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Abstract

Interpretability of machine learning (ML) models represents the extent to which a 

model’s decision-making process can be understood by model developers and/or end users. 

Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are 

usually hard to interpret, due to the high-dimensional feature space and the complexity of models. 

As interpretability is critical for the transparency and fairness of ML models, several algorithms 

have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of 

these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer 

metastasis prediction model using a very small number of biologically interpretable features, and 

a simple yet novel model interpretation approach that can provide personalized interpretations. 

In addition, we contributed, to the best of our knowledge, the first method to quantitatively 

compare different interpretation algorithms. Experimental results show that our model not only 

achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency 

than state-of-the-art interpretation methods. Importantly, our interpretation results can improve 

the generalizability of the prediction models. Overall, this work provides several novel ideas to 

construct and evaluate interpretable ML models that can be valuable to both the cancer machine 

learning community and related application domains.
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1 INTRODUCTION

Machine Learning (ML) models have been widely used for decision making in different 

fields such as disease diagnosis and image classification. With proper training, ML models 

are often capable of capturing complex linear or non-linear relationships among features, 

with predictive performance comparable or superior to domain experts. However, as shown 

in several examples, ML models tend to have biases that can lead to, for example, gender / 

socioeconomic unfairness, and other undesirable behaviors, which are often too subtle to 

be detected, especially for users without a deeper understanding of the ML algorithms or 

training/predicting processes [1], [2]. In addition, in many applications, the prediction is not 

the end point; rather, a user may be interested to understand the cause of a prediction, and 

design intervention strategies to improve the outcome in the future (e.g., disease status). 

When a ML model is complex, it may be difficult for a human to understand the decision 

process. Therefore, it is important for a classification model to provide an interpretation, 

or explanation, of each prediction, so that a human can understand the prediction process 

and/or the basis of the decision, which helps to detect possible biases and artifacts from the 

ML model, and to better utilize the knowledge learned from the prediction model to achieve 

desired outcomes in the future [3].

The extent for a ML model to have such human-friendly interpretations is referred to as the 

interpretability of the model. Model interpretability can come from two sources: (1) intrinsic 

model interpretability and (2) post hoc model interpretability. Intrinsic model interpretability 

is obtained from ML models that readily provides the underlying relationships within the 

data. These include, for instance, sparse linear models and decision trees with a limited 

number of nodes, where a user can understand the model parameters in a relatively 

straightforward way or is able to simulate the entire decision process. On the other hand, 

post hoc interpretability comes into play when an ML model has been trained and its 

decision process is difficult to understand or simulate due to either the complexity of 

the decision function or the large number of features. In these cases, interpretations can 

be provided by a separate interpretation model on top of the classification models. For 

example, several interpretation methods have been proposed in recent years to provide 

a global or local explanation of neural networks [4], [5], [6], [7], [8]. More recently, 

model agnostic post hoc interpretation methods, which can provide interpretation to a wider 

range of classification models, have become more popular (for example, [9], [10], [11], 

[12], [13]). Post hoc interpretations is further categorized into individual-level and dataset-

level interpretations. Individual-level interpretation is useful when a practitioner wants to 

understand the prediction of a particular instance by the model [9], [10], [12], [13]. A 

practitioner is mostly interested in identifying which features and/or feature interactions led 

to that particular prediction. In contrast, dataset-level interpretation provides a more general 

view of the relationships learned by an ML model on an entire dataset [11]. By analyzing the 

interpretation obtained from the entire dataset, a practitioner can potentially identify if the 

ML model has any bias or which features are most important and validate through his/her 

domain expertise [14].

In recent years, ML models have been used for the prediction of cancer outcomes using 

whole-genome gene expression or other omics data (for example, [15], [16], [17], [18]). 
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Although these models provided good prediction accuracy, they usually lack interpretability, 

and are likely biased or overfitted, due to the high dimensional feature space. To resolve 

this deficiency, in this study, we propose an effective method to construct an interpretable 

classification model for the prediction of breast cancer metastasis, which is one of the 

leading causes of cancer-related deaths [19], [20]. Our method starts with a robust 

parameter-free graph clustering algorithm to identify highly compact biologically significant 

gene clusters as features, which make simple interpretation possible. We then propose a 

novel post hoc interpretation algorithm, Probability Changed-based Interpretation (PCI), to 

obtain both individual-level and dataset-level interpretations for any classification model. 

