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Resting-state functional MRI signal
fluctuation amplitudes are correlated
with brain amyloid-b deposition in
patients with mild cognitive impairment

Norman Scheel1 , Takashi Tarumi2,3, Tsubasa Tomoto2,4 ,
C Munro Cullum4,5,6, Rong Zhang2,4 and David C Zhu1

Abstract

Mounting evidence suggests that amyloid-b (Ab) and vascular etiologies are intertwined in the pathogenesis of

Alzheimer’s disease (AD). Blood-oxygen-level-dependent (BOLD) signals, measured by resting-state functional MRI

(rs-fMRI), are associated with neuronal activity and cerebrovascular hemodynamics. Nevertheless, it is unclear if

BOLD fluctuations are associated with Ab deposition in individuals at high risk of AD. Thirty-three patients with

amnestic mild cognitive impairment underwent rs-fMRI and AV45 PET. The AV45 standardized uptake value ratio

(AV45-SUVR) was calculated using cerebral white matter as reference, to assess Ab deposition. The whole-brain

normalized amplitudes of low-frequency fluctuations (sALFF) of local BOLD signals were calculated in the frequency

band of 0.01–0.08Hz. Stepwise increasing physiological/vascular signal regressions on the rs-fMRI data examined wheth-

er sALFF-AV45 correlations were driven by vascular hemodynamics, neuronal activities, or both. We found that sALFF

and AV45-SUVR were negatively correlated in regions of default-mode and visual networks (precuneus, angular, lingual

and fusiform gyri). Regions with higher sALFF had less Ab accumulation. Correlated cluster sizes in MNI space

(r��0.47) were reduced from 3018mm3 to 1072mm3 with stronger cardiovascular regression. These preliminary

findings imply that local brain blood fluctuations due to vascular hemodynamics or neuronal activity can affect Ab
homeostasis.
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Introduction

Alzheimer’s disease (AD) is a major neurodegenerative
brain disorder and the most common type of dementia
among older adults.1 Patients with AD exhibit memory
loss, impaired decision-making capacity, disorienta-
tion, as well as changes in daily functional abilities.2

These cognitive deficits and behavioral changes are
accompanied and often preceded by brain pathophys-
iological changes including amyloid-b (Ab) and tau
protein depositions in the cerebral cortex, brain hypo-
perfusion, and neuronal degeneration.3 Mild cognitive
impairment (MCI), particularly amnestic mild cogni-
tive impairment (aMCI), has been considered to repre-
sent a transitional phase between normal cognitive
aging and AD, as many who develop aMCI progress
to AD.4
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Two major hypotheses have been developed to
understand the pathophysiological mechanisms of
AD and to develop effective treatments. In the classic
amyloid cascade hypothesis, the disruption of brain Ab
homeostasis has been proposed to be a primary driver
of AD, leading to accumulations of Ab plaques and
neurofibrillary tangles, and consequently neurodegen-
eration and cognitive impairment.5 Conversely, the
vascular hypothesis of AD proposes that cerebrovascu-
lar dysfunction is an important contributor to AD
onset and progression.6–8 Mounting evidence indicates
that Ab and vascular factors are intertwined in the
pathogenesis of AD.9,10 In a recent study, we found
that age-related carotid artery stiffness was associated
positively with brain Ab burden in aMCI patients, sup-
porting the role of arterial aging in brain Ab deposi-
tion.11 Recent animal and human studies also suggest
that cerebral arterial oscillations and vasomotions
influence brain Ab clearance and deposition.12–14

Spontaneous cerebral blood flow (CBF) fluctuations
are linked intrinsically to brain neuronal activities
through neurovascular coupling.15–17 This phenome-
non has been exploited by using resting-state functional
MRI (rs-fMRI) to understand functional connectivities
between brain regions and the disruption of functional
connectivity in diseased states.16,18–26 Specifically,
it has been proposed that spontaneous neuronal
activities, which consume approximately 95% of the
brain’s metabolism,16 are manifested as rs-fMRI
blood-oxygen-level-dependent (BOLD) signal
fluctuations.16,17,27

It has been widely recognized that spontaneous
BOLD fluctuations are influenced by both systemic
and cerebrovascular hemodynamics in addition to neu-
ronal activities.28–32 Rajna et al. recently applied a 3D
multi-resolution optical flow analysis technique and
showed that the cardiovascular pulse propagates from
major arteries via cerebral spinal fluid spaces into all
tissue compartments in the brain and found that car-
diovascular pulsations were significantly altered in
AD.33,34 In this regard, our previous work has shown
that spontaneous fluctuations of BOLD signals and
CBF velocity measured in the middle cerebral artery
(upper-stream vascular signals) had similar spectral dis-
tributions and high correlation in the 0.01–0.08Hz fre-
quency band.35 These observations suggested that
upper-stream cerebrovascular hemodynamic fluctua-
tions can transmit downstream into the cerebral micro-
circulation and contribute importantly to regional
BOLD fluctuations. On the other hand, local cerebral
vasomotion, which has been linked to brain Ab clear-
ance, also may influence rs-fMRI BOLD fluctuations.12

An early study investigating the relationship of
BOLD signals and amyloid deposition suggests that
high levels of amyloid deposition are associated with

an altered fMRI default-mode network % signal
change in a memory encoding task paradigm in asymp-
tomatic and minimally impaired older individuals.36

