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Abstract

The prevalence of urolithiasis in humans is increasing worldwide; however, nonsurgical treatment 

and prevention options remain limited despite decades of investigation. Most existing laboratory 

animal models for urolithiasis rely on highly artificial methods of stone induction and, as a 

result, might not be fully applicable to the study of natural stone initiation and growth. Animal 

models that naturally and spontaneously form uroliths are an underused resource in the study 

of human stone disease and offer many potential opportunities for improving insight into stone 

pathogenesis. These models include domestic dogs and cats, as well as a variety of other captive 

and wild species, such as otters, dolphins, and ferrets, that form calcium oxalate, struvite, uric 

acid, cystine, and other stone types. Improved collaboration between urologists, basic scientists, 

and veterinarians is warranted to further our understanding of how stones form and to consider 

possible new preventative and therapeutic treatment options.

Introduction

Urolithiasis is a debilitating and painful disease that affects an increasing proportion of the 

global population. Prevalence rates range from 7–14% in North America, 5–9% in Europe, 

and 1–5% in Asia1. The proportion of Americans affected by stone disease has more than 

doubled over the past 40 years, a rise in prevalence that has also been observed in other 

countries around the globe2,3. The increase is thought to be due to calculogenic changes 

in diet and altered lifestyle factors, such as decreased physical activity2. Recurrences occur 

at an estimated rate of 10–23% per year, with men having up to 1.5 times the recurrence 

rates of women4. The increasing prevalence and high recurrence rate of urinary stones make 

the study of the pathogenesis, treatment, and prevention of urolithiasis a priority for the 

health-care community.

In the past, induced animal models have been used to investigate the pathological process 

of stone formation. However, many of the methods to study stones in such models rely 
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on artificial mechanisms that are not comparable to the pathophysiology of naturally 

occurring stone disease in humans. For example, induction of a hyperoxaluric state in 

rodents via ingestion of ethylene glycol and vitamin D3 causes intratubular calcium 

oxalate crystallization and — in the setting of renal injury — can lead to discrete crystal 

formation5,6. However, in natural human stone formation, no evidence exists to show that 

stones form secondary to oxalate-induced renal injury7,8.

An animal model of naturally occurring stones would be preferable for both scientific 

and ethical reasons; however, to date, few comprehensive articles have described the 

homology of natural stone formation between humans and animals5,9-11. The study of stone 

disease in companion animals has particular benefits for modelling human disease. For 

example, animals living with humans can serve as sentinel species to detect environmental 

hazards and aid in the identification of lifestyle factors affecting stone risk. Additional 

benefits of companion animals include a larger size than common laboratory animals and 

heterogeneous genetics that might mimic the variable presentations of stone disease seen in 

humans.

This Review will describe the characteristics and treatment of spontaneous stone disease 

in a variety of animal species and discuss the potential of each species as a model for 

different stone types in humans. Although humans form many types of urinary tract stones, 

this Review will focus on the four most common types: calcium, struvite, uric acid and 

cystine. Calcium oxalate (CaOx) and struvite are the predominant stone types in companion 

dogs and cats; these species also naturally form uric acid, cystine and other rare hereditary 

and drug-induced stone types12. Stones from other animal species comprise <1% of uroliths 

submitted for compositional analysis13, and only a select subset of species are discussed, 

which have been selected based on a strong predisposition for one of the top four stone types 

and their potential role for use in translational research.

Calcium stones

Calcium urolithiasis is a common and complex disease in humans and companion animal 

species (Figs 1,2). Inherited and environmental factors contribute to risk, and the aetiology is 

incompletely understood.

Humans

The vast majority of stones found in humans are calcium based. A review of >90,000 

unselected stone analyses found that CaOx accounts for 61% of all stones, whereas 15% 

are basic calcium phosphate (for example, hydroxyapatite) and 3% are brushite14. The 

proportion of CaOx stones in first-time stone formers might be even greater, accounting for 

76–83% of stones15,16. These statistics reflect the dominant stone type, but 59% of stones 

contain a mixture of mineral compositions.

Strong evidence suggests that genetics play a role in calcium-based kidney stone risk. 

Kidney stones are 2-3 times more likely to form in individuals with a positive family history, 

and heritability estimates for stone disease are 46–63%17-21. Monogenic disorders have 

been detected in 17–29% of young patients with calcium kidney stones or nephrocalcinosis 
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diagnosed before the age of 25 years22-24. By contrast, most adult stones cases are thought 

to be polygenic; genome-wide association studies have discovered >20 genes with low-to-

moderate effect sizes on stone risk, including ALPL, CLDN14, CYP24A1, SLC34A1, 
TRPV5, UMOD, and several genes predicted to influence signaling through the extracellular 

calcium receptor, CaSR25-30. Other undiscovered susceptibility genes of similar or greater 

effect are likely to exist. Additional risk factors in human calcium stones include older age, 

male sex, obesity, low fluid intake, and high-sodium diet2.

Hypercalciuria is the most common metabolic abnormality seen in calcium-based stone 

formers, occurring in 35–65% of patients31. Hypercalciuria can be associated with CaOx as 

well as calcium phosphate stones and often occurs in the presence of normal blood calcium 

concentrations, when it is termed ‘idiopathic hypercalciuria’. Idiopathic hypercalciuria can 

arise owing to increased intestinal calcium absorption, increased bone turnover, decreased 

renal calcium reabsorption, or a combination of these factors32. As with stone risk, 

idiopathic hypercalciuria has a strong inherited component, with heritability estimates of 

40–50%33,34. Many of the genes implicated in monogenic and complex kidney stone disease 

have a role in regulating intestinal absorption or renal resorption of calcium and variants 

in these genes can, therefore, contribute to hypercalciuria35,36. Mutations in CYP24A1 
were identified in 35% of a predominantly paediatric population with hypercalcemia of 

non-parathyroid aetiology; in this study, 19 of 20 patients with biallelic mutations had 

nephrocalcinosis or kidney stones37. CYP24A1 deficiency causes hypercalcemia and/or 

hypercalciuria owing to decreased inactivation of vitamin D metabolites37. Altered vitamin 

D inactivation has been reported in first-time calcium kidney stone formers, and genome-

wide association studies have implicated CYP24A1 in kidney-stone risk and regulation 

of serum calcium and 25-hydroxyvitamin D concentrations29,38-41. Medical disorders that 

cause hypercalcemia and hypercalciuria are less common than idiopathic hypercalciuria, 

and include primary hyperparathyroidism, malignant hypercalcemia, sarcoidosis, and 

hyperthyroidism31.

Hypocitraturia is the second most common metabolic abnormality in calcium-based stone 

formers, occurring in 30–50% of patients42-45. Urine citrate reduces calcium oxalate 

crystallization by binding to calcium and forming soluble complexes46. Many mechanisms 

can contribute to hypocitraturia, including diet, acid-base balance, gastrointestinal 

malabsorption, genetic factors, and drugs47. In recurrent calcium-based stone formers, low 

urine potassium is the strongest predictor of hypocitraturia45.