Considering the lack of existing standards in evaluating interpretation methods, we designed 

a simple metric to evaluate the quality of the interpretation based on the recently proposed 

PDR evaluation framework [14]. Experimental results on a large breast cancer patient cohort 

showed that the unsupervised learning approach resulted in a significantly reduced number 

of features, while achieving similar or better accuracy than gene-based features. Importantly, 

PCI outperformed several existing interpretation methods with respect to the robustness 

measure of the interpretation results, and identified biologically relevant pathways on both 

individual level and dataset level. Finally, we show that the interpretations obtained by 

PCI as well as other interpretation methods can be utilized to design better classifier for 

improved prediction performance. While our method is only demonstrated in breast cancer 

metastasis prediction, the design is fairly general and can be easily adapted to many other 

applications in medical field and beyond.

2 MATERIALS AND METHODS

2.1 Engineering biologically relevant and interpretable features

To construct interpretable classification models for metastasis prediction using whole-

genome gene expression data, we aimed to significantly reduce the number of features 

without sacrificing the classification performance. As genes form coordinated functional 

groups / pathways, classification models are usually more robust on pathway level than 

on individual gene level. While there are many known pathways in existing databases, it 

has been shown that using known pathways as features does not necessarily lead to more 

accurate predictive models [21]. In addition, the number of features remains large, due to 

extensive overlap between different pathways, which makes interpretation still a difficult 

task. Therefore, we employed an in-house network-based clustering algorithm to identify 

densely connected subnetworks, also known as communities, to represent high-quality gene 

clusters [22]. The algorithm constructs a symmetric k-nearest neighbor gene co-expression 

network, where two genes are connected if they are the top k nearest neighbors of each 

other, measured by the Pearson correlation coefficient of their expression profiles across 

all patients. The algorithm has the advantage of determining the optimal k in network 

construction by optimizing the modularity difference between actual and randomized data, 

and subsequently can estimate the number of clusters by itself [22]. It is also important to 

note that many genes were left unclustered due to the symmetric requirement of the network 

construction. To further reduce the number of features, genes not in any cluster or in small 

clusters with less than 10 genes were discarded. The remaining gene clusters were used as 
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features, and the feature value of a gene cluster was defined as the average expression of the 

genes belonging to that cluster.

2.2 Probability Change-based Interpretation (PCI)

To capture the relationship between feature values and class labels, we perturb the feature 

values in the training or testing data, one feature and one instance at a time, and use 

the change in the prediction result as a measure of the importance of the feature towards 

the prediction. The idea can be applied to any modern classification algorithm that is 

capable of providing numerical predictions, such as the probability for each class label, 

and therefore belong to the class of post hoc interpretation methods. The change can be 

measured both on the entire dataset level and on individual instance level, representing 

dataset-level and individual-level interpretations, respectively. See section 2.2.4 for the key 

differences between our method and related methods.

2.2.1 Data Perturbation—Let Xm×n be a gene expression matrix with m instances and 

n features, and y the label of each instance. Let Γ be a classification algorithm, and ΓX,y (or 

ΓX for simplicity) be the classification function trained on X and y. Given an instance x as 

input, the classification function must provide as output a class predicted probability (CPP), 

which is the probability of x being a particular class obtained from the prediction model. For 

simplicity, only binary classification is described here; however, generalization to multi-class 

is possible. Let t1×n be a test instance not in X and ti the i-th element of t. Then, Pn×n is the 

perturbation matrix whose elements pij are given by:

pij =
tj if i ≠ j;
ν if i = j

(1)

In order words, the i-th row of P, pi, contains test instance t with the i-th feature set to ν, 

a value that effectively nullifies the feature’s contribution towards prediction. In our study, 

gene expression values are log ratios, and therefore ν is set to 0. When absolute values of 

gene expression are used as features, ν can be set as the average value of the feature from all 

instances.

2.2.2 Individual-level interpretation—Individual-level interpretation captures the 

impact of each feature on the prediction result of an individual instance. The individual-level 

interpretation for the prediction of t by ΓX is a vector r1×n, whose elements are defined as 

follows:

ri t, ΓX = sign ti − ν × ΓX(t) − ΓX pi (2)

Here, r1×n is the individual-level interpretation based on function ΓX, where the contribution 

of a feature towards the final prediction for that test instance is quantified by ri and the 

sign indicates the positive or negative contribution of a feature. We also define unsigned 

interpretation, r1 × n
u , whose elements are defined by:
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riu t, ΓX = ΓX(t) − ΓX pi (3)

2.2.3 Dataset-level interpretation—Dataset-level interpretation is a measurement of 

feature importance score (FIS) on an entire dataset. We first obtain individual-level 

interpretation of each of the instances belonging to the entire dataset by leave-one-out cross 

validation. Final FIS for the entire dataset is a vector s1×n, whose element si is calculated by 

averaging the unsigned individual-level interpretation of each instance of the dataset:

si(X, Γ) = 1
m ∑

j = 1

m
riu xj, ΓX\xj (4)

where xj is the j-th instance from X, and ΓX\xj is the classification function learned from the 

training data with xj removed from X.

