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Predicting cerebral infarction in patients
with atrial fibrillation using machine
learning: The Fushimi AF registry
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Abstract

The CHADS2 and CHA2DS2-VASc scores are widely used to assess ischemic risk in the patients with atrial fibrillation

(AF). However, the discrimination performance of these scores is limited. Using the data from a community-based

prospective cohort study, we sought to construct a machine learning-based prediction model for cerebral infarction in

patients with AF, and to compare its performance with the existing scores. All consecutive patients with AF treated at

81 study institutions from March 2011 to May 2017 were enrolled (n¼ 4396). The whole dataset was divided into a

derivation cohort (n¼ 1005) and validation cohort (n¼ 752) after excluding the patients with valvular AF and anti-

coagulation therapy. Using the derivation cohort dataset, a machine learning model based on gradient boosting tree

algorithm (ML) was built to predict cerebral infarction. In the validation cohort, the receiver operating characteristic

area under the curve of the ML model was higher than those of the existing models according to the Hanley and McNeil

method: ML, 0.72 (95%CI, 0.66–0.79); CHADS2, 0.61 (95%CI, 0.53–0.69); CHA2DS2-VASc, 0.62 (95%CI, 0.54–0.70). As

a conclusion, machine learning algorithm have the potential to perform better than the CHADS2 and CHA2DS2-VASc

scores for predicting cerebral infarction in patients with non-valvular AF.
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Introduction

Patients with atrial fibrillation (AF) are at high risk for

cardiogenic stroke.1 The CHADS2 and CHA2DS2-

VASc scoring systems are often used to assess the

risk of future cerebral infarction and to make decisions

about anticoagulation.2,3 However, the CHADS2 and

CHA2DS2-VASc scores are not highly discriminative

for ischemic events.4

Many other risk factors for ischemic event not

included in the CHADS2 and CHA2DS2-VASc scores

have been reported in the literature. For example, the

type of AF, renal disease, and left atrial size on echo-

cardiography.4–6 Theoretically, a model that effectively

utilizes a wide range of risk factors has the potential to

outperform the CHADS2 and CHA2DS2-VASc scores,

but in the standard statistical approaches, which

commonly utilize logistic regression, the model tends
to become unstable as the number of variables
increases.7
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Machine learning could be an alternative approach
to deal with the problem above. Machine learning is a
subset of artificial intelligence in which algorithms
learn from data without explicit programming.
Unlike a traditional logistic regression modelling,
machine learning can control the collinearity of varia-
bles with regularization, and is effective in modeling
multifactorial events in various fields.8 Therefore, we
aimed to construct a model to predict future cerebral
infarction using machine learning in order to effectively
utilize many risk factors. More accurate risk stratifica-
tion of patients with AF will lead to more appropriate
decision-making with respect to anticoagulation
therapy.

Using data from a large-scale community-based pro-
spective registry of AF patients, we constructed a
machine learning model for predicting future cerebral
infarction in patients with AF who are not receiving
anticoagulation therapy, validated its performance,
and compared its performance with those of the
CHADS2 and CHA2DS2-VASc scores.9

Materials and methods

Patient population

The detailed study design, patient enrollment, defini-
tions of measurements, and baseline clinical character-
istics of subjects of the Fushimi AF Registry were
previously described (UMIN Clinical Trials Registry:
UMIN000005834). The inclusion criterion was the doc-
umentation of AF by 12-lead electrocardiogram or
Holter monitoring at any time. There were no exclusion
criteria. Eighty-one institutions participated in the reg-
istry: 2 cardiovascular centers (National Hospital
Organization Kyoto Medical Center and Ijinkai
Takeda Hospital), 9 small- and medium-sized hospi-
tals, and 70 primary care clinics. Patient enrollment
began in March 2011 and the participating institutions
attempted to enroll all consecutive patients with AF
under regular outpatient care or under admission.
Clinical data were registered in the Internet database
system (http://edmsweb16.eps.co.jp/edmsweb/002001/
FAF/top.html) at each institution. Data were automat-
ically checked for missing or contradictory entries and
values outside the normal range. Additional editing
checks were performed by clinical research coordina-
tors at the general office of the registry. Follow-up data
were collected at least annually by the doctors in charge
or telephone follow-up.