Based on the data from the Alzheimer’s Disease
Neuroimaging Initiative’s (ADNI), another study
found that physiological fluctuations in white matter
(based on rs-fMRI BOLD signal standard deviations)
increased in AD and that this increase was associated
with a decrease in regional glucose metabolism mea-
sured by FDG-PET in the default-mode network
areas.37 In a small ADNI subgroup, a greater BOLD
signal variability, measured by the temporal standard
deviation of rs-fMRI voxel time courses, was found in
white and gray matter regions involving the default-
mode network in AD patients.38 A recent study
employing data from ADNI supplemented with high-
temporal-resolution rs-fMRI data with a repetition
time (TR) of 0.1 s showed an increased fMRI signal
variability at cardiorespiratory frequencies in AD
patients when compared to cognitively normal per-
forming older adults.39 In sum, these findings suggest
a possible link among BOLD signal variability, upper-
stream cardiovascular effects, regional brain metabolic
activity and AD. As Ab plaques are a major hallmark
of AD, it is crucial to understand possible effects of
BOLD signal variability on brain Ab deposition. In
this study, we investigated the correlation on voxel
basis between rs-fMRI BOLD signal fluctuation ampli-
tude and Ab deposition from AV45-PET amyloid
imaging in aMCI patients. BOLD signal fluctuations
in this study were quantified by the amplitude of low-
frequency fluctuations (ALFF)40 which is based on the
power spectrum within the specific frequency range of
neurovascular activity, rather than temporal BOLD
standard deviations from the mean. Furthermore, we
examined whether the associations between local
ALFF and brain Ab depositions are influenced by
upper-stream cerebrovascular hemodynamics, sponta-
neous neuronal activities or both, using differential
signal regression approaches.41–43 We hypothesized
that local ALFF would be negatively correlated with
brain Ab deposition and that correlation strength
between ALFF and Ab deposition would decrease
when the upper-stream vascular signals are regressed
out from the raw BOLD signal under an assumption
that upper-stream vascular effects drive brain Ab
clearance.

Material and methods

Participants

Thirty-three aMCI subjects (64.4� 6.4 years of age,
19 females) were recruited who represent a subgroup
of participants enrolled in a proof of concept
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investigation aimed to identify effects of exercise train-

ing on neurocognitive function in aMCI subjects

(ClinicalTrials.gov, NCT01146717).44 Data presented

here were obtained at baseline before any intervention.

The diagnosis of aMCI was based on the Petersen cri-

teria as modified by the ADNI project (http://adni-

info.org).45 Diagnostic assessments included the

Clinical Dementia Rating (CDR) scale,46 the Mini-
Mental State Examination (MMSE),47 and the

Wechsler Memory Scale-Revised Logical Memory

(LM) immediate and delayed recall trials.48 Heart

rate (HR) and brachial cuff blood pressure (BP) were

measured >3 times with an ECG-gated electro-sphyg-

momanometer (Suntech, Morrisville, NC, USA).

Obtained values were averaged to obtain HR, systolic

(SBP), and diastolic BP (DBP). Participants with major

psychiatric disorders, major or unstable medical con-

ditions, uncontrolled hypertension, diabetes mellitus,

or chronic inflammatory diseases were excluded, as

were participants with implants or other issues prevent-

ing them from undergoing MRI scanning (details are
provided in ClinicalTrials.gov NCT01146717). All par-

ticipants gave informed consent. This study was

approved by the Institutional Review Boards of the

University of Texas Southwestern Medical Center

and Texas Health Presbyterian Hospital of Dallas

and performed by the guidelines of the Declaration of

Helsinki and Belmont Report.

MRI measurements

Rs-fMRI data were collected on a Philips Achieva 3T

scanner (Philips Healthcare, Best, the Netherlands)
under an “Eye-closed” condition with the following

parameters: gradient recalled echo planner imaging

(EPI), 29 contiguous 5-mm axial slices, 30-ms time of

echo (TE), 1500-ms time of repetition (TR), 60� flip

angle, a 24-cm field of view, 80� 80 matrix size and

200 time-points. High-resolution T1-weighted 3D

MPRAGE (Magnetization-Prepared Rapid Acquisition

Gradient-Echo) images were also collected to cover the

whole brain with the following parameters: TE/TR¼ 3.7/

8.1ms, flip angle¼ 12�, field of view¼ 256mm� 204mm,

160 1-mm slices, resolution¼ 1mm� 1mm� 1mm,

SENSE factor¼ 2 and scan duration¼ 4 minutes.

PET image acquisition

After an intravenous bolus injection of 10mCi 18F-

florbetapir (also called AV45), participants were posi-

tioned in a Siemens (Munich, Germany) ECAT HR

PET scanner for data acquisition, using laser guidance

for precise head positioning. A 2-minute scout scan was

acquired first. At 50 minutes post-injection, 2 frames of

5-minute PET emission scan and a 7-minute

transmission scan were acquired in 3D mode using
the following parameters: matrix size¼ 128� 128, res-

olution¼ 5mm� 5mm, slice thickness¼ 2.42mm, and
field of view¼ 58.3 cm. Emission images were proc-
essed with four iterative reconstructions and 16 subsets
with a 3-mm full width at half maximum (FWHM)
ramp filter. The transmission image was reconstructed

using back-projection and a 6-mm FWHM Gaussian
filter for attenuation correction.49,50

RS-fMRI BOLD signal fluctuation quantification

The quantification of rs-fMRI BOLD local signal fluc-
tuation using ALFF was first proposed by Zang et al.40

to investigate rs-fMRI signal fluctuations in attention
deficit hyperactivity disorder. To calculate ALFF, rs-

fMRI recordings are first pre-processed, including
slice-timing correction, motion correction, and spatial
blurring (different strategies used are detailed later).
No temporal filtering is applied before ALFF calcula-
tion. Fast Fourier transformation (FFT) is carried out

on each preprocessed voxel time course. The ALFF
index is calculated as two times the amplitude of the
FFT output, divided by the sample length (number of
data points in the time course), then averaged across

the specified frequency band of interest.
A frequency band of 0.01–0.08Hz was used in this

study. Figure 1(a) shows a typical pre-processed rs-

fMRI time course at a brain voxel. Figure 1(b) shows
the corresponding Fourier spectrum and the frequency
band for ALFF computation. ALFF at each voxel is
subsequently normalized by the global mean ALFF

from all voxels within the brain to generate a standard-
ized ALFF (sALFF) index, which was then used to
compare across subjects and different regression proce-
dures. ALFF computations were carried out using

the ALFF function included in the DPARSFA
toolbox from the “DPABI V4.3_200401” software
package51,52 in MATLAB R2019a (MathWorks,
Natick, MA, USA).