Hyperoxaluria is another important risk factor specific to CaOx stone formation. Primary 

hyperoxaluria is due to an inherited enzyme deficiency caused by inactivating variants in 

AGXT, GRHPR, or HOGA148. Mutations in an oxalate transporter gene, SLC26A1, are 

also reported as a cause of CaOx nephrolithiasis in children49. Secondary hyperoxaluria 

is caused by increased dietary ingestion of oxalate or its precursors, as well as alterations 

in intestinal microflora48. Urinary excretion of oxalate is increased when calcium intake 

is low, owing to decreased CaOx complex formation in the gastrointestinal tract50. Thus, 

any medical condition that decreases availability of calcium for binding with oxalate in the 

intestinal tract is a risk factor for stone formation; such conditions include prior small bowel 

resection, gastric bypass surgery, and inflammatory bowel disease48. Decreasing dietary 
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oxalate decreases oxalate levels in the urine and is, therefore, protective against CaOx stone 

formation.

Oxalobacter formigenes is a Gram negative, anaerobic bacterium that metabolizes oxalate 

in the intestinal tract. An estimated 30–40% of people in the USA are colonized with 

O. formigenes, but the prevalence is thought to be reduced (15–20%) in stone formers51. 

People who are not colonized with O. formigenes are 70% more likely to develop a 

kidney stone51. O. formigenes colonization is thought to decrease CaOx stone risk via two 

mechanisms: metabolism of gut oxalate in a calcium-dependent manner and promotion of 

oxalate secretion into the intestinal tract51-53. Growing evidence also suggests that other 

bacterial taxa have a role in oxalate metabolism and have differential abundance and 

metabolite profiles in the gut and urine of patients with kidney stones relative to healthy 

individuals54-57. Furthermore, antibiotic therapy might drive some of these alterations56.

In conjunction with supersaturation of the urine with calcium salts, the presence of a nidus 

is thought to be of critical importance in the pathophysiology of CaOx stone formation. 

Randall’s plaques were first discovered in the 1930s and were described as collections 

of subepithelial calcium phosphate deposits that serve as a nidus for calcium oxalate 

crystallization and stone formation58. Randall’s plaques preferentially form in the basement 

membranes of the ascending thin limbs of the loop of Henle, however relatively little 

is known about their precise mechanism of formation8,59. The relative supersaturation of 

calcium phosphate found in the urine of idiopathic calcium stone formers is thought to be 

a major mechanism of Randall’s plaque formation; another theory is that enhanced delivery 

of calcium out of the proximal tubule increases resorption of calcium in the thick ascending 

limb, where the calcium enters the interstitium and is transported to the to the deep medulla 

via the descending vasa recta59. The aetiology of calcium phosphate stone formation is 

less clearly linked to a nidus than CaOx stone formation but has been hypothesized to 

be associated with plugging of Bellini ducts and inner medullary collecting ducts with 

crystalline deposits.60 Such pathology has frequently been identified in renal biopsies from 

patients with kidney stones and systemic diseases such as primary hyperparathyroidism and 

renal tubular acidosis61,62.

Prevention and treatment of calcium stones in humans is multifaceted and includes dietary 

and pharmaceutical interventions and minimally invasive surgery63. Calcium stones cannot 

be managed with medical dissolution and, therefore, they require surgery if they are 

symptomatic and not amenable to passage64. Treatment for calcium stones is typically shock 

wave lithotripsy and subsequent passage, or with endoscopic lithotripsy through the urinary 

tract via either a retrograde or percutaneous antegrade approach63. Preventative measures are 

aimed at increasing urine volume to >2.5 liters daily and limiting intake of oxalate-rich 

foods, such as spinach, nuts, and chocolate, which increase urinary oxalate and stone 

risk and should therefore avoided50, as well as limiting dietary calcium and sodium65,66. 

Consumption of a normal amount of calcium (1000–1200 mg/day) is recommended, as 

decreasing calcium intake will increase urinary oxalate concentration50. Potassium citrate 

and thiazide diuretics are the most commonly prescribed medications to treat hypercalciuria, 

and are recommended for patients with high urine calcium and recurrent calcium stones65,66. 

Potassium citrate increases urinary citrate levels and binds to calcium in the urine, 
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preventing CaOx complex formation. Thiazide diuretics decrease renal excretion of calcium 

and have been hypothesized to help minimize formation of Randall’s plaques in addition to 

improving bone mineral balance67.

Dogs

Calcium oxalate is one of the most commonly reported stone compositions in dogs. A 

review of >350,000 stone analyses in dogs found that 38% overall were composed of CaOx, 

and the proportion of CaOx stones in dogs has been increasing over the past 30 years; in 

1981, only 5% of canine uroliths were composed of CaOx, rising to 41% in 2007 (Table 

1)12. This increase might be due in part to dietary changes aimed at reducing the incidence 

of struvite stones in dogs, which have inadvertantly promoted hypercalciuria, hypocitraturia, 

and aciduria68. As is the case in humans, CaOx stone risk in dogs has a strong inherited 

component (Table 1). This heritability is illustrated by striking breed predispositions to 

stones; for example, the Bichon Frise, Miniature Schnauzer, and Shih Tzu have 10–24 times 

the risk of mixed-breed dogs68,69. This observation signifies familial aggregation of disease 

and supports the presence of major genetic risk factors, although causal variants have not 

yet been reported. Additional risk factors for CaOx stone formation in dogs mirror those 

seen in humans and include older age, male sex, and obesity (Table 1)68-71. Dietary risk 

factors are not well established in dogs. Retrospective studies have found that dry and 

canned formulations with low amounts of protein, sodium, and calcium were associated with 

increased stone risk72,73. By contrast, a prospective study found that feeding a low protein, 

sodium, and calcium diet reduced urine calcium and oxalate excretion in dogs with calcium 

oxalate stones74. Other calcium based stones account for <1% of canine stones12. Although 

stones composed predominently of calcium phosphate are rare in dogs, hydroxyapatite is 

often a minor component of mixed stones, detected in 38% of stones overall68.

Paralleling human disease, idiopathic hypercalciuria is the most commonly identified 

urinary abnormality in dogs prone to forming CaOx stones (Table 1)75-79. The precise 

mechanisms of hypercalciuria in normocalcaemic dogs are unknown, although they might 

be similar to the absorption and excretion dysregulation mechanisms seen in humans. 

A bone resorption phenotype has not been identified in dogs; in fact, bone turnover in 

dogs with hypercalciuria and CaOx urolithiasis might be reduced80. A subset of dogs with 

hypercalciuria and CaOx stones have abnormalities in vitamin D metabolism with evidence 

for decreased 24-hydroxylation (deactivation) of calcitriol, as has also been reported in 

humans (Table 1)81. Hyperoxaluria seems to have a lesser role than hypercalciuria does in 

dogs; stone-forming dogs have generally been found to have either similar or lower urinary 

oxalate excretion as compared to controls77,78,82. Primary hyperoxaluria is seen rarely in 

specific dog breeds (Table 1)83,84. Urinary citrate excretion does not differ between healthy 

dogs and those with CaOx urolithiasis76,78,85. Primary hyperparathyroidism is present in 

<5% of dogs with CaOx stones, which is also associated with formation of hydroxyapatite 

stones77,86.

Also reflecting its presence in humans, enteric colonization with O. formigenes is more 

common in healthy stone-free dogs than in stone formers and could have a protective role in 

stone disease (Table 1)87.
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Histopathological descriptions of CaOx nephrolithiasis in dogs are very limited and 

published data include only small case reports. Dogs with primary hyperoxaluria have been 

reported to have tubular necrosis with extensive deposition of oxalate crystals, but often 

without evidence of stone formation84,88. Further histopathological evidence detailing the 

formation of idiopathic CaOx nephrolithiasis is not available to date and remains an active 

area of research.

