vance 64,65 that have a powerful inhibitory effect
on astrocytic glucose metabolism.66 Determining the
relative weight of glucose, neuronal fatty acids,
blood-borne fatty acids, and glutamate in fueling astro-
cytic respiration is a pending task.67–69 Another

emerging aspect of astrocytic respiration is that it
appears to be highly regulated. In vitro experiments
have shown that astrocytic respiration is subject to
short-term modulation by physiological levels of extra-
cellular Kþ, NH4

þ and NO.70–72 These signals, which
are released by neurons and endothelial cells during
local activity and reactive hyperemia, are proposed to
generate glycolytic lactate and spare tissue oxygen for
the benefit of active neurons.73

In summary, there is a good correlation between the
energy demand imposed by Kþ buffering on astrocytes,
and the mitochondrial endowment and speed of respi-
ration of these cells. The volume occupied by astrocytes
in the neuropil is less than half that occupied by neu-
rons,12,42,49,74 which means that gram-per-gram,
astrocytes are as expensive as neurons. This conclusion
is not in conflict with the metabolic effects of anesthe-
sia and NKA inhibition 1 nor with the faster metabolic
rate of gray matter versus white matter.5

Expensive astrocytes and disease

A common pathogenic factor in stroke, traumatic brain
injury and other acute diseases of the brain is a local
energy deficit, which has been assumed to be neuronal.
With astrocytes promoted to non-trivial energy spend-
ers, their metabolism becomes more interesting.
Neurons are more fragile than astrocytes. Brain dis-
ease, acute and chronic, causes the preferential death
of neurons, while astrocytes survive and often thrive,
a phenomenon termed reactive astrogliosis. Reactive
astrocytes are pleiotropic and may differ from normal
astrocytes in morphology, cytoskeleton, transcription
factors, signaling, chaperones, secreted proteins, etc.75

A common feature of these cells is a reduced ability to
cater for the needs of neurons, i.e. they become
“selfish”.31 For example, astrocytes located near
human tumors showed a 60-70% reduction in the
mRNA expression of the three transport proteins that
link the buffering of Kþ to energy metabolism (a2b2
NKA, Kir4.1 and NBCe1).76 Glial Kþ buffering is
also downregulated in a Drosophila seizure model,77

whereas its reactivation by genetic means suppressed
neuronal hyperactivity and seizures, and increased the
life span of the fly.77 The role of Kþ buffering and
associated energy demand in neuroprotection is
complex. Reactive astrocytes are predicted to spend
less energy and glucose during neural activity,78,79 con-
tributing to the well-being of neurons, which use glu-
cose for antioxidation;52 but they would also fail
to remove extracellular Kþ and reduce their own
oxygen consumption on demand,70,73 to the detriment
of neurons. Supporting the latter, in a mouse model
of Huntington’s disease Kir4.1 was found to be dimin-
ished in astrocytes, leading to Kþ accumulation and
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neuronal hyperexcitability. Viral delivery of Kir4.1

to these astrocytes normalized extracellular Kþ, ame-

liorated the neuronal dysfunction and prolonged neu-

ronal survival.80 Huntington�s astrocytes switch from

glucose to fatty acid metabolism, a phenomenon asso-

ciated with reactive oxygen species-induced damage

in the striatum but not in the cerebellum, a clue to

the baffling regional damage of this genetic disease.81

And in a mouse model of Alzheimer�s disease glycolysis
was impaired in the early stages, leading to reduced

production of serine and altered synaptic plasticity

and memory, which was reverted by dietary serine.33

In summary, reactive astrocytes may be protective or

detrimental to neurons according to brain region,

pathology, disease stage and experimental model.75,82

More research focusing on astrocytes, both normal and

reactive, is needed to clarify the role of energy metab-

olism in brain disease.
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