Anatomical image pre-processing and

MNI-registration

One common challenge in brain imaging studies of

older adults is the high degree of anatomical variability
due to atrophy, leading to difficulties in performing
group-wise image analyses. FreeSurfer,53 a software
for cortical surface reconstruction and anatomical

brain MRI segmentation, provides a robust segmenta-
tion in comparable study cohorts, as demonstrated
in a prior AD imaging study.26 The high-resolution
T1-weighted volumetric MR images of each participant
were processed using the FreeSurfer “recon-all” pipe-

line. This pipeline creates a non-linear transformation
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matrix that warps images from a participant’s native
space to MNI standard space, according to the
MNI305 template resolution (1mm� 1mm� 1mm
with a matrix size of 256� 256� 256). This transfor-
mation matrix was applied to warp the results of the
sALFF and AV45 calculations to the MNI305 tem-
plate. Visual assessment revealed that the transforma-
tion to the standard template performed well overall
for all brains. Subsequently, for computational efficien-
cy, all images in MNI305 template resolution were
resampled to fit the MNI152 template with a resolution
of 2mm� 2mm� 2mm at a matrix size of
91� 109� 91.

fMRI preprocessing and physiological/vascular
signal regression

Resting-state fMRI pre-processing was first carried
using AFNI54 in native space. The “afni_proc.py” rou-
tine in AFNI was used to generate the script to pre-
process the rs-fMRI data. For each participant, signal
spikes in the signal intensity time courses were first
detected and removed. The acquisition timing differ-
ence was then corrected for different slice locations.
With the third functional volume as the reference,
rigid-body motion correction was carried out in three
translational and three rotational directions. The dis-
placements due to motion in these six directions as well
as the corresponding motion derivatives were estimated
and modeled as motion regressors. Data points with
excess motion (normalized motion derivative >0.5 or
voxel outliers >10%) were identified to generate addi-
tional motion regressors. System induced trends up to
the 3rd order were also modeled as regressors. Spatial
blurring with a full width half maximum (FWHM) of

4mm was used to reduce random noise. AFNI’s

“3dDeconvolve” function was applied to remove the

motion and system introduced noises through the

regressors described above. Up to this step, physiolog-

ical signals, including upper-stream vascular effects,

remained in the signal. The resulting fMRI dataset up

to this step will be called “No physiological regression”

to emphasize that no attempt has been made to remove

upper-stream vascular effects.
The standardized amplitude of the BOLD signal

fluctuations (sALFF) within the frequency range of

0.01Hz to 0.08Hz was then calculated for each voxel

within the brain. For group analyses, subject-space

sALFF maps were non-linearly transformed into

MNI305 standard space, using the transformation

matrix created by the FreeSurfer processing pipeline

as discussed above. MNI305 sALFF images were sub-

sequently resampled to fit the MNI152 standard tem-

plate. The correlation between sALFF and brain

amyloid b accumulation, calculated as AV45 PET amy-

loid b standardized uptake value ratio (SUVR), was

then calculated in MNI152 standard space as discussed

further in the following section. To understand the

upper-stream physiological/vascular effects, the “no

physiological regression” dataset was further processed

with three progressively more aggressive physiological

signal regression procedures. For each procedure,

sALFF was calculated again followed by the aforemen-

tioned standard-space transformations and correlation

analyses. The three regression procedures, in addition

to the “no physiological regression”, are listed below:

1. “No physiological regression:” as described above,

this procedure has no special treatment to remove
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Figure 1. Time series and spectral analysis of spontaneous BOLD signal fluctuations (a) time course at a voxel in the occipital region
of one study participant; (b) corresponding Fourier spectrum. Across the applied frequency band of 0.01–0.08Hz, the amplitude of
low-frequency fluctuations (ALFF) yields 605.7 as of this voxel’s fluctuation amplitude (plotted in the green shade).
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upper-stream physiological/vascular effects before

sALFF computation.
2. “WM/CSF regression:” White matter (WM) and

cerebrospinal fluid (CSF) do not contain neuronal

brain activity. Consequently, fluctuations of mean

BOLD signal time courses at these regions can be

assumed to mostly represent upper-stream vascular

effects.55 Hence, CSF and WM signals were modeled

and used as additional regressors in the

“3dDeconvolve” step to reduce the upper-stream

vascular influence, before sALFF computation.
3. “WM/CSF/GS regression:” The mean global signal

(GS) was assumed to be primarily driven by an over-

all upper-stream vascular effect and added as an

additional regressor to this “WM/CSF regression”

procedure for further physiological signal removal

before sALFF computation. With this procedure,

the resulting signal time course should closely reflect

neuronal brain activity.55 While global signal remov-

al can potentially remove some neuronal signals

from fMRI data, current research suggests that the

upper-stream vascular components most likely dom-

inate the global signal.56–58 Recently, Xifra-Porxas

and colleagues reported that physiological signals

accounted for an r of about 0.6 within the global

signal.56 Here, global signal regression was used to

further investigate the effect of the upper-stream

vascular signals on Ab deposition in the brain and

its influence in this cascaded setup.
4. “Aggressive AROMA:” A rs-fMRI denoising tech-

nique called “ICA-AROMA” was developed

by Pruim and colleagues41 to aggressively remove

motion artifacts and physiological noise. The

authors demonstrated that this technique could

effectively identify motion and physiological signals

as independent components and then remove them

from rs-fMRI data.59 “ICA-AROMA” was imple-

mented using FSL’s MELODIC routine 60 where

single-subject spatial independent component analy-

sis (ICA) is performed on a motion-corrected

whole-brain rs-fMRI dataset in native space. Using

a pre-trained classifier, the resulting components are

sorted into noise and non-noise components. The

time courses of components identified as noise are

subsequently regressed from the data using FSL’s

“regfilt” function, where partial regression is called

“non-aggressive AROMA,” and full regression is

called “aggressive AROMA.” The “aggressive

AROMA” approach was employed here to maxi-

mize the effect of removing upper-stream vascular

signals.