Treatment and prevention recommendations for CaOx urolithiasis in dogs are very 

similar to those for humans (Table 1). Guidelines focus on prevention of CaOx stone 

formation through dietary measures89. Dietary calcium restriction without concurrent 

oxalate restriction leads to an increase in CaOx crystallization, similar to that which is 

observed in humans90. Recommendations for CaOx stone prevention in dogs include a 

high-moisture diet and urine alkalinization, and — as in humans — potassium citrate 

and thiazide diuretics can be considered for dogs with persistent stone recurrence despite 

dietary modifications. Only renal stones large enough to cause recurrent infection, pain, or 

compression of the renal parenchyma should be considered for surgical removal. Ureteral 

stenting and stone destruction via extracorporeal shockwave lithotripsy or laser lithotripsy 

is recommended for obstructing ureteral stones and bladder stones associated with clinical 

disease89. Bladder stones are generally treated with cystotomy; however, minimally invasive 

techniques are recommended when possible89.

Cats

Similar to trends seen in domestic dogs, CaOx is one of the most common stone 

compositions observed in domestic cats (46% of nearly 100,000 feline stone analyses); 

the proportion of CaOx stones increased from 2% in 1981 to a peak of >60% in the 1990s 

to 41% in 2007 (Table 1)12. This increase in prevalence is again attributed to an increasingly 

acidic diet low in magnesium, which has been formulated to minimize struvite crystalluria; 

the decline over the past two decades might be due to additional reformation to minimize 

risk for calcium oxalate uroliths. Several feline breeds are particularly predisposed to CaOx 

stone formation, including Persian, Himalayan, Ragdoll, and Burmese cats (Table 1)91,92. 

Other risk factors in cats include age >10 years, male sex (even more so with neutered 

status), dehydration with associated low urine output, and aciduria91,93. Azotemia is seen 

at presentation of >80% of cats diagnosed with ureteroliths antemortem94, in 25–40% of 

cases, this is attributed to bilateral obstruction94,95. In cats with unilateral obstruction, 

the contralateral kidney is often small, suggesting chronic kidney disease. Chronic kidney 

disease is common in cats, and prevalence estimates range from 35% to 81% in geriatric 

feline populations and 56% of cats with uroliths in general (including all stone types 

and locations in the urinary tract)96,97. A positive association between nephrolithiasis 

and chronic kidney disease in cats has been reported; however, the directionality of 

this association has not been established96,97. Comparable to dogs, other calcium-based 

stones are rare, comprising <0.5% of feline stones12. Hydroxyapatite is less often a minor 

component of mixed stones in cats than in dogs and is only detected in 6% of all feline 

stones98.
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Data regarding underlying metabolic disturbances in cats with CaOx stones are limited, 

but hypercalciuria has been documented (Table 1)75,99,100. Idiopathic hypercalcaemia was 

noted in one-third of cats with CaOx urolithiasis in a small study, but the origin of the 

hypercalcemia was not determined99. Overall, idiopathic hypercalcemia is uncommon in the 

general cat population with a prevalence estimated at 0.4%101,102. Hyperoxaluria can be 

seen in the setting of vitamin B6 deficiency; primary hyperoxaluria has been reported but is 

rare (Table 1)103,104. Current knowledge regarding the role of calcium and oxalate balance in 

the development of CaOx stones in cats requires considerable further investigation.

Histopathological descriptions of upper urinary tract CaOx stone formation in cats have been 

limited to case reports or small case series. Small studies have shown interstitial fibrosis, 

glomerular sclerosis, and oxalate crystals within the renal tubules, as well as generalized 

inflammation, although many of these animals had concurrent chronic kidney disease105-107. 

Parenchymal mineralization, similar to Randall’s plaques in humans, has been suggested 

as a mechanism for stone formation in cats (Fig 3; Table 1)108. To date, no widely used 

laboratory model is available for stone formation via a Randall’s plaque mechanism; thus, 

study of this mechanism in cats might offer a new understanding of the molecular events that 

lead to initial calcium phosphate plaque formation in humans.

Similar to dogs, the recommended treatment for urolithiasis in cats is primarily dietary 

management, and surgical treatment is offered only when the stone is obstructing (Table 

1)89. Diets with high levels of protein, phosphorus, and magnesium with lower urine 

acidifying potential are associated with a decreased risk of CaOx stone recurrence109.

Asian small-clawed otters

Asian small-clawed (ASC) otters (Aonyx cinereus) are semiaquatic mammals native to 

South and Southeast Asia and are very often kept in captivity in zoos and aquariums 

throughout the world110,111. Based on necropsy studies, approximately two-thirds of captive 

ASC otters develop nephrolithiasis, which is often bilateral110. More than half of these 

stones are composed of calcium oxalate (Table 1)13. Risk factors for stone formation in this 

population are thought to be mainly nutritional, as only captive ASC otters in North America 

have a high proportion of stones. Diets of wild ASC otters are variable and depend on 

seasonal prey availability and location; wild diets consist predominantly of crabs, mollusks, 

snakes, fish, and insects112. Target nutrient ranges for captive ASC otters are based on those 

for domestic cats, and as such rarely resemble wild diets, as they are composed of fish, 

meats, and concentrates that do not vary throughout the year111,113. In a survey of captive 

ASC otter diets, crude protein intake was found to be a protective factor and high calcium 

content a risk factor for stone development111.

An analysis of six captive ASC otters during periods of controlled diet and fasting offered 

insight into urinary abnormalities of stone-forming otters and the consequences of diet113. 

All of these animals were known to have nephrolithiasis, later confirmed to be calcium 

oxalate stones. Urinary levels of calcium and phosphorus were increased during periods 

of food consumption, whereas oxalate levels were similar between the two states. These 

results were unable to conclusively determine the role of hypercalciuria in CaOx stone 

formation, as none of the animals tested were stone-free. However, in comparison to normal 
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dogs and humans, these otters were hyperoxaluric (Table 1). The ratio of urinary oxalate 

to calcium during periods of food consumption was close to 1:1, a ratio that promotes 

maximal crystallization114. The hyperoxaluria observed was equal in feeding and fasting 

states, suggesting an endogenous mechanism for this imbalance. The pathophysiology of 

calcium stone disease in otters is not well understood.

Surgical stone treatment has been reported in ASC otters; however, no guidelines exist for its 

use115.

STRUVITE STONES

Struvite urolithiasis is also common in humans and companion animal species, where risk is 

driven largely by infection (as is the case in humans and dogs) or diet (as in cats and ferrets) 

that promotes urine alkalization and supersaturation of magnesium ammonium phosphate.

Humans

Struvite stones comprise 10–15% of renal stones in humans and are bilateral in 15% 

of patients116,117. They are often heterogeneous in composition and include components 

of magnesium ammonium phosphate and carbonate apatite118. Struvite stones in humans 

form exclusively in the setting of UTI with a urease-producing organism, such as Proteus, 
Staphylococcus, Pseudomonas, or Klebsiella species119. Urease is plasmid-encoded and 

can be transferred between species of microorganisms120; thus, other bacteria such as 

Escherichia coli have been found to produce urease in the setting of a UTI121. Urease 

splits urea into ammonia and carbon dioxide, which is further hydrolysed into ammonium 

and bicarbonate. This process promotes alkalinization of the urine and crystallization 

of magnesium ammonium phosphate. However, <20% of individuals with documented 

infection with a urease-producing bacteria will produce a struvite stone, implying the 

presence of other contributory factors in struvite stone formation122. Other risk factors 

include female sex, advanced age, medullary sponge kidney, and urinary tract malformations 

that can lead to urinary stasis, such as urinary diversion and neurogenic bladder119. Common 

medical comorbidities seen in this population include diabetes mellitus, dyslipidaemia, 

hypertension, and chronic kidney disease123. An inherited component to risk has not been 

reported.

