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Quantifying Viscous Damping
and Stiffness in Parkinsonism
Using Data-Driven Model
Estimation and Admittance
Control
Rigidity of upper and lower limbs in Parkinson’s disease (PD) is typically assessed via a
clinical rating scale that is subject to human perception biases. Methodologies to quan-
tify changes in rigidity associated with the angular position (stiffness) or velocity (viscous
damping) are needed to enhance our understanding of PD pathophysiology and objec-
tively assess therapies. In this proof of concept study, we developed a robotic system and
a model-based approach to estimate viscous damping and stiffness of the elbow. Our
methodology enables the subject to freely rotate the elbow using an admittance controller
while torque perturbations tailored to identify the arm dynamics are delivered. The vis-
cosity and stiffness are calculated based on the experimental data using least-squares
estimation. We validated our technique using computer simulations and experiments with
a nonhuman animal model of PD in the presence and absence of deep brain stimulation
therapy. Our data show that stiffness and viscosity measurements can better differentiate
rigidity changes than scores previously used for research, including the work and impulse
scores, and the modified unified Parkinson’s disease rating scale. Our estimation method
is suitable for quantifying the effect of therapies on viscous damping and stiffness and
studying the pathophysiological mechanisms underlying rigidity in PD.
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1 Introduction

Parkinson’s disease (PD) is a disorder of the central nervous
system that alters movement control and can lead to limb rigidity,
tremors, and balance difficulties. Rigidity is a cardinal motor sign
of PD that affects the majority of patients and is characterized by
stiff and inflexible muscles that prevent relaxation. Objectively
quantifying rigidity in PD is vital to evaluating therapies and
advancing treatments such as deep brain stimulation (DBS). In
both clinical and research settings, the unified Parkinson’s disease
rating scale (UPDRS-III) is the most widely used approach for
assessing PD motor signs. To obtain the rigidity UPDRS-III sub-
score, the examiner manipulates major joints and assigns a 0–4
rating (increments of 1) based on the rigidity’s severity [1]. The
UPDRS-III scale has low sensitivity to quantify mild severity or
small changes in motor signs due to its coarse rating and depend-
ence on human perception, and can exhibit limited inter-rated reli-
ability depending on the rater’s training [2–4].

Devices and approaches based on force transducers have been
developed to objectively and precisely assess rigidity in both
human and nonhuman primate models of PD [5–7]. For example,
the system developed by Fung et al. [7] moved the subject’s wrist
manually (0.5–1.0 cycles/s) and measured the reaction torque
using a torque transducer. The device developed by Mera et al. [6]
moved the subject’s elbow with a triangular angular position tra-
jectory (0.5 cycles/s) generated by a motor and measured the reac-
tion torque using a torque transducer. These studies quantified
rigidity through the angular impulse and work scores, which are
scalar measures based on torque and position measurements
resulting from movement trajectories at one single frequency
(number of cycles/sec). Impulse and work scores provide a more
objective assessment of rigidity than the UPDRS-III scale given
that unbiased sensors and actuators are employed for their calcula-
tion; however, these scores cannot identify whether rigidity meas-
urements are associated with changes in angular position
(stiffness) or velocity (viscous damping). Prochazca et al. [8]
showed that viscosity and stiffness can be estimated from the indi-
vidual flexion and extension forces measured in reaction to elbow
movement manually applied by an examiner. The latter study also
demonstrated that the vectorial sum of the viscous damping and
stiffness (resistance) could predict changes in UPDRS-III rigidity
scores associated with the administration of levodopa medication.

While the rigidity of upper and lower joints in PD has long
been thought to be dependent on the angular position (stiffness),
recent research has shown that angular velocity (viscous damping)
has a significant impact on rigidity [9]. A study by Park et al. [10]
with PD patients and control subjects, in which damping and stiff-
ness were estimated, found that viscosity and stiffness associated
with flexion–extension of the wrist correlated with clinical rigidity
assessments. The authors in Ref. [10] estimated the viscosity and
stiffness from the individual flexion and extension torque meas-
ured in reaction to movement manually applied by an examiner at
0.2–1.0 cycles/s. They could differentiate PD subjects from con-
trols with their model based on viscosity estimates alone. They
also suggested that enhanced long-latency stretch reflexes medi-
ated by the sensorimotor cortices may contribute to the velocity-
dependent muscle activation associated with viscosity, whereas
background muscle activation and passive resistance may contrib-
ute to the stiffness. The work by Park et al. [10] highlights the
importance of accounting for both velocity (viscosity) and dis-
placement (stiffness) effects on rigidity measurements.