The overall signal processing steps described above

are also presented in supplementary Figure S1.

PET image processing

Using “flirt” from the FSL software package,60 a six-

degree linear transformation was applied to align PET

AV45-SUVR images to the 3D MPRAGE anatomical

MRI images. All alignments were visually inspected
and improved with manual adjustments if necessary.

Using the segmentation of the high-resolution 3D

MPRAGE image from the FreeSurfer analysis, white-

matter (WM) and cerebellar regions were isolated. An

additional erosion of the WM map, using FSL’s
“fslmaths” with a box kernel of 4mm� 4mm� 4mm

ensured that only WM regions were obtained. The

AV45 uptake images were then normalized by the

mean uptake at the WM and also the cerebellar regions

to generate two versions of SUVR images. Previous
studies have shown that SUVR calculation using WM

signal can improve discriminatory power for detecting

AD and MCI.61 In the following, SUVR will be

reported for WM normalization, yet post-hoc analyses
with the AV45-SUVR images normalized by cerebellar

signal were also carried out to confirm observations.

Congruent to the spatial normalization of sALFF

maps, AV45-SUVR images were non-linearly trans-

formed to match the MNI305 standard template,
using the transformation matrix created by the

FreeSurfer processing pipeline. AV45-SUVR images

in MNI305 template space were subsequently

resampled to fit the MNI152 standard template.

Statistical analysis

All quantitative measures are reported as mean� stan-

dard deviation. For all statistical tests, data normality

was assessed using Kolmogorov-Smirnov tests, and

non-parametric testing was employed if data was not

normally distributed. Correlations between sALFF and
AV45-SUVR across participants were carried out for

each brain voxel in MNI152 template space. Monte-

Carlo simulations, using 10,000 random permutations

for each correlation value r, were applied to approxi-
mate the corresponding p values, through constructing

voxel-specific empirical cumulative distributions,62 in

MATLAB R2019a (MathWorks, Natick, MA, USA).

Cluster-level multiple-comparison corrections were

computed using AFNI’s54 “3dClustSim” Monte-Carlo
simulation. In these simulations, we estimated the min-

imum cluster sizes required to achieve a corrected

p� 0.05 at a voxel-level p< 0.001. As the estimated

minimum cluster size is highly dependent on data
spatial smoothness, which in turn depends on data

preprocessing, cluster size thresholds were estimated

independently for each physiological/vascular signal

removal procedure, described earlier. Autocorrelation

function parameters (-acf) employed by “3dClustSim”
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were estimated using “3dFWHMx” (AFNI) on the pre-
processed fMRI data in MNI152 template space. This
procedure yields mean parameters (across participants)
for each of the four different autocorrelation functions,
specific to each fMRI preprocessing procedure. We
also estimated the spatial autocorrelation of the
AV45-SUVR maps using “3dFWHMx”. Our pre-
processed fMRI images showed less auto-correlation
than the AV45-SUVR maps. To be conservative, we
used the autocorrelation estimates of the fMRI
images to calculate the required cluster sizes to achieve
statistical significance. Subsequently, “3dClusterize”
(AFNI) was used to generate correlation cluster maps
that survive the estimated cluster correction thresholds
for each preprocessing procedure.

The preprocessing-specific significant clusters were
then used to assess whether the correlations between
BOLD signal fluctuations and brain amyloid deposi-
tion were rather influenced by upper-stream physiolog-
ical/vascular effects or neuronal activations. For this
purpose, we illustrated the distributions of the Fisher
z transformed r values of the AV45-SUVR-sALFF cor-
relations, using the voxel populations identified as sig-
nificant clusters resulting from the analyses based on
the “no physiological regression” and the “aggressive
AROMA” procedures.

To provide an additional insight on the relationship
between sALFF and AV45-SUVR from a within-brain
perspective, we used the anatomical brain parcellation
of the AAL atlas63 to calculate the mean sALFF and
mean AV45-SUVR within each of the 116 grey matter
regions spanning the whole brain. The correlation
between sALFF and AV45-SUVR across the regions
within the brain results in one r value per subject for
each regression procedure, representing the within-
brain internal association between sALFF and AV45-
SUVR. Then on the Fisher-z transformed r values,
Wilcoxon signed rank tests were performed to inform
about the effects of the regression procedures and a
Kruskal-Wallis test was performed to inform about
the overall differential effects of the regression proce-
dures on the correlation between sALFF and AV45-
SUVR.

Results

Table 1 shows the participant characteristics. Overall,
our aMCI patients were well educated and showed
early aMCI symptoms, as shown by CDR scores of
0.5, a mean MMSE score of 29.5� 0.8, and mean
LM immediate recall of 11.4� 2.3 and delayed recall
of 9.7� 1.8. These older adults had an average heart
rate of 62 bpm and mean systolic blood pressure of
118mmHg but included hypertension (�140mmHg).
The presence of apolipoprotein E4 (APOE4) was

assessed in 28 participants and 25% were APOE4 pos-
itive. The participants had a mean cortical AV45-
SUVR of 0.57� 0.05 when normalized with the white
matter as a reference and 1.15� 0.08 with the whole
cerebellum as a reference.