Urinary abnormalities include high pH and hypocitraturia; however, hypercalciuria and 

hyperoxaluria can also be seen in mixed struvite stones124. In some cases a non-struvite 

stone might become a nidus for struvite stone overgrowth in the setting of infection, as 

nearly 90% of struvite stones are admixed with other compositions on stone analysis119. 

Both Randall’s plaque formation and Bellini duct plugging has been observed in struvite 

stone formers, along with substantial papillary inflammation on endoscopic evaluation125.

Several management options have been described for struvite stones. If a struvite stone 

is suspected, the patient should be treated with an initial regimen of antibiotics based 

on urine culture data. An attempt should then be made to render the patient completely 

stone free. Endoscopic treatments such as ureteroscopy or percutaneous nephrolithotomy are 

generally considered more effective treatments for such stones as they offer an increased 
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chance for complete stone removal126. Conservative treatment with antibiotics alone can be 

considered in patients who are poor candidates for surgery127. Acetohydroxamic acid is a 

urease inhibitor that has been found to limit recurrence in those patients who are prone to 

rapid development of struvite stones or those who are not good surgical candidates; however, 

this agent is rarely used owing to its extensive adverse effect profile and limited availability 

in many countries128. Decreasing dietary calcium and phosphorus has limited success with 

stone dissolution and prevention65.

Dogs

Struvite stones account for ~40% of canine stones12. Female dogs are more likely than 

males to be affected (3:1 female-to-male ratio)68, presumably owing to their increased 

risk for urinary tract infections, as are smaller breeds, which might reflect anatomic 

(that is, smaller urethrae) or genetic risk factors68,129. Struvite stones in dogs are 

overwhelmingly associated with infection with a urease-producing bacteria, most commonly 

Staphylococcus and Proteus species130 however, struvite stones without infection have also 

been documented131,132. Canine struvite stones have no known genetic risk factors, but 

breed predispositions exist and are particularly strong for the minority of cases with sterile 

struvite stones (for example, pugs)132.

Urinary abnormalities in dogs affected with struvite stones include hyperammonuria, 

hyperphosphaturia, hypermagnesuria, and elevated pH130. As with other stone types, low 

urine volume is also a risk factor100,133. Studies on renal pathology associated with canine 

struvite nephroliths are lacking.

In contrast to humans, medical dissolution is an effective method of treatment for struvite 

stones in dogs130. This difference is largely due to stone location — most canine struvite 

stones are located in the bladder, enabling quick and easy dissolution owing to the volume 

of urine surrounding the stone. In addition, treatment of bladder struvite stones is not urgent 

if clinical signs can be managed; thus, prolonged medical management is allowable. Medical 

management is accomplished with antibiotics based on urine culture data, use of calculolytic 

diets, or treatment with urease inhibitors130,134,135. As struvite stones are radio-opaque, 

their presence and size can easily be monitored to guide treatment duration. The causative 

bacteria can be harboured within the stones and protected from antimicrobial activity in the 

urine,136 which can prolong the time required for antibiotic treatment. Dissolution is further 

aided by diets that acidify and dilute the urine. These diets often contain calcium sulphate 

and DL-methionine to achieve a target pH of 6.0, low concentrations of magnesium and 

phosphate, and a low protein content to reduce urinary urea concentration9. Low dietary 

urea further promotes the dilution of urine by reducing the medullary concentrating gradient. 

In dogs, the average time for dissolution of struvite stones using antibiotics and diet is 

~3 months130. Dogs with stones comprised of a calcium phosphate shell are less likely to 

respond to these conservative treatment options, as are those with obstructive stones, which 

require removal with surgery or lithotripsy.
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Cats

Struvite stones account for ~50% of feline urolithiasis12. Cats aged 2–10 years are at 

greatest risk for struvite stone formation, and these stones form more frequently in the 

bladder than in the upper urinary tract92. The overall proportion of struvite stones in cats 

has decreased since the 1980s, when almost 80% of stones in domestic cats were struvite137. 

This decrease has been attributed to the widespread adoption of a diet designed to prevent 

and dissolve struvite uroliths in domestic cats. In contrast to struvite stones in dogs, feline 

struvite stones are usually sterile with a less dramatic female predisposition (~3:2 female-

to-male ratio)92. They have no known genetic risk factors, and breed predispositions are 

inconsistent across reports92,98.

Sterile struvite stones in cats can be dissolved by diet modification alone, without the use of 

antibiotics. This process is more rapid than struvite stone dissolution in dogs, and requires 

just 1–5 weeks for complete dissolution138. Diets with reduced phosphorus and magnesium 

help to decrease urinary pH, promoting struvite stone dissolution139,140.

Ferrets

Both pet and laboratory ferrets are known to develop urolithiasis, which can often be 

asymptomatic with diagnosis only made at time of necropsy141. Before 2010, sterile struvite 

was the predominant mineral type in uroliths found in ferrets142. Median age of stone 

formation in ferrets is 4.5 years and males are 3.6 times more likely to develop struvite 

uroliths than females, especially with neutered status142. Data regarding medical dissolution 

is lacking in this species, and stones are commonly removed with surgery. Since 2010, the 

incidence of cystine uroliths has been dramatically increased in North America, currently 

accounting for nearly all ferret submissions to the Minnesota Urolith Center [Lulich, J.P., 

unpublished data].

URIC ACID STONES

The general pathophysiology of uric acid stones differs between humans and non-primate 

species owing to species-specific differences in uric acid metabolism. Nevertheless, 

naturally-occurring uric acid stone formation in non-human animals informs genetic, 

metabolic, and dietary risk factors for uric acid excretion.

Humans

Uric acid nephrolithiasis accounts for 8–10% of kidney stones in countries such as the 

USA, Germany, Spain and Italy and has been estimated to be even more common in 

other regions of the world143. It is seen disproportionally in the diabetic population with 

prior studies suggesting that uric acid stones comprise over 33% of stones in patients with 

diabetes compared with 6% in those without diabetes144,145. Uric acid is the end product of 

purine metabolism in humans. It is excreted in the urine with relatively low solubility and 

quickly precipitates when urine pH drops below 5.5. Ammonium acid urate (AAU) stones, 

as opposed to pure uric acid stones, are rare in industrialized countries, overall accounting 

for 0.2% to 3.1% of stones146,147. In addition, AAU is more often found in compound or 

mixed stones than in a pure state148. Risk factors for AAU stones include inflammatory 
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bowel disease, bowel diversion, laxative abuse, morbid obesity, and recurrent UTI148. In 

developing countries, rates of AAU stones has historically been higher due to a purine-rich, 

phosphate-poor diet, as well as decreased fluid intake and chronic diarrhoea149,150. Exact 

prevalence data for present day is unknown.

Individuals with diabetes or metabolic syndrome have decreased urine pH as a result 

of impaired ammonium excretion and increased net acid excretion151. Hyperuricosuria is 

another risk factor for the development of uric acid stones. Conditions that cause increased 

cell turnover, such as myeloproliferative disorders and haemolytic anaemia, or disorders of 

uric acid metabolism, such as Lesch–Nyhan syndrome and phosphoribosylpyrophosphate 

synthase overactivity, can increase uric acid levels in the serum and the urine152. 