2.2.4 Related methods—In essence, the idea of PCI is similar to several 

existing interpretation algorithms, namely, Individual Conditional Expectation (ICE) [12], 

Accumulated Local Effects (ALE) [13], Permutation Feature Importance (PermImp) [11], 

and Local Surrogate (LIME) [9]. However, the key difference lies on how data is perturbed, 

and how the change is measured and/or presented as an interpretation. For example, both 

ICE and ALE implement a series of perturbations in a grid search fashion, and present the 

changes as a set of plots showing the relationship between feature values and the prediction 

results, for each feature and each patient. The outcome is more suitable to be read by ML 

experts / model developers for diagnosis of the underlying prediction model rather than by 

an end user of the model such as domain experts or patients for particular prediction results. 

On the other hand, PermImp attempts to summarize the change of prediction results across 

a range of feature values and all instances. As a result, it will not provide any interpretation 

for the prediction of an individual instance after the model is deployed. In contrast, our 

method provides both dataset-level and individual-level interpretations, which can be useful 

for both ML experts / model developers and end users. Finally, both LIME and PermImp 

rely on random perturbation of feature values, which can result in unrealistic input instances 

and consequently inaccurate interpretations. In comparison, our method provides a more 

controlled feature perturbation that is tied with the meaning of the features which is more 

realistic and can be understood by domain experts and users. For example, in the case of 

gene expression-based disease diagnosis, we choose to replace the original feature values 

(expressed as log ratios) to zero, which is essentially nullifying the impact of the feature on 

the disease outcome. Our method will be compared with both LIME and PermImp in the 

experimental results section to demonstrate the effectiveness of this strategy.

2.3 Evaluation of interpretation methods under the PDR (Predictive, Descriptive and 
Relevancy) framework

While several post hoc interpretation methods have been proposed, it is often difficult to 

evaluate the usefulness of such methods in real applications. The evaluations of existing 

interpretation methods often involve human subjects and are based on carefully crafted 
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datasets with “ground truth” interpretations, which do not necessarily generalize to other 

datasets. In fact, the exact definition of interpretablity is often obscure and domain 

dependent [23]. To introduce a common ground for the development and evaluation 

of interpretation methods, several studies attempted to define the main requirements of 

interpretable models, which can be applied to evaluate both inherently interpretable ML 

models as well as interpretations provided by interpretation methods [14], [24], [25]. 

The recent proposed PDR framework [14] suggests that an interpretable model (and its 

interpretations) needs to satisfy three requirements: predictive accuracy, descriptive accuracy 

and relevancy, which we will briefly describe below. It is important to note that, while the 

PDR framework defines how the model should be evaluated, it does not provide specific 

measurements for evaluation, especially for descriptive accuracy and relevancy. In this work, 

we attempt to provide several simple measures that, taken together, provide a quantitative 

and relatively domain-independent approach to evaluate interpretation methods.

2.3.1 Evaluation of predictive accuracy—Predictive accuracy measures how well a 

classification model (interpretable or not) captures the underlying relationships between the 

features and the labels [14]. A classification model has to provide acceptable prediction 

accuracy on unseen data to gain confidence from the end-users. Therefore, any effort 

attempting to improve the interpretablity of a classification model should not be at the 

cost of predictive performance. For post hoc interpretation approaches, this is generally not 

an issue because interpretation can be supplied to any classification model. However, it 

is important to note that, even with post hoc interpretation method, classification models 

utilizing less features will be more likely to achieve better interpretability. In our experiment, 

therefore, we compared the AUC of multiple classification models utilizing different 

features, including gene features and different versions of gene clusters as features.