We built upon the work by Park et al. [10], Mera et al. [6], and
Prochazka et al. [8] to develop a robotic system and rigidity
assessment methodology for elbow motion that enables controlled
generation of torque perturbations and free motion. The system’s
free-motion capability allows us to generate torque perturbations
while the subject moves the arm freely, and to separate the effect
of our known torque perturbations from the subject’s voluntary
torque applied to the robot (unknown disturbances). This capabil-
ity is instrumental when conducting experiments with animal

models of PD and human patients with tremor and dyskinesia.
The known torque perturbations were designed to have a fre-
quency content that excites the rotational arm dynamics in order
to improve model accuracy. We modeled the rotational arm
dynamics with a second-order differential equation. The stiffness
and viscosity parameters of the model were estimated using least
squares estimation based on the known torque perturbations and
measurements of position, velocity, and reaction moment. To
understand the benefits and drawbacks of our rigidity assessment
methodology compared to rigidity scores typically used for
research, we employed both computer simulations and recordings
from a nonhuman primate model of PD in the presence and
absence of DBS therapy. Computer simulations of the arm and
robot rotational dynamics indicate that our estimation approach
can accurately identify changes in both viscosity and stiffness.
These simulations also show that the work and angular impulse
scores capture a combination of the viscosity and stiffness compo-
nents in a single scalar measurement, but under certain conditions,
the work score does not reflect overall changes in rigidity. The
animal PD model experiments showed that changes in rigidity
associated with DBS could be detected with the mUPDRS (modi-
fied UPDRS-III) scores blinded to the examiner, work and angular
impulse scores, and data-driven parameter estimation technique.
Our estimation technique further revealed that DBS reduced both
viscosity and stiffness in the studied subject. Moreover, the differ-
ences in viscosity and stiffness detected with our parameter esti-
mation method had a greater effect size than the effect sizes
observed with the mUPDRS-rigidity, work, and angular impulse
scores. This study suggests that the proposed parameter estimation
approach can be utilized to effectively quantify and characterize
viscous and elastic rigidity in Parkinsonian subjects, critical to
objectively assessing the effectiveness of therapies in both
research and clinical settings.

2 Methods

2.1 Subject and Rigidity Assessment Via Rating Scale. All
procedures were approved by the University of Minnesota Institu-
tional Animal Care and Use Committee and complied with United
States Public Health Service policy on the humane care and use of
laboratory animals. A rhesus macaque rendered Parkinsonian via
administration of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyri-
dine neurotoxin [11] was used to evaluate the rigidity assessment
methods studied here. We assessed the rigidity of the subject’s
left elbow during two conditions: no treatment (OFF) and high-
frequency DBS of the right subthalamic nucleus. DBS was deliv-
ered to the subject at 130 Hz frequency, 320 lA amplitude, and 60
ls pulse-width. We used a bipolar electrode configuration, in
which the anode and cathode of the current source were connected
to adjacent electrodes in the DBS array. Rigidity assessments
were performed 15 min after DBS was turned on to account for
possible wash-in effects of DBS on rigidity.

Elbow rigidity was evaluated by three blinded examiners with
mUPDRS scores ranging from 0 to 3, with increments of 0.5 and
3.0 representing the highest severity [12]. We corrected the
mUPDRS scores for the individual examiner bias and variance
with a linear mixed-effects (LME) model. The LME model for-
mula defined the experimental condition as a fixed effect and the
individual examiners as a random effect on the mUPDRS scores.
This formula is given below:

ymeas ¼ boff � xoff þ bdbs � xdbs þ b1 � z1 þ b2 � z2 þ b3 � z3

where ymeas is the model of the measured mUPDRS score; xoff and
xdbs are categorical (dummy) variables associated with the OFF
and DBS conditions; boff and bdbs are the slopes associated with
the OFF and DBS conditions; z1, z2, z3 are categorical variables
associated with the three examiners; and b1, b2, and b3 are offsets
associated with the three examiners. The mUPDRS scores were
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corrected by subtracting the bias terms associated with the exam-
iners from the original scores.

2.2 Experimental Setup. Elbow rigidity was assessed using
a robotic system attached to the subject’s forearm, with the axis of
the robot’s actuator aligned with the subject’s elbow. The position
and velocity of the robot’s arm were controlled using a high tor-
que, AC servo-actuator (39 Nm FHA-C series, Harmonic Drive,
Beverly, MA). A force/torque sensor (F/T Sensor: Gamma, ATI,
Apex, NC) measured the torque produced by the subject at the
shaft of the actuator. Figure 1 illustrates how the robot is config-
ured and attached to the subject’s arm. We chose to move the
elbow along an axis parallel to the subject’s torso to avoid grav-
ity’s effect on the torque measurements.

The rigidity quantification methods studied here were imple-
mented on the robot by using a custom software developed in
SIMULINK DESKTOP REAL-TIME (MATHWORKS, Natick, MA, 2016). Cus-
tom drivers were used to interface with the actuator and torque
sensor. Data streams from the torque sensor were acquired at 100
samples/s. The actuator controller (REL Servo-Drive, Harmonic
Drive) measured the angular position and velocity of the shaft
using an optical encoder with a resolution of 2:25� 10�4 deg per
pulse and transmitted these data to the SIMULINK REAL-TIME com-
puter with a sampling rate of 50 samples/s. Physical and software
limits were implemented to ensure that the robot’s speed and posi-
tion did not exceed safety limits.