Renal hypouricaemia is a rare autosomal recessive hereditary disorder associated with 

hyperuricosuria and is caused by genetic mutations in genes encoding renal uric acid 

transporters, SLC22A12 (which account for >90% of cases in Japan) or SLC2A9153,154.

Medical dissolution is first-line treatment for non-obstructing uric acid stones65,66. As 

low urine pH is the primary risk factor, alkalinization of the urine with potassium citrate 

increases the solubility of uric acid155. This approach both reduces the risk of uric acid stone 

formation and contributes to dissolution of existing uric acid stones. Sodium bicarbonate and 

sodium citrate are other alkalinizing agents that can be used in this setting155. As for all 

stone formers, increased fluid intake to increase urine volume is recommended. Restriction 

of dietary animal protein is recommended, particularly to patients with hyperuricosuria, and 

these patients might additionally benefit from treatment with a xanthine oxidase inhibitor 

such as allopurinol or feboxostat to decrease urinary uric acid levels65,66.

Dogs

Purine uroliths account for ~8% of stones in dogs, 97% of which are uric acid stones 

in Dalmatian dogs156. Most mammals, with the exception of the higher primates, are 

protected from the formation of uric acid stones by the conversion of uric acid to allantoin 

within the liver157. Allantoin is more soluble than uric acid and does not precipitate in the 

urine, even at low urine pH157. Dalmatian dogs have an inherited tendency to form uric 

acid stones owing to an autosomal-recessive mutation in SLC2A9, which has also been 

observed in humans158. The causal SLC2A9 variant also exists at low frequency in >30 

additional dog breeds159. The uricase enzyme is present in affected dogs; however, uric 

acid cannot be effectively transported into the hepatocytes for metabolism to allantoin or 

resorbed in the proximal tubule160. The serum concentration of uric acid in Dalmatians 

is greater than that of other dog breeds and lower than that of humans, whereas the 

urinary uric acid concentration is similar to that of humans161,162. Amongst Dalmatians, 

males are disproportionately affected and the average age of diagnosis is 4.5 years156,163. 

Although >99% of Dalmatians are homozygous for the variant, only one-third of male 

Dalmatians over the age of 6 years are reported to form urate stones, suggesting the presence 

of modifying genetic or non-genetic factors164. Among those that do form stones, the 

recurrence rate is high at 33–50%156. Uric acid stones are also common in dogs with 

congenital portosystemic vascular anomalies owing to shunting that bypasses the liver and 

thereby reduces hepatic conversion of uric acid to allantoin161.
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Medical dissolution protocols are similar to those for humans. Stone risk is decreased by 

feeding a low-protein or vegetarian diet, alkalinizing the urine with potassium citrate or 

sodium bicarbonate, and increasing urine volume165. Allopurinol can also be prescribed to 

dissolve or prevent stone formation in dogs with hereditary hyperuricosuria89.

Cats

Uric acid uroliths are rare in other domestic and wildlife species; however, they have been 

documented in cats. Approximately 5% of uroliths originating from cats are composed of 

urate166. Predisposition varies with breed, and risk is greatest between the ages of 4 and 

7 years166. Additional risk factors in cats include neutered status, aciduria, high dietary 

protein intake, and liver disease166,167. Additional information about pathogenesis, dietary 

risk factors, and optimal treatment options have not been well-studied in this species.

Dolphins

Ammonium acid urate nephrolithiasis has been reported in captive bottlenose dolphins 

(Tursiops truncates), but it has not been observed in wild populations168. These stones can 

be obstructive and can result in hydronephrosis and infection169.

Captive dolphins consume a seafood diet high in purine, which correlates with 

hyperuricaemia and acidic urine170. Hypocitraturia is more likely to be found in captive 

populations and can be a risk factor for uric acid stone formation168. Captive dolphins are 

more likely to develop insulin resistance than wild dolphins, which has been demonstrated to 

be a risk factor for uric acid urolithiasis in humans171,172, and might also be a contributory 

factor in dolphins.

Medical dissolution is the initial treatment for purine stones in dolphins; options include 

hydration, allopurinol, potassium citrate, and sodium bicarbonate169. Frozen–thawed fish 

has lower water and higher purine content than fresh fish; thus, captive dolphins are 

recommended to feed on fresh fish when possible170,173,174. Successful treatment of 

obstructing stones with cystoscopic-guided ureteral stent placement and laser lithotripsy 

has been reported in one dolphin175.

CYSTINE STONES

In humans and companion animal species, cystine uroliths form secondary to monogenic 

disorders in genes encoding subunits of a renal dibasic amino acid transporter.

Humans

Cystine nephrolithiasis accounts for 1% of stone disease in adults and 6–8% in children176. 

Cystine stones and related renal injury are the only phenotypic manifestation of cystinuria, 

a disease caused by an inherited defect in the resorption of the dibasic amino acids cystine, 

ornithine, lysine, and arginine from the renal tubules176. Cystinuria is classified as Type 

A or B based on whether the causal variant resides in SLC3A1 or SLC7A9, respectively; 

these genes encode the subunits of the dibasic amino acid transporter. Type A cystinuria 

is inherited in an autosomal recessive pattern, whereas type B is autosomal dominant with 
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incomplete penetrance and can seem recessive in some generations176,177. Modifier genes or 

epigenetic effects are thought to be responsible for the wide phenotypic variability of type 

B176. The estimated prevalence of cystinuria in the USA is about 1 in 10,000 but varies in 

other populations with prevalence as great as 1 in 2,500 in Israeli Jews of Libyan origin 

and as low as 1 in 100,000 in Sweden178. The degree of pathology varies; however, men 

have twice the rate of stone events than women179. Initial stone presentation most commonly 

occurs within the first two decades of life and is often bilateral180.

The goal of treatment is to prevent stone recurrence by decreasing urinary cystine 

concentrations to below the solubility limit of 250 mg/L, or by increasing the solubility 

of cystine65. Increasing fluid intake alone can be sufficient prevention in those with 

mild cystinuria. Other dietary interventions to reduce cystine excretion and increase urine 

pH include decreased sodium and animal protein intake. As cystine solubility is highly 

dependent on urine pH, urine alkalinisation with potassium citrate will decrease stone 

formation181. Some patients with more severe cystinuria might require treatment with a 

cystine-binding thiol drug, such as D-penicillamine or alpha-mercaptopropionyl glycine 

(tiopronin), to convert the poorly soluble cystine dimer into a more soluble cysteine 

monomer-thiol complex65. Up to 70% of patients with cystinuria can develop some form 

of chronic kidney disease182; thus, measures to prevent stone formation are imperative in all 

patients.