In this analysis, the data of the patients from one
cardiovascular center (n¼ 958) and the 19 hospitals
and primary care clinics (n¼ 1426) were randomly
assigned as the derivation cohort (n¼ 2382), and the
data of the patients from another cardiovascular center

(n¼ 609) and an additional 20 hospitals and primary
care clinics (n¼ 1403) were assigned as the validation

cohort (n¼ 2012) (Figure 2). We excluded the patients
with valvular AF and the patients under anticoagula-
tion therapy, and also the patients with an observation
period of less than 1 year without events in order to
reduce potential bias due to the short observation

period.
The study protocol conforms to the ethical guide-

lines of the 1975 Declaration of Helsinki, and was
approved by the ethical committees of the National
Hospital Organization Kyoto Medical Center and
Ijinkai Takeda General Hospital. Since the present

research was part of an observational study not using
human biological specimens, consent to participate in
this study was obtained with an opt-out approach and
written informed consent was not obtained from each
patient; this design conformed to the ethical guidelines

for epidemiological research issued by the Ministry of
Education, Culture, Sports, Science and Technology
and Ministry of Health, Labour and Welfare, Japan.
However, we have published all relevant details of this

study to allow its replication, and we provided each
patient an opportunity to refuse inclusion in this
research by posting the details at each participating
clinic and at the homepages of our institutions.

Prediction target: cerebral infarction during follow-up

The prediction target in the analysis was the incidence
of cerebral infarction during follow-up. Stroke was
defined as the sudden onset of a focal neurologic deficit

in a location consistent with the territory of a major
cerebral artery during follow-up, and the diagnosis of
cerebral infarction was confirmed by computed tomog-
raphy or magnetic resonance imaging (MRI). As

described above, follow-up data were collected annual-
ly through review of the inpatient and outpatient med-
ical records, and through contact with patients,
relatives and/or referring physicians by mail or
telephone.

Standard prediction models (scoring methods):

CHADS2, CHA2DS2-VASc score

The CHADS2 scoring system assigns 1 point each for
congestive heart failure, hypertension, age �75 years,
and diabetes mellitus, and 2 points for prior stroke or
transient ischemic attack (TIA).2 The CHA2DS2-VASc

scoring system is identical to the CHADS2 scoring
system except that it adds an extra point each for
female sex and vascular disease (myocardial infarction
and peripheral vascular disease), and divides age into 3
categories (<60, 60—74, �75 years) instead of the 2

categories used in the CHADS2 score.
3
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Overview of the machine learning model

development

The entire data was divided into training data (deriva-

tion cohort) and validation data (validation cohort),

and only the training data was used to build the

machine learning model. Since the number of baseline

variables in the database was large, we first prepro-

cessed the variables and assessed the importance of

variables in predicting target. Then, only a relatively

small number of important variables were used to

build the final prediction model (Figure 1). The perfor-

mance of the constructed model was evaluated using

the validation data and compared to the existing

scores.

Variables and data preprocessing for machine

learning model

The data include baseline demographic information,

such as the patient’s age, sex, comorbidity, past medical

history, social history, and the results of blood tests,

chest X-ray, and transthoracic echocardiography.

A total of 168 baseline variables were included in the

dataset.
For data preprocessing, variables that were not con-

sidered clinically meaningful were deleted, such as

patient ID, the date of inclusion, and the name of the

study institution. Also, specific drug names were

replaced with the appropriate category name. For

example, aspirin, clopidogrel, ticlopidine, prasugrel,

and cilostazol were all converted into the categorical

variable “antiplatelet drugs”. In addition, several vari-

ables were created using existing variables. For exam-

ple, body mass index and body surface area were

calculated using patient’s height and weight.
Variables for which more than 30% of the values

were missing in the derivation cohort were deleted.