2.3 Rigidity Assessment Using Angular Impulse and Work
Scores. Sinusoidal position trajectories were applied to the elbow
joint at 1.0 Hz with a 620 deg range to mimic the clinical UPDRS
assessment motion as suggested by Fung et al. [7]. We measured
20 s epochs consisting of the torque produced by the subject’s arm
in response to 10 s of movement trajectories (i.e., perturbations).
After each epoch, the subject was randomly given a period of 10
or 20 s when the robot’s position was set constant to let the subject
rest and minimize the subject’s anticipation of movement. Each
experiment lasted around 10 min, with 15 sinusoidal perturbation
epochs recorded in each condition (OFF and DBS).

Impulse and work scores were calculated based on the position
and torque data acquired during the experiments described above.
The first and last second of each epoch were discarded to remove
transient effects observed in torque measurements. We used a dig-
ital bandpass filter (0.2–5.0 Hz) to remove noise and low-
frequency measurements associated with the subject’s active
resistance. The angular impulse score holistically quantifies the
inertial, viscous, and elastic forces generated at the elbow. Meas-
urements of this score were computed by rectifying the measured
torque and integrating the rectified torque with respect to time for
each sinusoidal perturbation. We calculated the angular impulse
score over an epoch in which the perturbation frequency was con-
stant. The angular impulse score is given by the following
expression:

A ¼

PNs�1

k¼0

jMmeas kð ÞjDt

n
(1)

where Mmeas is the measured torque (N�m), k is the time sample,
Dt is the sampling period, n is the number of cycles used for the
computation of each score (eight cycles in each epoch), and Ns is
the number of samples in these movement cycles. Therefore, the
angular impulse score is the average angular impulse over an
epoch in which the perturbation frequency is constant.

The work score quantifies the relationship between elbow force
and the angular displacement of the elbow. This score represents
the mechanical work produced by the elbow during the perturba-
tions. The work score is given by

W ¼

PNs�1

k¼0

Mmeas kð Þ

n
(2)

where n is the number of cycles considered in the summation
(eight cycles in each epoch), and Ns the number of samples over
the considered movement cycles so that hð0Þ ¼ hðNsÞ. The net-
work of each perturbation cycle is defined as the area within the
hysteresis loop produced by the torque response with respect to
the angular displacements.

2.4 Estimation of Viscous and Elastic Rigidity Using
Admittance Control

2.4.1 Mathematical Abstraction of Elbow Rigidity. A second
order, linear, time-invariant differential equation was used to char-
acterize the motion of the arm and associated rigidity about the
elbow’s axis of rotation. This equation is given by

Jp
€h þ Bp

_h þ Kph ¼ Mmeas (3)

where Jp is the moment of inertia about the elbow’s axis of rota-
tion, Bp is the viscosity, Kp is the stiffness, h is the angular posi-
tion, and Mmeas is the torque measurement. _h and €h are the first
and second temporal derivatives of the angular position (i.e.,
angular velocity and acceleration). The goal of our estimation
approach is to calculate parameters Jp, Bp, and Kp by using meas-
urements of h, _h; €h, and Mmeas.

2.4.2 Admittance Controller. Enabling subjects to freely
move their elbow during rigidity assessments can help relax their
arm, create a more natural environment than that created when the
position of the arm is fixed or driven by a position tracking com-
mand, and potentially minimize the recurrence of volitional move-
ment. To create a feeling of free motion, one needs to overcome
the high torque generated by the actuator’s mechanical gear. We
addressed this problem by actively controlling the actuator veloc-
ity based on the torque applied by the subject to the shaft. In the
robotics field, this strategy is referred to as admittance control
[13].

The admittance controller used torque measurements to gener-
ate velocity commands that were executed in real-time by the
robot actuator. Sensor measurements were filtered before entering
the controller using a low-pass filter with a cutoff frequency of
20 Hz. This filter minimizes the propagation of high-frequency
noise from the torque transducer to the robot trajectories. The con-
troller’s transfer function emulated the dynamics of a rotational
system with damping (Bc) and inertia (Jc). Figure 2(a) illustrates
how the velocity commands are generated from a given measured
torque (subject instruction). Figure 2(c) shows the block diagram
of the velocity generation within the admittance controller. With-
out the inertial and damping effects in the controller, the system
would move the robot’s arm with an unbounded velocity and posi-
tion when a constant force is applied, resulting in abrupt motion

Fig. 1 Schematic of subject’s arm with robotic system. The
robot was used to perturb the subject’s arm using a high-
torque motor and measure the reaction torque applied by the
arm.
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of the arm followed by a sudden stop when the actuator reaches
the position limits.