2.3.2 Evaluation of descriptive accuracy—Descriptive accuracy defines the extent 

that an interpretation (implicitly from a classification model or explicitly from a separate 

interpretation model) helps a practitioner to better understand the relationships captured 

by an ML model [14]. While the definition of descriptive accuracy is intrinsically domain 

dependent, and a direct evaluation would involve human subjects, we propose an indirect, 

quantitative measure that can be easily computed. We believe that genuine interpretations 

should be relatively independent of the underlying classification algorithms, assuming the 

algorithms have sufficient predictive accuracy. As most interpretation models provide a 

single numerical value for each feature as an interpretation (for individual instances or on 

a dataset level), we hypothesize that the ranking of features from the interpretation of a 

test instance should be stable with respect to different classification algorithm. Therefore, 

we propose to measure descriptive accuracy using inter-classifier stability (ICS). The 

individual instance-level ICS is measured by the average Spearman correlation coefficient 

(i.e., SP_CC) between the individual-level interpretations from two classification algorithms, 

Γ1 and Γ2.

ICSI = 1
m ∑

j = 1

m
SP−CC(r(xj, Γ1

X\xj), r(xj, Γ2
X\xj)) (5)
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In addition, we define the inter-classifier stability using unsigned interpretations, which may 

be necessary as some interpretation method do not include signs as part of the interpretations 

such as Random forest. Additionally, finding the top most significant features is useful in 

many applications where sign is not considered.

ICSUI = 1
m ∑

j = 1

m
SP−CC(ru(xj, Γ1

X\xj), ru(xj, Γ2
X\xj)) (6)

Finally, inter-classifier stability can be measured for dataset-level interpretations:

ICSD = SP−CC s X, Γ1 , s X, Γ2 (7)

2.3.3 Evaluation of relevancy—Relevancy is described as that an interpretation 

method should not only provide sufficient transparency but also this transparency should 

enable domain experts to understand the complex relationships within the data and to 

diagnose the ML model in identifying any potential biases in the ML models [14]. 

In our case, evaluation of relevancy depends on whether the interpretation is able to 

identify important features which are biologically relevant to the progression of the 

breast cancer metastasis. This is evaluated from several different perspectives. (1) First, 

feature-level relevancy is evaluated by the statistically significant enrichment of biologically 

relevant functional terms (e.g., Gene Ontology terms or KEGG pathways) in the gene 

clusters. (2) Second, to evaluate the relevancy of dataset-level interpretations, features 

with the highest feature importance scores are inspected for their known involvement 

in the classification problem at hand. (3) Finally, it is reasonable to assume that, if 

the individual-level interpretation provided by an interpretation method is truly relevant, 

the interpretation for that same instance from different underlying classification functions 

should be similar. Consequently, we hypothesize that, given an interpretation method with 

reasonable descriptive accuracy (as measured above), instances with lower inter-classifier 

stability are ones that are hard to be modeled by the current features and therefore may have 

poor generalizability. Therefore, by removing these instances from the training data can help 

build models with better prediction performance, especially under cross-dataset settings. 

Utilizing this idea, we ranked each patient in our training data by its average inter-classifier 

stability across several pairs of classification algorithms, and removed those with the lowest 

stability scores and rebuilt a classifier using the remaining “purified” data, and tested the 

performance of the model using a separate patient cohort that was not used during any stage 

of the model training.

2.4 Experimental settings

Amsterdam Classification Evaluation Suite (ACES) [26], a combined breast cancer gene 

expression dataset from 12 different patient cohorts was used for the model development 

and the majority of the comparative evaluation (cohort details are provided in Table 1). The 

class label of a patient was determined as non-metastatic if the patient survived without 

cancer recurrence for at least 5 years after the first occurrence of cancer. ACES is composed 

of 1616 patients, among which 455 is metastatic. There were 12,750 gene probes in the 
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ACES dataset. To evaluate the prediction accuracy of the gene-cluster, two cross-validation 

(CV) approaches were employed. In the first approach, 10-fold CV (10-FCV) was repeated 

on the whole dataset for 10 times resulting in 100 folds. In the second approach, leave-

one-study-out cross-validation (LOSO-CV) where one cohort is kept as a test set and the 

remaining ones are used as the training set. Five different classifiers are used in this study, 

including Random Forest (RF), Logistic Regression (LR), linear kernel Support Vector 

Machine (lSVM), radial basis function kernel SVM (rSVM) and multiple layer perceptron 

based neural network (NN). Neural network was designed to have a single layer consisting 

of neurons similar to the number of features in the dataset to keep the architecture of the 

neural network similar across different comparisons. The default settings of those models 

from the Sklearn package in Python [27] were used in the evaluation. Area Under the ROC 

Curve (AUC) [28] was used as the evaluation metric due to the unbalanced dataset.

To evaluate relevancy of the interpretation methods, we used another dataset, NKI [29], to 

test the classification models trained on ACES gene clusters. This dataset was not used for 

any kind of model development to avoid potential information leak. In NKI, there were 295 

patients among which 78 patients were metastatic. There were 11,658 gene probes in NKI. 