Then the missing values were imputed using the mean

value from the derivation cohort. After all, 68 variables

were listed as candidates for constructing model. All the

variables after data preprocessing and its numbers of

missing data points are listed in supplemental Tables II.
For model evaluation with the validation cohort, the

missing values were imputed 20 times with multiple

imputation with chained equations (MICE) to address

Figure 1. The processing steps of the machine learning model development in this study.
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the randomness of the estimation.10,11 In the imputa-

tion process, all other variables in the validation cohort
were used to create imputed results; data from the der-

ivation cohort were not used with MICE.

Variable selection for the machine learning model

Although there were as many as 68 baseline variables in

the database, several variables were extracted for model
construction with a view to future practicality.

In this step, we utilized 5-fold cross-validation in the
derivation cohort: the derivation cohort data were

divided into training and test data in 5 patterns without
duplication. In each step, machine learning models

based on five different algorithms (random forest, reg-
ularized logistic regression, linear support vector

machine, neural network, and naı̈ve Beyes model)
were separately trained and the importance of the var-

iables was evaluated by permutation importance.
Permutation importance is defined as the decrease in

the model score when a single variable value is random-
ly shuffled.12 Since this procedure breaks the relation-

ship between the variable and the target, the decrease in
the model score indicates how much the model depends

on the variable. In this study, the shuffling of the var-
iables was repeated 10 times. After 5-fold cross valida-
tion, the mean, variance, and t statistics on the

distribution of the importance of each variable were
calculated. Variables with significantly higher t statis-

tics were selected for the final model (in this case,
p< 0.0001 was set as the cut-off). These operations

were performed on each algorithm separately.

Model derivation and internal validation

For the final machine learning model, CatBoost was
chosen for the model algorithm. CatBoost is an algo-

rithm for gradient boosting on decision trees; it was
developed to handle categorical variables and imple-
ments a framework to avoid over-fitting.13 Same as

the variable selection described above, we performed
5-fold cross-validation in the derivation cohort for

the model training. In the training step, model hyper-
parameters were optimized with a grid search algo-

rithm. Grid search tunes and optimizes the model
hyperparameters in a greedy way (the actual hyper-

parameters are shown in Supplemental Table I). After
choosing the best hyperparameters, the model was

trained again with the whole derivation cohort data.
For the internal evaluation, the sensitivity, specific-

ity, accuracy, and area under the receiver operating
curve (AUROC) were evaluated. In addition, since

there was a strong imbalance between the classes, we

also evaluated the F-1 score, the Matthews correlation

coefficient and the area under the precision-recall curve
(AUPRC).

The model algorithms, cross-validation, and grid

search were based on the Python library scikit-learn.

Validation

After the model derivation, the machine learning model

was evaluated for its performance and compared with

the CHADS2 and CHA2DS2-VASc scores on the vali-
dation cohort. As described in the preprocessing step

above, the missing values were imputed 20 times

with MICE.
The Kaplan-Meier curves were also plotted to dis-

play the clinical course for the subgroups stratified by

each measurement on the validation cohort. The low-,
moderate-, and high-risk subgroups were defined as

below. For the CHADS2 score, low-, moderate- and

high-risk were respectively defined as scores of 0, 1,
and 2—6, according to the previous reports.14,15 For

the CHA2DS2-VASc score, low-, moderate- and

high-risk were respectively defined as scores of 0, 1,
and 2—9, according to the previous report.14 For the

machine learning model, the distribution of the pre-

dicted probability was divided into quartiles; low-risk
was defined as probability in the first quartile,

moderate-risk as probability in the second and third

quartiles, and high risk as probability in the fourth
quartile of risk.