Figure 2(b) shows the physical and computer-generated torque
components involved in the arm motion, including the controller’s
viscous damping and inertial contributions. We heuristically tuned
the controller inertia and viscous damping with the subject’s arm
placed on the robot to achieve smooth and low-friction motion
when the subject applied a force. The final values were set to
Jc ¼ 0:0008 Kgm2=deg and Bc ¼ 0:028 N �ms=deg. The torque
contributions of the controller inertia and viscosity to the system
dynamics are presented in Eq. (4)

½Jp
€h þ Bp

_h þ Kph� þ ½Jc
€h þ Bc

_h� ¼ Msub (4)

where Msub is the torque voluntarily applied by the subject. Equa-
tion (5) illustrates how the controller and arm-robot dynamics
relate to the measured torque (Mmeas), which in turn can be
approximated as the torque generated by the robot actuator (Mact)

Mact¼ Mmeas ¼ ½Jp
€hp þ Bp

_hp þ Kphp� �Msub

¼ MPRBS � ½Jv
€hv þ Bv

_hv�
(5)

The term MPRBS represents torque perturbations (pseudo-random
binary sequence, PRBS) injected into the torque signal to estimate
the effect of these known perturbations on the arm rotational
dynamics (i.e., viscosity and stiffness). The PRBS perturbation is
described below. One should note that the torque voluntarily
applied by the subject (Msub) can be approximated via Eq. (5)
when estimates of Jp, Bp, and Kp are available.

2.4.3 Perturbation Design for Parameter Estimation. We
used a known perturbation to the torque signal entering the admit-
tance controller to excite the arm dynamics and estimate the rigid-
ity components based on its response to the perturbation. Using
both the measured torque and perturbation signal to generate the
arm’s motion, we enable the subject to move the arm while per-
turbing the system dynamics for parameter estimation. We
designed the input perturbation torque to excite the subject’s arm
at frequencies throughout the expected bandwidth of the arm
motion. We estimated the bandwidth of the admittance controller
dynamics together with the subject’s arm to have a maximum
(worst-case) cutoff frequency of 3.5 Hz. This cutoff frequency
was estimated using a second-order model of the arm, based on
available stiffness and viscosity data from the human arm, and
considering a 50% error in the parameters. A more detailed
description of the approach to determine this cut off frequency is
outlined in Appendix A. A Bode plot illustrating the frequency
response of the arm model is presented in Fig. 3(a).

We employed a PRBS perturbation with zero mean and fre-
quency content that excited the subject’s arm between 0.15 and
10 Hz for 20 s. We selected a bandwidth of 10 Hz to exceed the
expected bandwidth of the arm motion (3.5 Hz) and capture
the attenuation of the arm response at frequencies beyond 3.5 Hz.
The PRBS signal used in the experiments is shown in Fig. 4. The
power spectral density of the PRBS signal, shown in Fig. 3(b),
confirms that the effective bandwidth of the perturbation was
0.15–10 Hz.

We heuristically determined the amplitude of the PRBS signal
via experimentation to evoke angular displacements within the
system’s physical limits. We used perturbations with an amplitude
equal to 61 N�m. The resulting standard deviation of the position
signal was approximately 4 deg for each perturbation epoch. The
PRBS perturbations applied in the experiments were 20 s long and
were spaced between randomly selected 10 or 20 s rest periods
when the subject’s arm was moved to the initial position. The
same PRBS sequence was applied to all epochs across conditions
(OFF and DBS) to compare parameter estimates associated with
the same perturbation.

2.4.4 Least-Squares Estimation of Arm Viscosity and Stiff-
ness. We identified the inertial, viscous, and stiffness parameters
of the arm using least squares estimation [14]. To estimate these

parameters, the acceleration (€h) and position (h) of the arm were
reconstructed from the velocity commanded to the actuator. We
used the velocity commands instead of the velocity measurements
for parameter estimation to minimize the effect of sporadic com-
munication jitters caused by our asynchronous communication
between SIMULINK DESKTOP REAL-TIME and the actuator. Because the
actuator’s torque and bandwidth were higher than those needed to
generate the PRBS trajectories, the commanded velocity was an
accurate approximation of the actual velocity. We used a forward
finite difference time derivative of the velocity to calculate the

arm acceleration, which is given by €hðtÞ ¼ _hðtþDtÞ� _hðtÞ
Dt , where Dt is

the sample time. The position was found through a forward finite
difference time integral given by hðtþ DtÞ ¼ _hðtþ DtÞ � Dtþ
hðtÞ, with hð0Þ ¼ 0.

Forces voluntarily applied by the subject to the robotic system
can lead to low-frequency drifts in the position signal as a result

Fig. 2 (a) Block diagram illustrating the implementation of the
admittance controller. Torque measurements are fed back to
generate the velocity commanded to the actuator. (b) Free body
diagram illustrating the rotational dynamics of the robot, arm,
and admittance controller (c) block diagram of the admittance
controller illustrating how the controller inertia and damping
alter the input velocity to reproduce the free motion dynamics
based on the subject’s measured torque. A torque perturbation
injected in software is used to excite the arm rotational dynam-
ics and identify the viscous damping and stiffness.
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of integrating the acceleration produced by the measured torque
twice to obtain the position signal. To minimize the effect of vol-
untary motion on the estimation accuracy, we suppressed low-
frequency drifts in the position signal using a Butterworth high
pass filter with a cutoff frequency of 0.20 Hz.