Figures 2 and S6 show graphical representations of
select sagittal and axial slices of mean AV45-SUVR,
mean sALFF for each preprocessing procedure, and
the significant correlation clusters between them.
Table 2 provides a detailed list of significant correla-
tion clusters with associated brain regions for each pre-
processing procedure. Using the “no physiological
regression” procedure, cluster level significance was
estimated with voxel-level p< 0.001 and a corrected
p� 0.05, yielding a minimum cluster size requirement
of 493 voxels (2-mm isotropic). Using this threshold,
four significant negatively correlated clusters between
sALFF and AV45-SUVR were found spanning across
the lingual gyrus, precuneus, cuneus, and fusiform
gyrus, with the most prominent cluster reaching
a size of approximately 3018mm3 (see Table 2,
Figures 2b & S6b).

After applying the “WM/CSF regression” procedure
using the same statistical criteria as above, the cor-
rected p� 0.05 was achieved with a minimum cluster
size of 434 voxels. At this threshold, four clusters were
identified as significant. The significant brain regions
are consistent with the “no physiological regression”
methods, spanning the lingual gyrus, fusiform gyri,
cuneus, and precuneus, yet at slightly smaller cluster

Table 1. Participant characteristics.

Mean� SD Minimum Maximum

Men/women (n) 14/19

Race (n) 29 Caucasian,

4 African American

APOE4 carrier,a n (%) 7 (25%)

Age (years) 64� 7 55 78

Height (cm) 169� 9 143 184

Body mass (kg) 79� 14 58 117

Body mass index (kg/m2) 28� 4 21 36

Education (years) 16� 2 12 18

Clinical Dementia

Rating (points)

0.5

MMSE total 29.5� 0.8 27 30

Logical Memory

immediate recall

11.4� 2.3 5 16

Logical Memory

delayed recall

9.7� 1.8 6 15

Heart rate (bpm) 62� 9 44 81

Systolic blood

pressure (mmHg)

118� 18 85 152

Diastolic blood

pressure (mmHg)

70� 8 53 87

aApolipoprotein E4 (APOE4) was assessed in 28 patients.
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sizes for all except the lingual gyrus cluster which

slightly increases in size (see Table 2, Figures 2(c) and

S6c).
After applying the “WM/CSF/GS regression” pro-

cedure using the same statistical criteria as above, the

corrected p� 0.05 was achieved with a minimum clus-

ter size of 344 voxels. Again, four clusters were identi-

fied as significant at brain regions consistent with the

prior procedures. While the cluster at the right lingual

gyrus, fusiform gyrus, and cuneus increases in size once

more, clusters at regions involving precuneus and left

fusiform gyrus show smaller cluster sizes (see Table 2,

Figures 2(d) and S6d).
After applying the “aggressive AROMA” procedure

using the same statistical criteria as above, the cor-

rected p� 0.05 was achieved with a minimum cluster

size of 384 voxels. Two clusters spanning precuneus,

cuneus, angular gyrus, fusiform gyrus, and lingual

gyrus were identified as significant, with the most

prominent cluster reaching a size of approximately

1072mm3 (see Table 2, Figures 2(e) and S6e).

Overall, significant negative correlations were found

between sALFF and AV45-SUVR with all four regres-

sion procedures, decreasing in cluster sizes in a stepwise

manner based on the aggressiveness of physiological/

vascular signal removal. Scatterplots, demonstrating

the negative correlation between the mean sALFF

and mean AV45-SUVR at the location of the most

significant cluster, found using the “no physiological

regression” procedure, are depicted in Figure 3,

across the four regression procedures. The correspond-

ing scatterplots for all significant voxel populations

across all regression procedures are presented in

Supplementary Figures S2–S5.
To further understand the effect of the different

physiological/vascular signal regression procedures on

sALFF and AV45-SUVR correlations, the Fisher z

transformed r-value distributions at significant voxel

locations were illustrated in Figure 4. Using all signif-

icant voxel locations for either the “no physiological

regression” procedure (4563 voxels) or the “aggressive

AROMA” procedure (944 voxels), r-value distributions

Figure 2. Voxel-wise correlation analysis between brain amyloid-b deposition and the standardized amplitude of low-frequency
BOLD signal fluctuations (sALFF). Images represent slices near the mid-sagittal region (right and left 9.25mm in MNI space). (a) mean
AV45-SUVR (standardized uptake value ratio with the white matter as a scaling reference) color maps of 33 amnestic mild cognitive
impairment participants are shown along with the corresponding mean sALFF (standardized amplitude of low-frequency fluctuations)
color maps after the physiological signal cleaning procedures of (b) “no physiological regression”, (c) “WM/CSF regression”, (d) “WM/
CSF/GS regression” and (e) “aggressive AROMA”. Significant correlation clusters between AV45-SUVR and sALFF for each regression
procedure (b)-(e) are shown in the row below the mean sALFF images. Clusters are depicted in blue, as r values are negative (see
Table 2 for detailed statistical analysis data). AV45-SUVR maps are nearly identical if the cerebellum, instead of white matter, is used as
a reference, except the color scale range becomes 0 to 2. As more global variance is removed with each regression step, the
normalization of sALFF reveals local signal oscillations.
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Table 2. Correlation cluster analysis of sALFF and AV45-SUVR.