Statistical analysis

Continuous variables were expressed as mean� stan-

dard deviation (SD) or median with interquartile
range, depending on the distribution of variables. The

normality of the distributions was assessed by Shapiro-

Wilk test.
As described above, missing values were imputed

with MICE and the averaged prediction probability

for each case was used for the evaluation. Model per-
formance metrics were displayed with 95% confidence

intervals (CI) by the bootstrap method. Receiver oper-

ating curves were compared by the Henley and McNeil

method.16 Kaplan-Meier curves were plotted for each
model to display the event incidence across time. For

the moderate- and high-risk subgroups in each model,

the hazard ratio of events was calculated using the Cox
proportional hazards model.

Two-sided p-values <0.05 were considered to

indicate statistical significance. The statistical analyses
were performed with R statistical software

(version 4.0.0).
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Results

Data availability

All relevant data are available, upon reasonable
request, from the corresponding author.

Baseline characteristics

Figure 2 shows the patient flow chart. The derivation
cohort included the data for 2384 patients. After
excluding 41 patients with valvular AF, 1222 patients
receiving anticoagulation therapy, and 116 patients
with less than 1 year of follow-up without any event,
1005 patients were entered into the analysis. The vali-
dation cohort included the data for 2012 patients. After
excluding 46 patients with valvular AF, 1133 patients
receiving anticoagulation therapy, and 81 patients with
less than 1 year of follow-up without any event,

752 patients were entered into the analysis. The

median follow-up period was 4.5 years in the derivation

cohort and 5.1 years in the validation cohort.
The patient backgrounds are shown in Table 1. In

brief, the patients in the derivation cohort had a more

advanced type of AF and a higher frequency of stroke-

related comorbidities. The previous histories of cere-

bral infarction, TIA and systemic thromboembolism

were similar between the groups. There was no signif-

icant difference in the distributions of the CHADS2
and CHA2DS2-VASc scores (the distribution of the

scores is also shown in the supplemental figure IV).

Clinical outcomes

The clinical outcomes are shown in Table 2. Cerebral

infarction (the prediction target of this study) occurred

in 79 patients (7.9%) in the derivation cohort and 50

Figure 2. Flow diagram of the patients included in this study.
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patients (6.6%) in the validation cohort. The incidence

rates of TIA and systemic thromboembolism during

follow-up were lower than that of cerebral infarction

at <1% in both cohorts. The mortality rate was 20.8%

(209 patients) in the derivation cohort and 14.6% (110

patients) in the validation cohort.

Variable selection, model derivation, and internal

validation

The 14 variables were extracted by a variable selection

step (Figure 3(b)) (the important variables for each

algorithm in the variable selection step are shown in

Supplemental Figure I). There were 3 variables related

to biological information (age, height, weight), 2 to

past medical and treatment history (hypertension, his-

tory of ablation), 2 to drug information (the intake of
antiplatelet drug, the intake of antiarrhythmic drug), 2
to blood test results (creatinine clearance, blood urea

nitrogen), and 4 to transthoracic echocardiogram data
(mitral regurgitation, aortic regurgitation, relative wall

thickness, left ventricular mass).
After training, the performance metrics of the ML

model on the derivation cohort were as follows: sensi-
tivity 82%, specificity 62%, accuracy 63%, F-1 score

0.26, Matthews correlation coefficient 0.24, AUROC
0.82, and AUPRC 0.40 (Figure 3(a)).

Comparison of the performance of each model in the
validation cohort

The performance metrics on the validation cohort are

shown in Table 3. Briefly, the machine learning model
(ML model) had the best balance of sensitivity and

specificity, and showed a higher accuracy, F-1 score,
and higher Matthews correlation coefficient compared
to the CHADS2 and CHA2DS2-VASc scoring systems.

The AUROC values of each model were as follows:
ML model, 0.72 (95%CI, 0.66–0.79); CHADS2, 0.61

(95%CI, 0.52–0.69); CHA2DS2-VASc, 0.62 (95%CI,
0.54–0.70) (Figure 3(a)). According to the Hanley and

McNeil method, the ML model was superior to the
CHADS2 (p¼ 0.01) and CHA2DS2-VASc (p¼ 0.02)
scores.