We used Eq. (3) to define the relationship between known data
and unknown parameters in the least-squares estimation method.
This relationship is given by

€hðtÞ _hðtÞ hðtÞ
€hðtþ DtÞ _hðtþ DtÞ hðtþ DtÞ

: : :

2
6664

3
7775

Jp

Bp

Kp

2
6664

3
7775

¼

MmeasðtÞ

Mmeasðtþ DtÞ

:

2
6664

3
7775 (6)

which has the form Ax¼ b with x ¼ ½JpBpKp�T . The least squares
solution to x is x̂ ¼ ðATAÞ�1AT � b.

We estimated inertia, viscosity, and stiffness parameters for
each epoch associated with a PRBS sequence. Epochs in which
the arm reached the position limits of the robot were excluded
from the analysis. Epochs were also excluded if the goodness of
fit statistic, Rsquared, was below zero.

The combined inertia of the robot and subject’s arm (Jp) should
not vary across conditions (OFF, DBS). Variations in the arm
motion across these conditions can be attributed to changes in vis-
cous damping and stiffness associated with DBS therapy. Conse-
quently, we estimated the inertia Jp using the approach described
in the previous subsection and then calculated the viscosity and
stiffness parameters with a given constant inertia. The inertia was
set equal to the median value of the inertia estimates across all
epochs and experimental conditions recorded. After finding the
median inertia estimate, the viscous damping and stiffness param-
eters were estimated using a least-squares minimization applied to
the following expression:

_hðtÞ hðtÞ
_hðtþ DtÞ hðtþ DtÞ

: :

2
6664

3
7775

Bp

Kp

2
4

3
5

¼

MmeasðtÞ � Jp;fixed
€hðtÞ

Mmeasðtþ DtÞ � Jp;fixed
€hðtþ DtÞ

:

2
66664

3
77775

(7)

2.5 Data Collection and Statistics for Viscosity and Stiff-
ness Estimation. Independent observations of the viscous damp-
ing and stiffness were calculated based on epochs (data segments)

Fig. 3 (a) Bode plot of combined admittance control and
approximated arm dynamics with the highest bandwidth. The
transfer function used for the approximation is described in
Appendix A. (b) Power spectral density of PRBS perturbation
signal that confirms the frequency content in the band of inter-
est (0.15–10 Hz).

Fig. 4 (a) PRBS signal used during experiments. (b) Torque
measured during an experiment in the OFF condition together
with the estimated torque, which was computed based on the
estimated model parameters. The estimated torque was calcu-
lated as the inertia, viscosity, and stiffness estimates multiplied
by acceleration, velocity, and position signals, respectively. (c)
and (d) Torque components associated with the stiffness and
viscous damping. The simulated torque was calculated based
on the acceleration, velocity and position signals derived via
integration of the input PRBS perturbation.
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of 20 s length associated with distinct PRBS sequences to assess
statistical differences between observations across conditions
(OFF, DBS). We tested the two experimental conditions over nine
nonconsecutive days. The subject’s rigidity was evaluated in the
OFF condition each day with DBS either following or preceding
the OFF condition. To minimize a possible sustained (wash-out)
effect of DBS on rigidity, we conducted assessments in the OFF
condition 15 min after turning DBS off. We evaluated DBS condi-
tions for four days. Table 1 shows the number of epochs recorded
to calculate the angular impulse score, work score, viscous damp-
ing, and stiffness.

We made no assumptions about the distribution of each rigidity
measurement. Therefore, a nonparametric, two-sided Wilcoxon
rank-sum test was used to evaluate whether the medians of the
viscous damping and stiffness in the DBS condition were equal to
the median in the OFF condition (null hypothesis).

2.6 Simulation Environment. We created computer simula-
tions of the robot motion to characterize how individual changes
in viscous damping and stiffness affect the angular impulse and
work scores and to validate the approach to estimating the arm’s
damping and stiffness. Simulations without the admittance con-
troller were created based on the differential equations of Eq. (3)
to characterize how changes in damping and stiffness altered
impulse and work scores. We embedded the admittance controller
in the simulation to validate that the least-squares estimation accu-
rately predicted the damping and stiffness values when sensor
noise was added to the simulated torque measurements. We mod-
eled this noise as a white Gaussian process with zero mean and
standard deviation equal to the standard deviation calculated from
the torque transducer when no force or torque was applied to the
robot. We used the same PRBS signals used in the experiments to
implement the simulations and validate the least-squares estima-
tion. The simulation was also used to assess how well our second-
order linear model predicted the experimental data.

3 Results

3.1 Blind Rating Scale Scores. The median and interquartile
range of the mUPDRS scores, corrected for the individual exam-
iner bias using a LME model, are shown Fig. 5(a). The F-test of
the corrected DBS versus OFF comparison indicated that the
mUPDRS scores in the DBS condition were significantly lower
than those in the OFF condition (p¼ 0.020).