Dogs

The vast majority — 98% — of cystine urolithiasis in dogs occurs in males183. As with 

humans, cystinuria is caused by a hereditary defect in the renal resorption of dibasic 

amino acids. Breed predominance depends on the type of cystinuria present183,184. The 

classification system in dogs uses Roman numerals to indicate the inheritance pattern and 

letters to indicate the gene involved (as in the human system)185. Type IA cystinuria is 

an autosomal recessive disorder caused by variants in SLC3A1 and has been reported 

in Newfoundlands, Labradors, and Landseers. Type II is an autosomal dominant disorder 

caused by variants in either SLC3A1 (type IIA) or SLC7A9 (type IIB). Type II has been 

reported in Australian Cattle Dogs (type IIA) and Miniature Pinschers (type IIB). Type III 

cystinuria is androgen-dependent and is, therefore, sex-limited — it is only observed in 

intact male dogs and resolves with chemical or surgical castration185-187. Type III has not 

been molecularly characterized185. Type III cystinuria is thought to be most common in 

the Mastiff, English Bulldog, Scottish Deerhound, and Irish Terrier185,188. Additional breed 

predispositions exists, with the top breeds differing between countries, and Europe has the 

greatest overall proportion of canine uroliths composed of cystine (~4% compared to <1% 

in North America); these differences in prevalence might reflect differences breed popularity 

and in neutering culture and practices in different geographic locations183,186-188. This 

genetic heterogeneity provides an invaluable comparative model for cystinuria, as mutations 

in noncoding regions or regulatory sequences might have a role in the development of this 

disease in both dogs and humans, in particular in the highly variable penetrance of type B.
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Cystine uroliths in dogs are amenable to medical dissolution189, which is achieved 

by increasing urine volume, increasing urinary pH, and reducing protein intake. Thiol-

containing medications such as D-penicillamine and tiopronin can also aid with dissolution.

Cats

Cystine uroliths are rare in domestic cats (<0.1% of feline urolith submissions)12. Genetic 

investigation in affected cats has revealed one pathogenic variant in SLC3A1 and three 

different variants in SLC7A9, each present in a homozygous state, and consistent with an 

autosomal recessive inheritance pattern190,191.

Ferrets

Cystine is now the most common composition of uroliths retrieved from domestic ferrets. 

Prevalence has risen from 15% of ferret uroliths between 1981 and 2007 to 89% from 2010 

to 2017 [Lulich, J.P., unpublished data from the Minnesota Urolith Center]. Male and female 

ferrets are equally affected. North American ferrets have relatively little genetic diversity192. 

Cystinuria in this species is presumed to be caused by a genetic defect in a founder with 

subsequent rise in frequency due to genetic selection, genetic drift, or changes in dietary 

factors increasing the risk for urolith development in cystinuric individuals193. No specific 

genetic causes have yet been identified.

Dissolution of cystine uroliths has not been reported in ferrets. This species is an obligate 

carnivore, and dietary protein restriction is not recommended194.

OTHER STONE TYPES

Other stone types in humans and domestic animals comprise those that form as a result 

of rare hereditary disorders (for example, xanthine and 2,8-dihydroxyadenine stones) or 

secondary to mineral or toxin ingestion (for example, silica and melamine stones).

Xanthine stones

Xanthine stones are formed in humans who have excess urinary excretion of the purine 

base xanthine. Hereditary xanthinuria is an autosomal recessive disorder resulting from a 

deficiency of the enzyme xanthine dehydrogenase (XDH), which metabolizes hypoxanthine 

and xanthine to uric acid. A deficiency in XDH activity can be caused by loss of function 

mutations in either the XDH gene (xanthinuria type 1) or in the molybdenum cofactor 

sulfurase gene (MOCOS) (xanthinuria type 2), which provides a cofactor necessary for 

XDH function195. The two types of hereditary xanthinuria are clinically indistinguishable 

and the combined prevalence is estimated to be 1 in 69,000 people worldwide195. However, 

the true incidence is probably much higher than this, as up to two-thirds of affected 

individuals are asymptomatic196,197. Use of allopurinol can cause iatrogenic xanthinuria and 

stone formation198. Recommendations to decrease stone formation in patients with xanthine 

uroliths include ensuring a high fluid intake and low purine diet. Alkalinization of the urine 

has little effect of on the solubility of xanthine199.
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Xanthine uroliths comprise approximately 0.1% of canine stones188. Most of these are 

iatrogenic — 71% of xanthine uroliths originate from dogs with a history of allopurinol 

therapy188. The remainder of the cases are presumed to be caused by hereditary 

xanthinuria, as both XDH and MOCOS mutations have been reported in dogs200. Hereditary 

xanthinuria in dogs frequently presents as juvenile-onset end-stage renal disease caused by 

nephrolithiasis and obstructing ureteroliths201-205.

Xanthine uroliths comprise approximately 0.2% of feline uroliths12. In contrast to dogs, 

most cases are presumed to be hereditary206-209. Early onset of uroliths and kidney disease 

are common manifestations, as in other species.

2,8-DHA stones

Adenine phosphoribosyltransferase (APRT) deficiency is a rare recessive disorder of adenine 

metabolism. APRT converts adenine and 5-phosphoribosyl-1-pyrophsophate to 5-adenosine 

monophosphate, facilitating metabolism and excretion of adenine210. Decreased or absent 

function of APRT prevents the metabolism of adenine via this pathway, so instead it 

is converted to 2,8-dihydroxyadenine (2,8-DHA) by xanthine oxidase. This by-product 

crystallizes in the renal tubules and renal interstitium leading to stone production and renal 

failure. Precipitation is not dependent on urine pH, as 2,8-DHA remains insoluble at pH 

<8.5210. Most reported cases of APRT deficiency originate from Japan, where the estimated 

prevalence is 1 in 27,000211. The estimated prevalence in the white population is ~0.5–1 

per 100,000, though it might be higher in Icelandic and French populations210. Age at 

presentation ranges from infancy to geriatric years210 Treatment of 2,8-DHA stones caused 

by APRT deficiency utilizes allopurinol or febuxostat, institution of a low purine diet, and 

high fluid intake.

Canine 2,8-DHA uroliths are extremely rare with only 9 cases reported and an estimated 

prevalence of less than 1 in 100,000 canine urolith submissions212. Most cases originate 

from a single rare breed, the Native American Indian Dog, and arise via a homozygous 

mutation in APRT212. Urinary tract obstructions and crystalline nephropathy are common in 

dogs with 2,8-DHA urolithiasis; however, subclinical disease has been reported212.

Silica stones

Silica uroliths are very rare in humans, accounting for <1% of all urinary tract stones213. 

Most of these have been documented in individuals who consume large quantities of 

magnesium-containing antacids213,214. Silica stones have also been associated with the 

consumption of water rich in silica and the use of various homeopathic remedies215,216. 

These stones are treated surgically and do not recur if consumption of silica remains low.

Similar to humans, silica uroliths account for <1% of stone disease in dogs217. They tend to 

form in a jackstone shape and are visible on radiographic imaging. Silica stones were first 

reported in dogs in the mid 1970s218. Initial presence of these stones was due to increased 

use of plant-based ingredients in dog food and the addition of plant-based fillers, such as 

rice and soybean hulls217. Plants have higher silica composition than animal-based products, 

and the addition of corn gluten feed as a high-protein ingredient to some low-quality dog 

foods might also increase silica consumption217. Silica stones are not amenable to medical 
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dissolution and require surgical removal. Prevention is achieved by feeding a low-silica diet 

and increasing fluid intake217.

Melamine stones

Melamine is an industrially synthesized chemical used in a wide variety of household 

products. The presence of these stones in humans was first publicized in the late 2000s, 

precipitated by addition of melamine to infant formula in mainland China219. Among this 

population, young and preterm infants were most at risk for stone formation and renal 

failure219. On ingestion, melamine produces cyanuric acid diamide and cyanuric acid in a 

process that might be dependent on the presence of Klebsiella terrigena, a component of the 

normal gut flora220. The presence of melamine in combination with cyanuric acid forms a 

poorly soluble compound that precipitates in the renal tubules, leading to renal failure and 

kidney stones219. Melamine stones are often multiple and bilateral and can be combined 

with uric acid on stone analysis221. Melamine crystallizes under normal urinary conditions 

but this crystallization might be more be worse in the presence of a UTI and low urine 

pH222. The mainstay of treatment is elimination of melamine from the diet, increased water 

intake, and alkalinisation of the urine.