To enable using the classifier learned from the ACES dataset to make predictions for patients 

in the NKI dataset, genes from the clusters of ACES were mapped to the genes in the NKI 

dataset. A compatible expression dataset constructed from the average expression of the 

genes within the ACES clusters was created using NKI data without the missing genes.

2.4.1 Availability—A python implementation of PCI and the associated data for testing 

the algorithm are available at: https://github.com/nahimadnan/PCI.

2.5 Competing interpretation methods

We compared PCI with two well-known methods, LIME, and SHAP, for both descriptive 

accuracy and relevancy of the interpretations. For dataset-level interpretation comparison, 

two more approaches, Permutation Importance (PermImp) and Classifier feature importance 

score (Classifier_FIS), were included. Details on these interpretation approaches are given as 

follows.

2.5.1 LIME—LIME [9] aims to locally approximate an accurate but complex model, 

which is hard to interpret intrinsically. For a given test instance and a trained model, LIME 

generates a new dataset by accumulating different perturbations on that test instance and 

also the predictions from the trained model for the perturbations on the test instance. Then, 

LIME trains an interpretable model (i.e., linear regression model) on the new dataset and the 

coefficients from the trained linear regression model are the individual-level interpretation 

for that particular test instance. LIME implementation was downloaded from Github (https://

github.com/marcotcr/lime).

2.5.2 SHAP—SHAP is a model agnostic interpretation method based on the optimal 

shaply values obtained from a game theoretical approach [10]. Each feature plays a role into 

the final prediction for an instance where the game theory comes into play. For LR and RF 

models, the whole training data was used as the background for SHAP computation. For 
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kernel-based models (lSVM and rSVM models), we used kmeans on the training data for 

background to accelerate the processing of the individual-level interpretations. Dataset-level 

interpretation was generated by averaging the individual-level interpretations similar to PCI. 

SHAP implementation was downloaded from Github (https://github.com/slundberg/shap).

2.5.3 Permutation Importance (PermImp)—PermImp provides only dataset-level 

FIS. The feature importance is measured as the decrease in the prediction error when the 

feature values are permuted. We used the PermImp implemented in SKlearn [27].

2.5.4 Classifier feature importance score (Classifier_FIS)—For LR and lSVM, 

the coefficients from the classification model were directed used as FIS. Random Forest 

provides a FIS score for each feature by aggregating across all decision trees the feature’s 

contributions in decreasing the impurity in the dataset.

3 RESULTS AND DISCUSSION

3.1 Robust and biologically interpretable features

To construct interpretable classification models for breast cancer metastasis, we first aimed 

at obtaining a small number of comprehensible features which can provide comparable 

prediction performance as more complex models. To this end, we employed a community 

discovery algorithm to identify gene clusters as features (see Methods). Applying the 

algorithm to the ACES dataset, we identified a total of 328 clusters and more than 7000 

singletons. As the majority of the clusters have only two or three genes, we further filtered 

out clusters with fewer than 10 genes, resulting in only 37 clusters with between 10 and 

913 genes, covering about 4500 genes in total (Fig 1). To estimate the robustness of these 

gene clusters as features, we performed two additional clustering experiments. First, to 

comply with our classification model evaluation scheme, we obtained clustering results by 

randomly removing 10% of patients and repeated 100 times. In the second experiment, 

we repeatedly removed each of the 12 cohorts from the ACES dataset and performed 

clustering on the resulting patients. In both cases, the clustering results are very similar to 

the clustering results from the whole dataset, with an average adjusted rand index similarity 

score 0.925 and 0.916, respectively. The average expression levels for gene clusters from 

these perturbed clusters are also extremely similar to the values in the whole dataset-based 

clusters. Therefore, the 37 gene clusters obtained from the whole dataset are used as features 

in this paper, unless noted otherwise.

As shown in Fig. 1, many of the 37 gene clusters clearly exhibit subtype-specific expression 

patterns, and there are noticeable difference among the expression patterns for different 

subtypes. To identify the biological relevance of these gene clusters, we performed Gene 

Ontology (GO) enrichment analysis using David Bioinformatics Resources web application 

[30]. GO analysis results are shown in Table 2. Most clusters have statistically significantly 

enriched GO terms, including many well known cancer-related biological processes and 

signaling pathways, such as cell cycle, DNA repair, antigen binding, focal adhesion, defense 

response, histone core, T-cell receptor, FC-epsilon, inferon-gamma mediated, Wnt, NIK/

NF-kappaB and PI3K-Akt [31]. Several significantly enriched GO terms are less well 

known, but are not without evidence, to be related to cancer cells. For example, oxidative 
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phosphorylation and translation initiation have been reported to be dysregulated in cancer 

cells [32], [33]. Therefore, the gene clusters identified from the patients appear to be highly 

relevant, and can be potentially used for predicting cancer outcomes including metastasis. 