3.2 Simulation of Viscous and Stiffness Effects on Angular
Impulse and Work Scores. We used the computer simulations of
the robotic system and subject described in Sec. 2.6 to characterize
how changes in viscous damping and stiffness parameters affect the
impulse and work scores. The viscous damping and stiffness parame-
ters used in the computer simulations were taken to be the median
values estimated across all conditions (OFF, DBS) using the parame-
ter estimation approach described in Sec. 2.4. We used these values
to simulate scenarios with realistic viscous damping and stiffness.
The median parameters were varied separately by 25%, 50%, 150%,

and 175%, and then the change in work and angular scores relative
to the baseline (median) values was calculated.

Figure 6(a) shows that an increase in the stiffness or viscosity
results in an increase in the angular impulse score. Deviations in
the angular impulse score due to stiffness changes are larger than
those due to viscosity changes. This result indicates that the angu-
lar impulse score is more sensitive to changes in stiffness but can-
not capture individual variations in the stiffness or viscosity alone.
The work score is a monotonically increasing function of viscous
damping but a monotonically decreasing function of the stiffness
(Fig. 6(b)). Therefore, a simultaneous increase (or decrease) in
both stiffness and viscous damping can lead to insignificant
changes in the work score. This effect is primarily due to the sinu-
soidal nature of the perturbation together with the dependence of
viscosity and stiffness on velocity and position, respectively.

3.3 Angular Impulse and Work Scores From Experimen-
tal Data. Sample traces of the torque as a function of the robotic
system’s angular position trajectories are shown in Fig. 7. We
should mention that the area inside the hysteresis curves is propor-
tional to the work score, and this hysteresis area has been shown
to be larger when rigidity is increased by an activation maneuver
(dual task) in PD patients [7]. The measured torque exhibited an
asymmetric behavior when the elbow deflection was at its maxi-
mum flexion or extension. These asymmetries were likely gener-
ated by a combination of factors, including the subject’s
alignment with the robot and the nonlinear relationship between
the arm angular position and reaction torque.

According to the Wilcoxon rank-sum tests, the angular impulse
scores in the DBS condition were significantly lower than those in
the OFF condition (p¼ 4:3� 10�4). Figure 5(b) shows the inter-
quartile ranges and median of the angular impulse scores in the
studied conditions. The work scores had a significant decrease
from the OFF to the DBS condition (p¼ 5:6� 10�4, Wilcoxon
rank sum tests). Fig. 5(c) shows the interquartile ranges and
median of the work scores.

3.4 Simulation of Parameter Estimation Routine. Numeri-
cal simulations of the model estimation routine, with the same
PRBS signal used experimentally and noise levels observed in the
torque transducer, were carried out to characterize the estimation
errors. In these simulations, we employed the moment of inertia
(JP), viscous damping (BP), and stiffness (KP) values estimated
from the experiments (Jp ¼ 0:0045;Bp ¼ 0:1368;Kp ¼ 1:751).
See experimental results in Sec. 3.5. A total of 100 simulations
with distinct noise samples resulted in mean errors for JP, BP, and
KP equal to �1:9� 10�7;�2:6� 10�7, and �1:9� 10�7, respec-
tively. The standard deviation of these errors was
9:6� 10�7; 1:05� 10�6, and 1:4� 10�6.

3.5 Parameter Estimation From Experimental Data. We
evaluated the accuracy of the mathematical models estimated via
least-squares by comparing the torque calculated using these mod-
els and the torque measured by the transducer during experiments.
We calculated the torque signal in two different ways. First, we
calculated the estimated torque signal as the estimated parameters
(Jp, Bp, Kp) multiplied by the angular acceleration, velocity, and
position measurements, respectively. Second, we used the simula-
tion environment described in Sec. 2.6 to calculate the simulated
acceleration, velocity, position, and torque directly from the input
PRBS signal. The PRBS signal used in the experiments is shown
in Fig. 4(a). Figure 4(b) illustrates how well the estimated (model)
torque describes the torque measured during an experiment
in the OFF condition (median values Jp ¼ 0:004400;
Bp ¼ 0:1300;Kp ¼ 1:310).

Figures 4(c) and 4(d) illustrate the individual torque contribu-
tions from the position- and velocity-related torques (viscosity
and stiffness) calculated using both the estimated and simulated
torque. The similarity between the measured and simulated torque

Table 1 Number of epochs used for rigidity measurements in
each condition across experiments

Rigidity measurement Condition Total epochs

Corrected mUPDRS score OFF 27
DBS 12

Angular impulse score OFF 92
DBS 46

Viscosity and stiffness estimation OFF 78
DBS 23
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indicates that the PRBS signal drove the arm and robot’s motion.
Therefore, in this experiment, the subject’s active resistance had a
negligible effect on the arm and robot motion. The amplitude of
the stiffness-related torque is larger than the viscosity-related tor-
que at low frequencies, but smaller at high frequencies. Discrep-
ancies between the estimated and simulated stiffness are larger
than those observed in the viscous torque. This difference occurs
because the double integration of small drifts in the measured tor-
que can lead to drifts in the position signal larger than those
observed in the velocity signal.