Cluster-ID Associated brain regions

Cluster

sizea Mean r� SD Max r

MNI coordinatesb

RL AP IS

No physiological

regression

#1 Right Lingual Gyrus, Right Declive,

Right Fusiform Gyrus, Right Middle

Occipital Gyrus, Right Inferior

Occipital Gyrus, Right Cuneus, Right

Culmen

1509 –0.47� 0.06 –0.68 –24 52 2

#2 Right Inferior Parietal Lobule, Right

Precuneus, Right Superior Parietal

Lobule, Right Superior Temporal

Gyrus, Right Supramarginal Gyrus,

Right Middle Temporal Gyrus

1432 –0.48� 0.07 –0.74 –30 50 38

#3 Left Precuneus, Left Superior Parietal

Lobule, Left Inferior Parietal Lobule,

Left Middle Temporal Gyrus

837 –0.47� 0.06 –0.72 10 62 26

#4 Left Fusiform Gyrus, Left Middle

Occipital Gyrus, Left Middle

Temporal Gyrus, Left Declive,

Left Inferior Occipital Gyrus

785 –0.47� 0.06 –0.67 28 90 –16

WM/CSF

regression

#1 Right Lingual Gyrus, Right Declive,

Right Fusiform Gyrus, Right Middle

Occipital Gyrus, Right Cuneus, Right

Culmen, Right Inferior Occipital

Gyrus

1538 –0.46� 0.05 –0.66 –8 80 –14

#2 Left Middle Occipital Gyrus, Left

Fusiform Gyrus, Left Declive, Left

Middle Temporal Gyrus, Left Inferior

Occipital Gyrus

1070 –0.47� 0.06 –0.72 28 90 –16

#3 Left Precuneus, Left Superior Parietal

Lobule, Left Inferior Parietal Lobule,

Left Supramarginal Gyrus, Left

Middle Temporal Gyrus

808 –0.46� 0.06 –0.69 38 66 24

#4 Right Superior Parietal Lobule, Right

Precuneus, Right Inferior Parietal

Lobule

704 –0.49� 0.07 –0.73 –18 62 46

WM/CSF/GS

regression

#1 Right Lingual Gyrus, Right Declive,

Right Fusiform Gyrus, Right Cuneus,

Right Middle Occipital Gyrus, Right

Inferior Occipital Gyrus, Right

Culmen

1762 –0.46� 0.05 –0.67 –22 92 0

#2 Left Middle Occipital Gyrus, Left

Declive, Left Fusiform Gyrus, Left

Middle Temporal Gyrus, Left Inferior

Occipital Gyrus, Left Uvula

1069 –0.47� 0.06 –0.73 28 90 –16

#3 Right Superior Parietal Lobule, Right

Precuneus, Right Inferior Parietal

Lobule

567 –0.47� 0.06 –0.68 –16 62 56

#4 Left Superior Parietal Lobule, Left

Inferior Parietal Lobule, Left

Precuneus

356 –0.47� 0.06 –0.69 14 60 64

Aggressive

AROMA

#1 Left Precuneus, Left Cuneus, Left

Inferior Parietal Lobule, Left Angular

Gyrus, Left Middle Temporal Gyrus,

Left Superior Parietal Lobule

536 –0.46� 0.06 –0.71 38 64 38

(continued)

Scheel et al. 883



are depicted for each regression procedure at these spe-
cific voxel locations. Figure 4 (a) shows the violin plots
of the r-value distributions of significant voxels from
the “no physiological regression” procedure with mean
and standard deviations as follows: �0.47� 0.06 (“no
physiological regression”), �0.45� 0.07 (“WM/CSF
regression”), �0.43� 0.08 (“WM/CSF/GS regression”)
and �0.32� 0.13 (”aggressive AROMA”). The
Kruskal-Wallis test yielded a v2¼ 3.9� 103 with
p< 0.001. All paired Mann-Whitney U-tests were
significant.

Figure 4 (b) shows the opposite effect, depicting the
violin plots with r-value distributions of the significant
voxel population from the “aggressive AROMA” pro-
cedure. The r-value means and standard deviations at
these voxel locations corresponding to each regression
procedure are: �0.37� 0.14 (“no physiological
regression”), �0.36� 0.13 (“WM/CSF regression”),
�0.38� 0.13 (“WM/CSF/GS regression”) and
�0.46� 0.06 (“aggressive AROMA”). The Kruskal-
Wallis test yielded a v2¼ 3.11� 102 with p< 0.001.
All paired Mann-Whitney U-tests were significant
except the one between “no physiological regression”
and “WM/CSF regression”.

For the AAL atlas-based analyses across brain
regions, the mean Fisher-z transformed correlation
between sALFF and AV45-SUVR within the brain
for the “no physiological regression” procedure is
r¼�0.28� 0.12 (z¼�5, p< 0.001), for the “WM/
CSF regression” procedure r¼�0.20� 0.11 (z¼�5,
p< 0.001), for the “WM/CSF/GS regression” procedure
r¼�0.19� 0.09 (z¼�5, p< 0.001) and for the
“aggressive AROMA” procedure r¼�0.11� 0.13
(z¼�3.6, p< 0.001). The Kruskal-Wallis test across
regression procedures yielded a significant v2 of 25.94
(p< 0.001). All paired Mann-Whitney U-tests were sig-
nificant except the one between “WM/CSF regression”
and “WM/CSF/GS regression”. See Figure S7 for
details.

Discussion

The main finding of this study is the observation of
significant negative correlations between the sALFF
of rs-fMRI BOLD signals and brain amyloid deposi-
tion measured with PET AV45-SUVR in regions asso-
ciated with default-mode and visual networks in aMCI
patients. We have also shown that stepwise removal
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Figure 3. Correlation of brain amyloid-b deposition and the amplitude of low-frequency BOLD signal fluctuations (sALFF) for “No
physiological regression” Cluster #2 (Table 2). Depicted are scatterplots for each physiological/vascular regression procedure, left to
right: (a) “no physiological regression”, (b) “WM/CSF regression”, (c) “WM/CSF/GS regression”, and (e) “aggressive AROMA”. Blue
crosses represent the 33 subjects, using mean sALFF and mean AV45 within this cluster. The plots show reduced correlation strength
from (a) to (d). Statistical p values were derived from 10,000 random permutations. For scatterplots of the remaining significant
clusters see Supplementary Figures 2–5.

Table 2. Continued.