As many of these gene clusters represent well-known biological processes or pathways, 

the reduced number of features easily aids the ability for domain expert to interpret the 

classification models / results.

To further analyze the clustering stability among the clusters of fold specific training data, 

we computed the mean adjusted rand index between every pair for 10-FCV (i.e., 100 folds) 

and LOSO-CV (i.e., 12 folds). The heatmap of the adjusted rand index between clusters 

of each pair of folds of 10-FCV and LOSO-CV are shown in Fig. 2. respectively. The 

mean adjusted rand index of the upper triangle for both the 10-FCV and LOSO-CV is 0.89 

and 0.87 respectively, which indicates that the training specific clusters are stable among 

themselves demonstrates that the clustering algorithm is robust.

3.2 Predictive accuracy of gene cluster-based classifiers

While interpretablity plays an increasingly important role in the development of ML models, 

it must be emphasized that this needs to be done without sacrificing prediction accuracy. 

Therefore, we evaluated the prediction performance of various types of classifiers using gene 

clusters as features. For comparison, a baseline model was also constructed with all genes 

from ACES dataset as features. Performance was measured with AUC using 10-fold cross 

validation (10-FCV) as well as leave-one-study-out cross validation (LOSO-CV) settings. 

In addition, to avoid potential bias caused by gene clustering using all instances including 

testing instances, we also evaluated the prediction performance of classifiers trained on the 

clusters obtained from training data alone, as well as classifiers trained on the largest 37 

clusters from training data alone.

The prediction performance of five classification algorithms using different feature types 

are given in Fig 3. The results clearly show that models trained on features from the 37 

gene clusters are able to obtain similar (RF and rSVM models) or even better (LR and 

lSVM models) and poor (NN model) prediction accuracy than the models trained on gene 

features, in both 10-FCV and LOSO-CV schemes. To keep the NN architecture similar 

across different feature types, one middle layer of neurons was kept equal to the number of 

features in the feature type. The good accuracy of gene features indicates that the layer with 

large number of neurons (i.e., 12750 neurons) were able to obtain better accuracy compared 

to 37 gene clusters where there was one layer with 37 neurons. In addition, the classifiers 

trained on the 37 gene clusters from training patients alone have almost identical prediction 

performance as the classifiers based on the 37 gene clusters from all patients, suggesting that 

there is minimum information leak in using all patients to derive gene clusters. On the other 

hand, the classifiers trained on the gene clusters from training data alone achieved similar 

performance as the classifiers based on all genes, which is understandable, as a large number 

of clusters contain less than three genes. Finally, non-linear models, i.e., RF, rSVM and NN, 

achieved slightly better performance than the two linear models, LR and lSVM, indicating 

the complex no-linear relationship of transcriptional regulation in cancer progression.
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3.3 Evaluation of descriptive accuracy using inter-classifier stability

The inter-classifier stabilities (ICS) of several algorithms are given in Table 3. As can 

be seen, PCI outperformed LIME and SHAP significantly on signed individual-level ICS 

for all classifier pairs. Measured by unsigned individual-level ICS, PCI achieved better 

stability in 6 out of 10 model combinations compared to LIME and SHAP, respectively. 

Although the prediction accuracy of 37 gene clusters of NN model was poor compared 

to the other features, both the signed and unsigned individual-level interpretations are 

consistent with the other classification algorithms suggesting the potential of PCI in 

providing robust individual-level interpretations regardless of the prediction accuracy of 

the classification algorithms. Therefore, it is evident that PCI can provide more robust 

interpretations compared to the existing methods; later, we will show that the individual-

level stability can be utilized to improve the classification model for better performance 

in cross-cohort prediction. On dataset level, PCI achieved three highest ICS score, LIME 

achieved four highest ICS score and the other three methods achieved three highest ICS 

score suggesting that no method is globally accurate in this comparison. Although PCI wins 

in three comparisons it provides highest ICS average score indicating the robustness of the 

PCI method in ICS on dataset level.