Kaplan-Meier curves of the ML model, CHADS2
score, and CHA2DS2-VASc score

Kaplan-Meier curves of the different risk subgroups
classified by the ML model, the CHADS2, score and

the CHA2DS2-VASc score on the validation cohort are
shown in Figure 4. By the ML model, the rates of cere-
bral infarction over a period of 3 years were 1.3% (95%

CI, 0.0–3.0) for the low-risk group, 2.3% (95%CI, 0.6–
3.9) for the moderate-risk group, and 6.9% (95%CI,

3.3–10.3) for the high-risk group. By the CHADS2
score, the corresponding rates were 1.5% (95%CI,

0.0–3.4) for the low-risk group (score¼ 0), 2.8%
(95%CI, 0.5–5.0) for the moderate-risk group (score-
¼ 1), and 4.5% (95%CI, 2.2–6.7) for the high-risk

group (score> 2). And by the CHA2DS2-VASc score,
the rates were 3.0% (95%CI, 0.0–7.0) for the low-risk

group (score¼ 0), 1.2% (95%CI, 0.0–3.6) for the
moderate-risk group (score¼ 1), and 3.8% (95%CI,
2.2–5.5) for the high-risk group (score> 2).

Discussion

In this study, we have shown that our model based on

machine learning showed higher discriminative ability

Table 1. Patient characteristics.

Derivation

cohort

(n¼ 1005)

Validation

cohort

(n¼ 752)

Age, median (IQR), y 73 (66–81) 74 (64–81)

Sex

Male, n (%) 587 (58.3) 413 (54.9)

Female, n (%) 419 (41.7) 339 (45.1)

Body weight, mean� SD, kg 59.7� 13.9 58.8� 12.8

Types of atrial fibrillation

Paroxysmal, n (%) 577 (57.4) 538 (71.5)

Sustained, n (%) 429 (42.6) 214 (28.5)

Comorbidities

Hypertension, n (%) 650 (64.6) 423 (56.3)

Diabetes mellitus, n (%) 226 (22.4) 152 (20.2)

Dyslipidemia, n (%) 394 (39.2) 358 (47.6)

Chronic kidney disease, n (%) 345 (34.2) 197 (26.1)

Coronary artery disease, n (%) 129 (12.8) 132 (17.5)

History of disease

Cerebral infarction, n (%) 96 (9.5) 77 (10.2)

Transient ischemic attack, n (%) 12 (1.2) 5 (0.7)

Systemic thromboembolism, n (%) 9 (0.9) 3 (0.4)

The CHADS2 score (IQR) 2 (1–3) 1 (1–2)

The CHA2DS2-VASc score (IQR) 3 (2–4) 3 (2–4)

Antithrombotic medication

Antiplatelet drug, n (%) 322 (32.0) 246 (32.7)

IQR: interquartile range; SD, standard deviation.

Table 2. Clinical outcomes.

Derivation

cohort

(n¼ 1005)

Validation

cohort

(n¼ 752)

Cerebral infarction, n (%) 79 (7.9) 50 (6.6)

Transient ischemic attack, n (%) 4 (0.4) 4 (0.5)

Systemic thromboembolism, n (%) 7 (0.7) 1 (0.1)

Mortality, n (%) 209 (20.8) 110 (14.6)
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for ischemic events in non-valvular AF patients who

were not receiving anticoagulation therapy than either

the CHADS2 or the CHA2DS2-VASc scoring system.

A machine learning model incorporating only 14 vari-

ables (basic patient information, several blood

sampling parameters, and echocardiographic data)

has the potential to become a more appropriate risk

stratification tool for patients with non-valvular AF.
The AUROC of the CHADS2 score was within the

range of the previous reports: 0.56—0.82.2,3,14,17–19

Figure 3. (a) Receiver operating characteristic curves of the machine learning model and the CHADS2 and CHA2DS2-VASc scoring
systems in the derivation and validation cohort. (b) The 14 variables included in the machine learning model.