Cluster-ID Associated brain regions

Cluster

sizea Mean r� SD Max r

MNI coordinatesb

RL AP IS

#2 Right Lingual Gyrus, Right Cuneus,

Right Declive, Right Inferior Occipital

Gyrus, Right Fusiform Gyrus

408 –0.47� 0.06 –0.64 –18 74 –8

aCluster size is the number of voxels with a voxel size of 2� 2� 2mm at a corrected p� 0.05.
bMNI coordinates are shown at maximum intensity with RL: right-left; AP: anterior-posterior and IS: inferior-superio.
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of the upper-stream physiological/vascular signals

reduced the correlation strength between sALFF and

AV45-SUVR at these regions. However, even the most

intensive upper-stream physiological/vascular signal

regression procedures implemented in this study did

not completely abolish the negative correlations

between sALFF and AV45-SUVR in regions associat-

ed with default-mode and visual networks. These find-

ings suggest low-frequency upper-stream cerebral

arterial pressure, as well as blood flow fluctuations,

are transmitted into the cerebral microcirculation,

where they may play an important role in brain Ab
deposition.35 Conversely, our data also support the

hypothesis that local neuronal activity fluctuations

contribute to Ab homeostasis, independent of the

upper-stream vascular effect.
Further evidence of the anti-correlative relationship

between fMRI fluctuation amplitude and Ab deposi-

tion was given by our correlation analyses between

sALFF and AV45-SUVR within each subject brain,

across the 116 AAL brain regions for each regression

procedure. We found the correlation strength between

sALFF and AV45-SUVR was reduced as more cardio-

vascular signals were regressed out. This finding

demonstrated a significant effect of cardiovascular

regression on this correlation. Even after the most

stringent aggressive AROMA regression procedure, a

significant within-brain anti-correlation between

sALFF and AV45-SUVR remained. As all within-

brain correlations were significantly negative, we can

interpret that globally, high BOLD fluctuations are

associated with low Ab deposition and vice versa.

This relationship was strongest when no cardiovascular

regression was performed, implying a strong cardiovas-

cular contribution to Ab deposition while not being its

sole determinant.
Furthermore, supplementary data analyses revealed

trends for lower sALFF, higher AV45-SUVR and

stronger anti-correlation between sALFF and AV45-

SUVR for APOE4 carriers (see Supplementary

Material). Below, we discuss the potential mechanisms

and methodological considerations.

Potential mechanisms

Brain metabolic waste products, including Ab, are

cleared partly via the recently identified brain glym-

phatic system.13,64 This system is a highly organized

brain metabolite transportation system between brain

interstitial fluid (ISF), cerebrospinal fluid (CSF), and

the cerebral vasculature.13,64 One theory proposed that

CSF enters the perivascular spaces from the
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Figure 4. Impact of stepwise regression of upper-stream vascular effects on the correlations between brain amyloid-b deposition and
the amplitude of low-frequency BOLD signal fluctuations (sALFF) in the significant clusters identified with “no physiological
regression” (a) and “aggressive AROMA” (b). Stars on brackets denote significance levels of paired Mann-Whitney U-tests with
*p� 0.05, **p� 0.01, ***p� 0.001. Fisher z transformed r-value distributions shown in violin plots: (a) Using the r-values of all voxels
within the significant clusters reported in Table 2 under “no physiological regression”. This comparison shows a stepwise decrease
of negative correlation magnitude as more aggressive physiological signal removal procedures were applied, suggesting that
BOLD-fluctuations at these voxel locations are more driven by upper-stream vascular effects; (b) Using the r-values of all voxels within
the significant clusters reported in Table 2 under “aggressive AROMA”. This comparison shows a stepwise increase of negative
correlation magnitude as more aggressive physiological signal removal procedures were applied, suggesting that BOLD fluctuations
at these voxel locations are more likely driven by neuronal activity.
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subarachnoid space and is propelled deep into the

brain by arterial pulsatility. The CSF subsequently

enters the neuropil via the astrocytes AQP4 water

channels. It then mixes with brain ISF in the extracel-

lular space and leaves the brain, along with brain waste

products via the perivenous space into the systemic

glymphatic system.13 Conversely, other studies have

shown that brain waste products also can be cleared

via backflow through the periarterial basement space.64

Regardless of specific vascular clearance pathways,

cerebral arterial pulsatility has been proposed as a

key driver of brain waste clearance through these path-

ways.14 Furthermore, a recent study showed that spon-

taneous cerebral arteriolar vasomotion at a frequency

of 	0.1Hz was correlated with paravascular clearance

of Ab in awake mouse brains (van Veluw et al. Neuron

2020), while MRI studies also suggest that low-

frequency waves in the CSF of 	0.02 and	 0.05Hz

are likely related to brain Ab clearance.65,66 In this

regard, our previous study has demonstrated that

brain BOLD signal fluctuations at the regions associ-

ated with the default-mode and the visual networks

have similar spectral distribution to the fluctuations

of systemic blood pressure and CBF velocity measured

from the middle cerebral artery, suggesting these

upstream vascular signals may transmit downstream

into the cerebral microcirculation and impact Ab
clearance.35

The present study extended these previous studies by

showing that significant negative correlations exist

between spontaneous low-frequency BOLD fluctua-

tions and brain amyloid deposition, measured using

PET AV45-SUVR, in default-mode and visual net-

works in aMCI patients. These findings taken together

with the previous studies discussed above suggest that

hemodynamic fluctuations transmitted from the upper-

stream cardiovascular and cerebrovascular systems

into the cerebral microcirculation may influence Ab
homeostasis in individuals with elevated risk for AD.

Consistent with this hypothesis, we have found that

age-related carotid artery stiffness was associated pos-

itively with brain Ab burden in aMCI patients, suggest-

ing cerebral arterial stiffening may attenuate the

transmission of arterial pressure and blood flow oscil-

lations into the brain, leading to a reduction of brain

amyloid clearance.11,67

Interestingly, even with the most intensive upper-

stream physiological/vascular signal removal proce-

dure implemented in this study, negative correlations

between sALFF and AV45-SUVR were still present in

default-mode and visual regions. These findings suggest

that local neuronal activity fluctuations might also pre-

vent brain Ab deposition.