We also evaluated PermImp which is a model agnostic method that gives only dataset-level 

interpretations. We also used the feature importance scores (FIS) from three classifiers 

(LR, lSVM, and RF) directly as dataset-level interpretations. Interestingly, while the dataset-

level interpretations of PCI, LIME and SHAP were obtained by averaging individual-level 

interpretation vectors, they provided much better inter-classifier stability on the dataset level 

than PermImp and classifier FIS. This result suggests that the former three methods are 

able to correctly identify different features important for individual instances, independent 

of the underlying classifiers. In contrast the interpretations from PermImp and the Classifier 

FIS cannot distinguish the difference between individual instances and as a result, their 

dataset-level interpretations may have been biased by different training instances in different 

classifiers, leading to much lower inter-classifier stability. Using FIS from classifiers, good 

stability was achieved between LR and lSVM, which is expected as both classifiers use 

linear models and thus have similar coefficients. On the other hand, FIS provides very 

little stability when comparing the two linear models (LR, lSVM) with the no-linear model 

RF, even though they have similar prediction performance. This result therefore strongly 

advocates the use of interpretation methods for non-linear models, even when the model 

itself may provide some dataset-level importance measure.

3.4 Evaluation of relevancy of dataset-level interpretation via gene ontology analysis

Fig 4a shows the individual-level interpretation from PCI for an LR model on the ACES 

dataset. It can be observed that the interpretations for patients belonging to different 

subtypes have distinct patterns, which share some similarity with but are not identical to the 

expression patterns shown in Fig. 1. In addition, several features are common across almost 

all subtypes, but with opposite signs, which reflects the combination of the differential 

expression level of the gene cluster as well as the different metastasis potentials of different 

subtypes. To investigate whether the top features found by PCI are directly associated 

with metastasis, we aggregated the dataset-level interpretations from all five classifiers. As 
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shown in Fig 4b, Cluster 21, 7, 29, 4, 30 10, and 8 have the highest aggregated feature 

importance scores from RF, LR, lSVM, rSVM and NN models. Among these, Cluster 

7 and Cluster 4 are significantly enriched in well-known cancer cell hallmark pathways 

such as cell cycle and DNA repair, Cell adhesion molecules, and Jak-STAT signaling 

pathway [31]. In addition, Cluster 4 and Cluster 29 are enriched with several immune-

related pathways, such as antigen binding, antigen processing and presentation, and T cell 

receptor signaling pathways. Immune cells have known strong connections with cancer 

progression and metastasis [34], [35]. Cluster 10 is enriched in translational initiation, which 

is regulated in response to nutrient availability and mitogenic stimulation and is coupled 

with cell cycle progression and cell growth [36]. Recent studies have demonstrated that 

translation deregulation contributes to the metastatic phenotype through selective effects 

on the translation of mRNAs whose products are involved in various steps of metastasis 

including migration, invasion, angiogenesis, homing, and activation of survival loops at 

distal sites [33], [37].

Interestingly, while cluster 8 does not have any highly enriched pathways, four genes in 

the cluster has function in cilium (p-value = 0.01, Fisher’s exact test), which is an antenna-

like organelle that protrudes from most mammalian cells. Recent studies have shown that 

dysregualtion of cilium genes, such as EZH2, leads to metastasis [38], [39]. Cluster 21 

and 30 are both small, with 35 and 12 genes respectively. In particular, cluster 21 is 

consistently shown to be the most important features by PCI with all four classifiers. The 

most enriched pathways include chromatin remodelling (p-value = 0.0009, Fisher’s exact 

test) and angiogenesis (p-value = 0.01, Fisher’s exact test), both are well known to be 

associated with cancer progression. Angiogenesis, the recruitment of new blood vessels, is 

an essential component of the metastatic pathway [40]. Among the 12 genes in cluster 30, 5 

are involved in cell adhesion (p-value = 0.0002, Fisher’s exact test), which is one of the most 

well-known pathways involved in tumor migration and metastasis [41]. Therefore, these 

biological processes are strongly connected with breast cancer metastasis progression. One 

limitation of the gene set-based approach is that the identified important gene sets can be 

relatively large which makes it difficult to pinpoint to the key individual genes or designing 

personalized intervention strategies. In theory, it should be possible to further analyze the 

most important gene sets to identify individual genes (or smaller subsets of genes) for each 

patient, in a hierarchical manner. We will explore this possibility in future work.