Table 3. Scores for each model on validation cohort.

Model Sensitivity, % Specificity, % Accuracy, % F-1 score

The Matthews

correlation

coefficient AUROC AUPRC

ML model 74 (59–87) 54 (48–59) 55 (50–60) 0.18 (0.13–0.23) 0.14 (0.06–0.20) 0.72 (0.66–0.79) 0.15 (0.09–0.23)

CHADS2 score 52 (50–77) 52 (48–56) 53 (49–56) 0.15 (0.11–0.20) 0.08 (0.01–0.15) 0.61 (0.52–0.69) 0.10 (0.07–0.15)

CHA2DS2-VASc

score

74 (61–86) 40 (37–44) 43 (39–46) 0.15 (0.10–0.19) 0.07 (0.01–0.14) 0.62 (0.54–0.70) 0.11 (0.07–0.16)

AUROC: area under the receiver operating curve; AUPRC: area under the precision-recall curve.
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The AUROC of CHA2DS2-VASc score was also within

the range of the previous reports: 0.58—0.88.3,14,17–22

In this study, The ML model had a significantly higher

AUROC (0.72 vs 0.61–0.62), and a significantly higher
AUPRC (0.15 vs 0.10–0.11) compared with the

CHADS2 and CHA2DS2-VASc scores. On the other
hand, the AUROC of the ML model did not exceed

0.8, which is usually considered the cut-off for excellent
performance.23 In regard to the use of the validation

cohort data to simulate clinical application, if we
assume that anticoagulation therapy is indicated for

patients with moderate or higher risk according to var-
ious guidelines, 565 patients in the ML model, 615

patients in the CHADS2 model, and 685 patients in

the CHA2DS2-VASc model would be indicated for

anticoagulation therapy (the definition of each risk cat-

egory is described in the Methods section). Overall, 231

patients were correctly categorized for the ML model,

173 for the CHADS2 score, and 109 for the CHA2DS2-
VASc score. It is considered that the ML model may

not increase the number of cerebral infarction cases for

which anticoagulation is not indicated, and may reduce

the overall administration of unnecessary anticoagu-

lants (see also the Supplemental Table V).
Several studies have used machine learning to pre-

dict stroke incidence in patients with AF. Li et al.

tested logistic regression, Naı̈ve Bayes, and decision

tree algorithms using the Chinese Atrial Fibrillation

Figure 4. Kaplan-Meier curves of the machine learning model and the CHADS2 and CHA2DS2-VASc scoring systems in the vali-
dation cohort. The hazard ratios of the moderate-risk and high-risk groups compared to the low-risk group are displayed for each
measure.
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Registry data. In their 1864 patients with AF who had
not been treated with anticoagulation, the machine
learning model showed a higher AUROC (0.71—
0.74) than the Framingham score (0.65) or the
CHA2DS2-VASc score (0.69).24 They did not distin-
guish between non-valvular and valvular AF, and
they did not statistically analyze the superiority or infe-
riority between models. Han et al. used data from 3185
patients with AF who had not been treated with anti-
coagulation and developed a machine learning model
to predict future ischemic stroke.25 All the patients
were implanted with a cardiac implantable electronic
device, and the pattern of the daily AF burden was
found to be useful for predicting stroke (AUROC
0.66–0.70). They also did not distinguish between
non-valvular and valvular AF, and did not statistically
analyze the superiority or inferiority between models.
These two studies were based on supervised machine
learning. Meanwhile, Inohara et al. performed an unsu-
pervised machine learning analysis in 9749 patients
with AF.26 Using hierarchical clustering, the entire
population was divided into 4 distinct clusters, and
each cluster displayed different clinical characteristics
and risks for the major adverse cardiovascular or neu-
rological events. However, they did not examine wheth-
er the clustering-based approach was superior to the
existing risk scores. To the best of our knowledge,
our present study is the first to show the superiority
of a machine learning model over the standard predic-
tion score by means of statistical test methods among
the patients with non-valvular AF who were not receiv-
ing anticoagulation. Also, our model is unique and has
potential for clinical application in that it can be cal-
culated with as few as 14 variables that can be evalu-
ated in daily clinical practice.