Figure 8(a) shows the interquartile range and median of the
inertia estimates across experiments for each condition. The

Wilcoxon rank-sum test indicated that the inertia did not have
statistically significant changes between conditions (p¼ 0.165 for
OFF versus DBS). Figures 8(b) and 8(c) show the median and
interquartile ranges of the viscosity and stiffness estimates for
each condition. Both the viscous damping and stiffness exhibited
a significant decrease from the OFF to the DBS condition
(p¼ 5:0� 10�4 for viscous damping and p¼ 1:8� 10�4 for
stiffness).

3.6 Effect Sizes of Condition Comparisons. Table 2 shows
the effect sizes of each rigidity assessment for the OFF versus
DBS condition comparisons. We calculated these effect sizes
from the r-value proposed by Cohen using the z statistic of the
Wilcoxon rank-sum test [15].

Cohen’s guidelines state that effect sizes with large, medium,
and small effects are generally around 0.5, 0.3, and 0.1, respec-
tively. The p-values of the angular impulse score, work score, vis-
cosity, and stiffness were calculated from the Wilcoxon rank-sum
test. We calculated the mUPDRS p-values from the F-test of the
linear mixed-effects model.

4 Discussion

We developed a systematic methodology to isolate the effect of
velocity and angular position on rigidity and estimate the elbow’s

Fig. 5 (a) mUPDRS scores corrected using the LME model.
The LME model corrects for the individual examiner bias and
variance. (b) Angular impulse scores for each condition. (c)
Work scores for each condition.

Fig. 6 (a) Changes in the impulse score following a percentage
change in the viscous damping or stiffness parameter. The
nominal inertia, viscous damping, and stiffness used in this
analysis were equal to the median estimates of these
parameters. The values of these parameters are (Jp 5
0:004400; Bp 5 0:1300; Kp 5 1:130). A 1.0 Hz sinusoidal perturba-
tion to the position signal was used to create the total reaction
torque in the computer simulations. (b) Changes in the work
score following a percentage change in the viscous damping or
stiffness parameter.
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viscosity and stiffness. Our methodology enables the subject being
tested to freely move the arm while torque perturbations tailored
for system identification are injected to characterize the rotational
arm dynamics. This approach is novel and enables us to separate
the effect of our known torque perturbations from the subject’s
voluntary torque applied to the robot (unknown disturbances).
This approach is particularly suitable for experiments with animal
models of PD and human patients with tremor and dyskinesia.
Because we use a robotic system, identical torque perturbations can
be applied for statistical assessment of the results. This consistency
in the application of perturbations is an advantage of our methodol-
ogy in comparison with previously proposed estimation approaches
that depend upon manual application of perturbations [8,10].

Our experimental data demonstrated the capability of model-
based parameter estimation to estimate changes in viscous damp-
ing and stiffness when comparing the OFF and DBS conditions in
an animal model of PD. These data indicate that the proposed
parameter estimation approach can help researchers and clinicians
quantify treatment effectiveness and understand the physiological
mechanisms underlying the manifestation of both stiffness and vis-
cosity in PD. We also compared the proposed methodology with
rigidity assessment approaches typically used for research, includ-
ing the mUPDRS scale and the angular impulse and work scores.

Unlike the mUPDRS scale, the angular impulse and work
scores remove human biases from quantifying rigidity. These
scores provide a holistic representation of all the different factors
contributing to the subject’s rigidity, including the reaction
moments that are a function of the angular position, velocity, and
acceleration. The comprehensive nature of the angular impulse
and work scores is their strength and weakness. Capturing all of
the subject’s dynamics with one metric hides the individual fac-
tors that may contribute to the subject’s rigidity.

All rigidity assessment methods evaluated in this study
(mUPDRS, angular impulse, work, parameter estimation) revealed
that DBS resulted in lower scores than the OFF condition. The esti-
mates of viscosity and stiffness had the largest effect sizes among all
other rigidity scores. A larger effect size translates to a more substan-
tial difference in the distributions, which suggests that for the studied
subject, our parameter estimation is better at differentiating between
the DBS and OFF conditions than the work, impulse, and corrected
mUPDRS scores.

While the mUPDRS scores aggregated across examiners via the
LME model suggest that rigidity was decreased from the OFF to
the DBS condition (p¼ 0.02), the effect size of this difference is
significantly smaller than the effect sizes associated with the

objective quantification methods. The coarse-scale (low-resolu-
tion) of the mUPDRS scores and implicit biases in perception
within and across evaluators are factors that might have influenced
the small effect size in the mUPDRS assessments.

Although the experimental data suggests that the work score can
differentiate changes in rigidity, our computer simulations revealed
that this score is a monotonically increasing function of the viscous
damping for the parameter ranges studied here but a monotonically

Fig. 8 (a) Median and interquartile ranges of the inertia esti-
mates in each condition. These estimates were found through
the least squares approach. No significant differences in the
inertia estimates were found between conditions. (b) Median
and interquartile ranges of the viscous damping estimates for
each condition. A fixed inertia of 0.0045 kg �m2 was used for
the estimation. The viscosity in the DBS condition was smaller
than in the OFF condition (p 5 5:031024, Wilcoxon rank sum
test). (c) Medians and interquartile ranges of the stiffness esti-
mates in the OFF and DBS condition based on a fixed inertia.
The viscosity in the DBS condition was smaller than in the OFF
condition (p 5 1:831024, Wilcoxon rank sum test).