Methodological considerations

For calculating the PET AV45-SUVR, we chose

white matter (WM) instead of the more traditional

cerebellum as the reference for normalization. The

comparison between reference regions has been com-

prehensively discussed by Brendel et al.61 Nevertheless,

we repeated our analyses with the cerebellum as the

reference for AV45-SUVR calculation, finding the

same trend of negative correlation between local

sALFF and AV45-SUVR. See Supplementary

Material for a detailed discussion regarding the refer-

ence for AV45-SUVR calculation.
The mean sALFF images in Figures 2 and S6 show a

strong preprocessing effect. As more and more global

variance is removed through the different regression

procedures, the normalization of ALFF to sALFF
can reveal changes in local fluctuations. The different

noise regression models all had inherent motion con-

found modeling, yet the amount of physiological/vas-

cular regression varied. While WM and cerebrospinal

fluid (CSF) signals are widely accepted to represent

physiological/vascular signal components,55 the

much-debated global signal has recently been shown

to also represent a substantial amount of physiologi-

cal/vascular signals.56,68 The data-driven “ICA-

AROMA” approach creates noise-regressors that are

closely tailored to the data,59 making it the most

demanding regression model in this study.

Limitations and strengths

Only 33 aMCI participants were available for this

study and thus the statistical power for voxel-wise anal-

yses was limited. In addition, no healthy controls were

available to study a broader range of populations.

However, our voxel-wise analyses have clearly shown

an anti-correlation between sALFF and AV45-SUVR.

Changes in the correlation strength due to different
regression procedures were further presented with

cluster-based correlation analyses. However, a causal

relationship between brain Ab deposition and BOLD

fluctuation quantified by ALFF cannot be determined

from this preliminary cross-sectional investigation.
The discriminative power of AV45 imaging in AD

has been proven in many studies, nonetheless, there are

limitations.69 PET images inherently contain a high

level of spatial blurring, in addition to a relatively

low spatial resolution provided by signal detection.

Additionally, the high level of non-specific binding to

white matter leads to segmentation and registration

inaccuracies at the border between gray and white

matter.70 Especially in the situation of grey matter

atrophy, commonly observed in AD, the signal at the

cortical grey matter is inevitably contaminated by white
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matter signal, resulting in reduced specificity. Using the
advanced FreeSurfer segmentation from the anatomi-
cal MRI recordings, paired with the manually super-
vised alignment of AV45 PET images to the anatomical
images, we can reduce these segmentation issues in
AV45 PET images.

The challenging step of normalizing brains of a
study population with pronounced atrophy and ventri-
cle enlargement into a common space was mostly over-
come using the FreeSurfer based non-linear
transformation. Visual assessment confirmed good
normalization results for cortical areas, only some sub-
cortical and white matter areas suffered from non-
linear stretching artifacts. However, all reported results
are within the cortical regions. Nonetheless, the minor
normalization artifacts of subcortical and WM regions
might have contributed to false negative results in the
subcortical regions.

RS-fMRI with a high sampling rate, such as the 0.1 s
TR used by Raitamaa and colleagues,71 might have
been more suited for frequency spectrum-based analy-
ses of cardiovascular signals within fMRI data. The
relatively long TR of 1.5 s in our rs-fMRI data placed
limitations on frequency spectrum-based analyses due
to the aliasing of cardiac signals and potentially respi-
ratory signals as well. Nonetheless, even with these
restrictions, employing the presented differential
regression procedures allows us to at least partially
overcome these limitations and approximate the car-
diovascular signals for the aim of this study. In addi-
tion to motion derived residuals, the regressors
employed in this study represent cardiovascular signals
to a varying degree: CSF and WM signals should not
contain neurovascular reactivity and thus represent
mainly the effects of respiratory and cardiovascular
pulsatility and their respective aliases and harmonics
within the typical neurovascular frequency band.56

Furthermore, Xifra-Porxas et al.56 showed that about
60% of the global mean signal are represented by
upper-stream cardiovascular effects, thus making it a
suitable regressor, even though it bears the risk of par-
tially removing signals from neurovascular activity.
The aggressive AROMA regression, as the most strin-
gent regression procedure, finds a spatially independent
decomposition of the data and classifies each compo-
nent as either a noise related or not noise related com-
ponent. Noise related components in AROMA are
classified based on their resemblance of cardiovascular,
respiratory, motion, high-frequency, and other struc-
tured noises in the data. Components that were classi-
fied as noise were subsequently regressed from the
data. As these regressors were directly defined by the
data, the assumption was that after the aggressive
AROMA procedure, the remainder resembles neuro-
vascular activity related signals with random noise.

Concerning the model order of the respective regres-

sion procedure, aggressive AROMA has the highest

number of regressors.
With only seven of 33 subjects carrying the APOE4

gene, statistical analyses regarding genotype were

underpowered and thus could only show trends (see

Supplementary Material). However, these trends are

very promising and warrant further studies with

larger sample sizes.

Conclusions

This study has shown that local spontaneous BOLD

signal fluctuations are negatively associated with

brain Ab accumulation measured with amyloid PET

in aMCI subjects who are at a high risk for AD.

Furthermore, we found that physiological signal

regression decreased the cluster size of negative corre-

lations between low-frequency BOLD signal fluctua-

tion and PET AV45-SUVR. Nevertheless, the most

intensive physiological/vascular regression procedures

did not completely abolish the correlations between

BOLD signal fluctuations and PET AV45-SUVR.

Therefore, these findings collectively suggest that

both cerebral hemodynamic fluctuations and local neu-

ronal activity play important roles in brain Ab homeo-

stasis in older adults with aMCI.
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