In our model, many previously known risk factors
for ischemic events appeared as important variables:
patient age, hypertension, renal insufficiency, and pre-
vious history of stroke are well-known risk factors and
were included among the 14 variables in our
model.14,17,18,20,27 Although less frequently than these
factors, body weight and some valvular heart diseases
other than mitral stenosis have also been reported to
be associated with stroke incidence in patients with
AF.28–31

As for the information related to treatment, the
intake of antiplatelet drugs, intake of antiarrhythmic
drugs, and history of catheter ablation were all found
to be important for the model. Since antiplatelet med-
ication reduces the risk of stroke by 20—30% in AF
patients, it is not surprising that the information on
antiplatelet medication is an important factor.32 On
the other hand, rhythm control based on antiarrhyth-
mic drugs or catheter ablation has not shown clear
efficacy in stroke prevention, but some studies have

suggested that rhythm control itself led to reduced
stroke incidence. It has been speculated that the
machine learning model uses the effect of rhythm con-
trol therapy for outcome prediction.33

With respect to imaging data, left ventricular rela-
tive wall thickness (LVRWT) and LV mass were
important in the present model. We had previously
reported the importance of left atrial enlargement and
LVRWT as independent predictors of ischemic event in
patients with AF.34,35 Although there are few studies
indicating a correlation between LVRWT and ischemic
events, it is considered that LVRWT might reflect car-
diac remodeling and might be related to the pathogen-
esis of AF and its complications. In this study, we
found that echocardiogram-related information
(aortic regurgitation, mitral regurgitation, LV mass,
LVRWT) is important for predicting cerebral infarc-
tion, but on the other hand, the use of echocardiogram
data compromises the simplicity of the score. When we
constructed a machine learning model using only fac-
tors other than this echocardiogram-related informa-
tion, the model performance decreased slightly to
ROAUC 0.70 (95%CI 0.63-0.77), but still tended to
be higher than the CHADS2 and CHA2DS2-VASc
scores (the model performance of the ML model with-
out echocardiographic data is shown in the
Supplemental Figure II and Table III).

There were several limitations in this study. First, we
used a single community-based prospective registry
database which we divided into a derivation and vali-
dation cohort, and ultimately, external validation in a
completely separate population is desirable. Second,
this study was based on a purely observational study
of the patients with AF, and more than 50% of the
patients were excluded because they were receiving
anticoagulation (2355/4396; 53.5%). There were sever-
al differences in patient background between the anti-
coagulated and non-anticoagulated population; in
particular, the CHADS2, and CHA2DS2-VASc scores
were significantly higher in the anticoagulation therapy
group (see also Supplemental Table IV and Figure III).
The population of the present study is likely to be dif-
ferent from the AF patient population, and likely to be
biased. Third, it might be possible to improve the per-
formance of the model using information that is not
included in the database, such as the information of AF
burden, left atrial function, left atrial appendage anat-
omy, and more detailed electrocardiographic markers,
such as abnormal P-wave axis.4 Also, we had to
exclude some potentially useful variables due to the
relatively high percentage of missing values, such as
the cardiac biomarkers (troponin, brain natriuretic
peptide/NT-pro brain natriuretic peptide). Finally,
the model performance needs to be tested for its gen-
eralizability to various populations, such as patients
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with different ethnicities and social backgrounds or
undergoing different treatments.

Conclusions

The use of machine learning algorithms increased the
accuracy of ischemic-event prediction in patients with
non-valvular AF, compared to the CHADS2 and
CHA2DS2-VASc scoring systems, in our community-
based registry. Along with the machine learning algo-
rithm, the effective utilization of more comprehensive
information may improve the prediction of cerebral
infarction in patients with AF, and lead to more appro-
priate indications for anticoagulation therapy.
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