Melamine stones in companion animals were first described in the early 2000s during an 

outbreak of urolithiasis and renal failure in cats and dogs in Asia and North America. 

Many of these animals had ingested pet food that had been purposely contaminated with 

melamine in an attempt to deceptively increase the apparent protein content223. This 

outbreak foreshadowed the similar occurrence in children in China who ingested formula 

contaminated with melamine.

Opportunities for research

Dog models are well suited for gene discovery research. Most uroliths (for example, 

86% of CaOx stones) occur in purebred dogs69. In contrast to people, dog breeds have 

relatively little genetic diversity, and disease traits are often controlled by a small number 

of variants with strong effect224. This reduced diversity enhances the ability to pinpoint 

major susceptibility genes in dog models225-227. Dogs and humans share susceptibility genes 

for several monogenic disorders associated with uroliths , including SLC2A9, SLC3A1, 
SLC7A9, XDH, MOCOS, and APRT158,185,200,212. In fact, SLC2A9 belongs to a family 

of glucose transporters, but it also has a role in uric acid transport, which was unknown 

until the discovery of its role in hereditary hyperuricosuria in Dalmatian dogs158. Thus, the 

dog is a biomedically relevant model that could help the discovery of novel susceptibility 

genes for urolith types, such as CaOx. The relatively low within-breed diversity could 

also benefit the discovery of modifier genes affecting uric acid stone formation, using 

the model of hereditary hyperuricosuria in Dalmatian dogs. In addition, dogs are well 

suited for microbiome research, as the dog gut microbiome has more similarilities to the 

human microbiome than mice or pigs; when gut microbiome sequencing is mapped to 

the human gut gene catalog, 63% of dog reads map compared to only 33% of pig reads 

and 20% of mouse reads228. The gut microbiome in dogs also undergoes alternations 

in response to dietary changes that parallel human studies . Alterations in the gut and 
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urine microbiome and metabolome are linked to human stone risk54-57 and dogs could be 

used to investigate these bacterial networks and how they might be manipulated through 

diet or other intervention. Dogs additionally respond to many of the same pharmaceutical 

treatments used in humans for prevention and dissolution of various stone types, including 

penicillamine, tiopronin, allopurinol, potassium citrate and thiazide diuretics89,189. These 

parallels might enable further clinical studies randomizing a new therapy against a well-

studied control to be performed in dogs before human studies begin.

Cats also share urolith susceptibility genes with humans, but, unlike in dogs, the majority 

of uroliths (for example, 74% of CaOx uroliths) occur in random bred cats92. Random 

bred cats have similar genetic diversity to humans and, therefore, lack the advantage for 

genetic research229. However, cats offer a unique model for research on the renal pathology 

associated with stones, as Randall’s plaques have been observed in cats with spontaneous 

calcium oxalate urolithiasis [Lulich, J.P., unpublished data]. This phenomenon fills a critical 

need in stone research as Randall’s plaques with adherent stone growth are largely absent 

in rodent models230 The procurement of gross kidney specimens from cats who were 

known stone formers could provide representations of stone disease from its very inception. 

In terms of treatment studies, the small ureteral size of cats prohibits the use of current 

endourological techniques to treat upper urinary tract stones; however, the cat could serve as 

a model for novel extracorporeal therapies for obstructing nephroureteroliths, such as burst 

wave lithotripsy231.

One unique aspect of the canine and feline models is the high prevalence of lower 

urinary tract stones12. Although bladder stones are relatively less common in humans, the 

pathogenesis of bladder stones seems to be shared with that of kidney stones. Individuals 

with a family history of kidney stones are at increased risk for bladder stones and vice 

versa21. Furthermore, in a study of men with bladder outlet obstruction secondary to benign 

prostatic hyperplasia, those with bladder stones were signficantly more likely to have a 

history of kidney stones (11 of 30 patients) compared to those without bladder stones (2 

of 27, P <0.01)232. Bladder stones are presumed to initially form in the upper urinary 

tract and ultimately pass down into the bladder where they continue to grow and become 

symptomatic, particularly if outflow is obstructed232. In animals, the quadruped stance, 

urethral anatomy (tapering of the penile urethra and, in male dogs, the presence of an 

os penis) and, in some dogs, a relatively high residual urine volume (up to 3.4 ml/kg in 

healthy dogs), does not facilitate passage of these stones out of the bladder233-235. In dogs, 

upper urinary tract stones rarely cause clinical signs; thus,they often remain undetected. 

However, upper urinary tract stones are likely to be common in dogs with bladder stones, 

according to one small study in which screening with urinary tract ultrasonography revealed 

nephroliths in 6 of 7 dogs with active or historic CaOx bladder stones79. Similarly, upper 

and lower urinary tract stones often coexist in cats; one-third of cats with kidney stones have 

concurrent bladder stones.96 Thus, dogs and cats serve as a model for stone pathogenesis 

throughout the urinary tract, even when the predominant clinical presentation relates to 

lower urinary tract stones.

Other species, such as ferrets, otters, and dolphins, are less accessible than cats and dogs 

for laboratory research, but do have certain benefits when available. The utility of otters 
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in human research stems primarily from the high proportion of upper urinary tract stones 

that are detected in this species110. This occurrence enables direct study of stone formation 

before the period of growth that is observed in stones that have descended to grow in 

the bladder. In the captive population, diets are easily manipulated and urine is simpler 

to collect than in wild otters. Ferrets are already commonly used in the laboratory setting 

for other research, such as respiratory tract disease (for example, influenza)236, and are 

relatively accessible for the study of de novo stone formation. Their growth of sterile struvite 

stones offers an opportunity to study struvite crystallization independently from the setting 

of chronic bacteriuria usually seen in humans who form struvite stones, and their high 

prevalence of cystine stones affords testing of novel therapies to prevent or dissolve this 

stone type. The dolphin kidney is of similar dimensions as a human kidney and could be an 

excellent model for novel surgical techniques or for better visualizing the initial pathogenic 

events of stone formation. In addition, altering the diet of captive dolphins and studying 

the results of new medications on blood or urine (collected via catheterization) electrolyte 

balances is simple237.

The use of companion animals in research promotes an ethical opportunity to study disease 

in animals without inflicting harm. Clinical trials in pet dogs and cats can reduce costs to 

their owners and provide the affected pets with access to novel therapies. In addition to 

benefits for the individual study participants, the results advance evidence-based veterinary 

medicine and contribute to the One Health collaborative mission to optimize care for 

humans and animals.

CONCLUSIONS

Various different species can provide naturally-occurring animal models for both common 

and rare urolith types, and each has advanges and limitations for use in translational research 

(Table 2).

The use of naturally-occuring animal models could reduce the need for laboratory animals 

used in experimental research while providing models that are more physiologically relevant 

than rodent models. Furthermore, companion animals such as dogs, cats, and ferrets can 

be enrolled in clinical trials to test novel drugs and devices, benefiting both human and 

veterinary medicine. Naturally-occuring animal models also serve as sentinal species for the 

detection of environmental risk factors. Other benefits of these models include promotion of 

evidence-based veterinary medicine, reduced cost of veterinary care to owners whose pets 

are enrolled in clinical studies, and availability of leading edge veterinary care for animals 

who are enrolled in clinical studies. Limitations in the use of these naturally occurring 

models include spontaneous and unpredictable stone development, varying location of 

stones, and anatomical differences between the species in question and humans, including 

size and shape of the kidney.