Fig. 7 Torque versus angular position trajectories when sinu-
soidal perturbation is applied to the position commanded to the
robot
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decreasing function of the stiffness. These observations suggest that
the work score is not suitable to evaluate rigidity because a simulta-
neous increase or decrease in viscous damping and stiffness can
result in underestimating overall changes in rigidity.

The proposed parameter estimation method was based on a
second-order, linear, time-invariant approximation of the coupled
arm and robot dynamics. The actual dynamics of the arm and
robot may exhibit high-order terms and nonlinearities that our
simplified model does not capture. Nevertheless, the accuracy of
the second-order linear model is remarkable given its simplicity
(Fig. 4) and suggests that this model is of sufficient complexity to
study stiffness and viscosity. When estimating the arm dynamics,
the inertia values for each condition did not differ statistically,
validating our assumption that the subject and robot’s inertia is
constant across experiments. Variance in the estimated inertia,
viscosity, and stiffness can be attributed to active resistance from
the subject, deviations in the robot-subject alignment, and high-
order and nonlinear dynamics not captured by our second-order
linear model of the arm-robot motion.

Our experimental results support the hypothesis that DBS
reduces viscosity and stiffness. Our data also suggest that model-
based parameter estimation is suitable for assessing the therapeu-
tic effect of DBS and other treatments on viscosity and stiffness in
PD. Future studies can leverage the model-based estimation
approach presented here to characterize how descending inputs
from the brain alter muscle groups’ organization and how this
alteration relates to changes in viscosity and stiffness in PD and
during DBS. One can also use the robotic system and methodol-
ogy described herein to develop automated programming routines
for the selection of DBS parameters (pulse-width, frequency, and
current amplitude).

4.1 Limitations. A significant challenge for measuring rigid-
ity in nonhuman animals is the active resistance affecting any
assessment approach. Although we attempted to identify the arm
dynamics associated with a PRBS perturbation injected into the tor-
que signal while allowing the subject to freely move, we acknowl-
edge that active resistance occurring at the same frequency of the
PRBS signal can play a role in the variability of the parameter esti-
mates. Using electromyography recordings could help detect
epochs with active movement and isolate these epochs for analysis.

The experimental results that we present in this study are based
on a single subject. They are evidence that the proposed model-
based estimation approach can be used to quantify changes in rigid-
ity in a large animal model of PD. However, generalizations about
the effects of DBS on stiffness, viscosity, angular impulse scores,
and work scores require a study with a larger cohort of subjects.
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Appendix A: Estimation of Elbow Dynamics Cutoff

Frequency

We determined the bandwidth (cutoff frequency) of the arm
rotational dynamics from a second-order model of the subject’s
arm. The forearm mass was approximated by a human
body–forearm weight ratio of 1.5% [16,17] with the subject’s
body mass at 7.7 kg (animal weight). The forearm inertia was
approximated as inertiaforearm ¼ 1

3
�massforearm � length2

forearm ¼
8:6625 � 10�4, which is the inertia of a rod rotating about its end
[18]. The robot arm’s rotational inertia was calculated via
computer-aided design (CAD) software and was found to be equal
to 4� 10�3 kg �m2. We determined the total system inertia from
the combined subject, robot, and tuned admittance controller iner-
tia (0:0008 kg �m2=rad). The total inertia was equal to
0:0052 kg �m2=rad.

The subject’s stiffness was approximated as 1.5 N�m/rad from
studies of elbow elastic muscle properties in humans with and
without Parkinson’s disease [19,20]. The robot’s shaft and arm
were considered rigid bodies. Therefore, the stiffness properties of
the robot were considered negligible. Because the controller does
not modulate stiffness, the total system stiffness was equal to the
approximated subject’s stiffness.

We approximated the effective viscous damping of the sub-
ject’s elbow as 0:06 N �ms=rad according to viscosity ranges
found in a study of viscosity properties of the human elbow [21].
The tuned controller viscous damping (0:028 N �ms=rad) was
added to the subject’s approximated viscosity for a final system
viscosity of 0:0088 N �ms=rad.

To estimate the maximum frequency cutoff of the system, we
accounted for 50% error in the approximated inertia, viscosity,
and stiffness. We added this uncertainty to account for potential
inaccuracies in the approximation from literature values and dif-
ferences between rhesus macaque and human anatomy. Then we
identified the transfer function with the largest bandwidth given
the parameter ranges within the uncertainty bounds. The transfer
function with the largest cutoff frequency, described in Eq. (8),
was used to create the bode plot of Fig. 3(a)

Position

Moment
¼ 1

0:0026s2 þ 0:044sþ 0:75
(8)
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