3.5 Evaluation of relevancy of individual-level interpretation on its utility to improve 
model generalizability

While one of the main usability of interpretation is to understand the contribution of 

features in the final prediction for a specific test instance by an ML model, another exciting 

and challenging goal could be the improvement of prediction accuracy of the underlying 

model utilizing the interpretation method. We hypothesize that the interpretation method can 

help identify “bad” training instances that may limit the generalization of the model, the 

removal of which could result in better classifier in an independent test data. Our intuition 

is that a “good” instance would have very similar interpretations from an interpretation 

method among different classifiers. Based on this idea, Pearson correlation coefficient is 

calculated between individual-level interpretations from two classifiers (e.g., RF and LR) 
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for each instance in the ACES dataset. The average correlation coefficient across the six 

combinations of the four classifiers (i.e., RF, LR, lSVM and rSVM) is used as a measure 

of the interpretation stability of the instance. As shown in Figure 5, most instances have 

relatively high interpretation stability, while some instances have much lower stability. 

After removing 100 patients from the ACES dataset based on the lowest interpretation 

stability score, new classifiers were trained on the remaining instances using different 

classification algorithms. To observe the AUC improvement resulted in the classifiers, AUC 

is measured on an independent NKI dataset for models trained on all of the instances 

of ACES and models trained on the filtered instances of ACES. As shown in Table 4, 

improved performance was observed in all four classification models utilizing the filtered 

training data for PCI. As a comparison, we also removed 100 instances with the lowest 

average ICS for LIME and SHAP in the same way as for PCI. Results revealed that both 

LIME and SHAP also resulted in better AUC than the original classifiers except LIME in 

RF and rSVM classifiers. These results strongly support that instance-level interpretation 

methods such as PCI, LIME and SHAP can be used, among other possibilities, as diagnostic 

tools for identifying bad instances in the training data which have an adverse effect on 

the generalization of the underlying ML model, and that the extent to achieve can be a 

meaningful measure of interpretation relevancy.

4 CONCLUSION

In this article, we proposed a set of ideas to construct and evaluate interpretable machine 

learning models, and demonstrated its application in breast cancer metastasis prediction. 

The application has led to improved classification models as well as more stable and 

understandable interpretations of the models revealing some interesting biology. Using a 

small number of highly compact and biologically interpretable gene clusters, we were able 

to construct classifiers with similar or better prediction accuracy compared to classifiers 

built with many more individual genes as features. We also proposed a model-agnostic 

post hoc interpretation method, which have achieved better inter-classifier stability than 

state-of-the-art interpretation methods. Moreover, employing the inter-classifier stability 

concept introduced in this work, we proposed an idea to identify “bad” instances within the 

training dataset and resulted in improved prediction accuracy on an independent test dataset. 

The whole pipeline to construct and evaluate interpretable models can be easily applied 

to other omics-based medical applications. In addition, the various components proposed 

in this work, including the clustering-based feature reduction, probability change-based 

interpretation, as well as inter-classifier stability measure to evaluate model interpretation 

and to remove “bad” instances, may find applications in other domains to address common 

ML challenges such as the need to reducing model complexity and improving model 

interpretability / generalizability.
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Fig. 1: Gene expression levels in the 37 gene clusters found from the ACES dataset, ordered by 
sizes.
For clarity, data is re-scaled and values between [−0.5, 0.5] are converted to 0. Patients are 

grouped by breast cancer intrinsic subtypes (information not used for clustering), Colorbar is 

the same for both figure.
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Fig. 2: 
Clustering stability among the clusters from different folds of the training data in two 

cross-validation schemes: 10-FCV (a) and LOSO-CV (b).
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Fig. 3: 
AUC from different feature types for RF, LR, lSVM, rSVM and NN in (a) 10-FCV and 

(b) LOSO-CV. Error bars denote the 95% confidence interval. Train all clusters: all clusters 

obtained from training data. Train filtered clusters: clusters with larger than 10 genes.
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Fig. 4: 
(a) Individual-level interpretation grouped by breast cancer intrinsic subtypes from LR 

model. (b) Dataset-level interpretation from four models stacked together.
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Fig. 5: Distribution of average correlation between PCI interpretations from six pairwise 
classifier combinations for each instance in ACES.
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TABLE 1:

Specification of the studies in ACES.

Dataset Geo accession no. No. of poor No. of good Total

Desmedt 7390 56 127 183

Hatzis 25066 102 48 150

Ivshina 4922 30 72 102

Loi 6532 24 33 57

Pawitan 1456 33 114 147

Miller 3494 21 68 89

Minn 2603 21 44 65

Schmidt 11121 24 145 169

Symmans 17705 37 187 224

WangY 5327 10 42 52

WangYE 2034 88 169 257

Zhang 12093 9 112 121

ACES 455 1161 1616
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