Ultimately, recognizing the similarities in stone disease between these different populations 

and collaboration with our colleagues in veterinary medicine on a health issue that is 

relevant to both humans and animals will lead to improved care for all patients, both human 

and otherwise.
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Key points

• Common and rare human urolith types also occur naturally in companion and 

captive animal species, offering diverse opportunities for research.

• Calcium oxalate uroliths are common in dogs, cats, and Asian small-clawed 

otters; these models are uniquely suited for research on genetic risk factors, 

Randall’s plaque, and dietary hyperoxaluria, respectively.

• Infection-induced struvite uroliths are common in dogs, whereas sterile 

struvite uroliths occur frequently in cats and ferrets; these models could be 

used to investigate medical dissolution therapy.

• Natural animal models of uric acid uroliths are best suited to discovery 

of genetic modifiers (dogs), study of dietary hyperuricemia (dolphins), and 

treatment (dogs, cats, dolphins).

• Other human urolith types occurring in domestic animals comprise those 

that form secondary to rare hereditary disorders (cystine, xanthine and 2,8-

dihydroxyadenine) or mineral and toxin ingestion (silica and melamine).

• Companion animal models of urolithiasis are also useful for discovering 

environmental and lifestyle risk factors and testing novel devices or 

therapeutics, which might simultaneously advance veterinary and human 

medicine.
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Figure 1 ∣. 
Similar morphological appearance of naturally-occuring calcium oxalate uroliths from four 

different species: (A) human; (B) dog; (C) cat; (D) otter.
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Figure 2 ∣. 
X-ray images of naturally-occuring calcium oxalate nephrolithisis in four different species: 

(A) human; (B) cat; (C) dog; (D) Asian small-clawed otter.
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Figure 3 ∣. 
MicroCT scan of naturally-occuring calcium oxalate nephroliths from (A) human and (B) 

cat demonstrating a calcium oxalate composition (dark grey) surrounding a core of calcium 

phosphate (light grey), suggesting a common method of formation. Insets show the gross 

stone morphology.
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Table 1 ∣

Characteristics of naturally occurring calcium oxalate urolithiasis in different species.

HUMANS DOGS CATS OTTERS

Renal anatomy Multipapillary Unipapillary and 
multipyramidal

Unipapillary Reniculated

Stone 
characteristics

− 61% CaOx14

• 15% hydroxyapatite
• 11% uric acid
• 8% struvite
• 3% brushite
• 2% cystine

− 41% CaOx12

• 39% struvite
• 5% uric acid
• 9% compound
• 3% mixed
• 1% cystine
• 2% other

− 41% CaOx12

• 49% struvite
• 5% uric acid
• 3% compound
• 2 % other

− 56% CaOx13

• 27% compound
• 8% uric acid
• 6% mixed
• 2% calcium carbonate
• 2% struvite

Genetics Evidence of heritability17-19 

and primary 
hyperoxaluria48

Evidence of heritability68,69 and 
primary hyperoxaluria83,84,88

Evidence of heritability91,92 

and primary 
hyperoxaluria103

Unknown

Metabolic 
abnormalities

Hypercalciuria - yes31,32

Hyperoxaluria - yes48

Hypocitraturia - yes42-45

Reduced 24-hydroxylation 
of vitamin D metabolites - 
yes38

Increased bone turnover - 
yes32

Obesity - yes2

Hypercalciuria - yes75-79

Hyperoxaluria - yes, rare83,84,88

Hypocitraturia - no76,78

Reduced 24-hydroxylation of 
vitamin D metabolites - 
yes81,238

Increased bone turnover - No – 
limited data80

Obesity - yes69,71

Hypercalciuria - yes75,99,100

Hyperoxaluria - yes, 
rare103,104

Hypocitraturia - Unknown
Reduced 24-hydroxylation 
of vitamin D metabolites - 
Unknown
Increased bone turnover - 
Unknown
Obesity - Unknown

Hypercalciuria - 
Unknown
Hyperoxaluria - yes113

Hypocitraturia - 
Unknown
Reduced 24-
hydroxylation of 
vitamin D metabolites - 
Unknown
Increased bone turnover 
- Unknown
Obesity - Unknown

Microbiome Lack of oxalobacter51-53 Lack of oxalobacter87 Unknown Unknown

Pathology Interstitial (Randall’s type) 
papillary plaque - yes6,58,59

Bellini duct plugs - yes60

Unknown Interstitial (Randall’s type) 
papillary plaque - Yes
Bellini duct plugs - 
unknown

Unknown

Treatment and 
prevention

Increased hydration - 
yes63-67

Decreased oxalate 
consumption - yes50,63-67

Moderate calcium 
consumption - yes63-67

Reduced sodium 
consumption - yes63-67

Thiazides - yes63-67

Potassium citrate - yes63-67

Increased hydration - yes89

Decreased oxalate consumption 
- unknown
Moderate calcium consumption 
- yes90

Reduced sodium consumption - 
unknown
Thiazides - yes74,89

Potassium citrate - yes89

Increased hydration - yes89

Decreased oxalate 
consumption - unknown
Moderate calcium 
consumption - unknown
Reduced sodium 
consumption - unknown
Thiazides – yes89

Potassium citrate - yes89

Increased hydration - 
Unknown
Decreased oxalate 
consumption - unknown
Moderate calcium 
consumption - unknown
Reduced sodium 
consumption
Thiazides - Unknown
Potassium citrate - 
Unknown
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Table 2.

Strengths and limitations of naturally occurring animal models for major stone types.

ANIMAL
MODEL

STONE 
TYPE

OPPORTUNE RESEARCH
AREAS

LIMITATIONS

Dogs Calcium 
oxalate

Genetics
Supersaturation
Microbiome
Prevention (dietary and pharmaceutical)

Most stones are located in the lower urinary tract; ureteral 
obstructions are uncommon.
Urate stones are only observed with a genetic defect in urate 
transport or portosystemic vascular anomaly.

Struvite Infection-induced struvite
Medical dissolution (dietary and 
pharmaceutical)

Purine (uric 
acid)

Medical dissolution (dietary and 
pharmaceutical)
Prevention (dietary and pharmaceutical)
Genetics (modifiers)

Cystine Effective of L-cystine dimethyl esters in 
prevention
Effect of sex hormones on risk
Medical dissolution (dietary and 
pharmaceutical)

Cats Calcium 
oxalate

Pathology (Randall’s plaques)
Supersaturation
Treatment of obstructing nephroureteroliths 
Prevention (dietary and pharmaceutical)

Ureteral diameter is prohibitively small (0.3 mm) for 
endourological study.

Struvite Sterile struvite
Medical dissolution (dietary and 
pharmaceutical)

Ferrets Struvite Sterile struvite Less common

Cystine Medical dissolution (dietary and 
pharmaceutical)

Molecular basis has not been established.

Dolphins Purine (urate) Treatment of obstructing nephroureteroliths
Medical dissolution (dietary and 
pharmaceutical)
Prevention (dietary and pharmaceutical)

Endangered species.

Otters Calcium 
oxalate

Dietary risk factors
Hyperoxaluria

Endangered species.
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