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Abstract

Polygenic risk scores (PRS) represent an individual’s summed genetic risk for a trait and can 

serve as biomarkers for disease. Less is known about the utility of PRS as a means to quantify 

genetic risk for substance use disorders (SUDs) than for many other traits. Nonetheless, the growth 

of large, electronic health record-based biobanks makes it possible to evaluate the association 

of SUD PRS with other traits. We calculated PRS for smoking initiation, alcohol use disorder 

(AUD), and opioid use disorder (OUD) using summary statistics from the Million Veteran 

Program sample. We then tested the association of each PRS with its primary phenotype in 

the Penn Medicine BioBank (PMBB) using all available genotyped participants of African or 

European ancestry (AFR and EUR, respectively) (N=18,612). Finally, we conducted phenome-

wide association analyses (PheWAS) separately by ancestry and sex to test for associations across 

disease categories. Tobacco use disorder was the most common SUD in the PMBB, followed 
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by AUD and OUD, consistent with the population prevalence of these disorders. All PRS were 

associated with their primary phenotype in both ancestry groups. PheWAS results yielded cross-

trait associations across multiple domains, including psychiatric disorders and medical conditions. 

SUD PRS were associated with their primary phenotypes, however they are not yet predictive 

enough to be useful diagnostically. The cross-trait associations of the SUD PRS are indicative of 

a broader genetic liability. Future work should extend findings to additional population groups and 

for other substances of abuse.

Keywords

electronic health record; genome-wide association study; phenome-wide association study; 
polygenic risk score; substance use disorders

Introduction

Substance use disorders (SUDs) are prevalent and costly to society. In 2019, 7.8% of U.S. 

adults had a current (past-year; PY) SUD.1 These disorders are associated with a host of 

negative outcomes, including poorer quality of life and increased mortality risk.2-4 The most 

common SUDs are tobacco use disorder (TUD; 26.9% PY) and alcohol use disorder (AUD; 

13.9% PY).5,6 Although opioid use disorder (OUD) is less prevalent (0.6% PY) than either 

TUD or AUD, in 2019, 10.1 million individuals endorsed PY opioid misuse,1 which is of 

particular public health concern due to the associated high risk of fatal opioid overdose.7

Evidence from twin studies support a genetic component to the etiology of SUDs, and 

genome-wide association studies (GWAS) have identified dozens of variants contributing to 

SUD risk.8-10 Nonetheless, because SUDs are polygenic traits, no single variant accounts 

for more than a small portion of the variance in risk for developing an SUD. Polygenic 

risk scores (PRS) calculated from the weighted effect size of the GWAS-derived variants 

associated with a trait provide an aggregate measure of common genetic risk.11 PRS have 

been used to estimate the risk of medical diseases,12 health outcomes,13 and psychiatric 

disorders.14

Additionally, PRS have been used to investigate the genetic overlap between multiple 

phenotypes, which can help to evaluate overlapping and unique features of SUDs, that share 

symptomatology and, to some extent, underlying genetic architecture.15 Consistent with 

these features, a study of 11 different psychiatric and SUDs GWAS yielded strong genetic 

correlations between alcohol and tobacco dependence and other psychiatric disorders.16

Electronic health records (EHRs) are integral to the investigation of co-occurring disorders, 

as they provide a wealth of longitudinal phenotypic information that is often richer than 

that collected in clinical trials or cross-sectional studies. This longitudinal perspective, 

which provide repeated measures of a trait over long periods of time, can thereby 

increase confidence in the accuracy of diagnoses. Biobanks that provide genetic data 

linked with EHRs have been the basis for the development of phenome-wide association 

studies (PheWAS).17 PheWAS can use genetic data, such as a genetic variant or a PRS, 

to query phenotypic information (e.g., medical or psychiatric diagnoses, environmental 
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factors) to identify associations, thus potentially illuminating shared genetic etiology or 

yet undiscovered phenotypic comorbidity. Although the use of GWAS and PheWAS has 

led to the identification of thousands of disease-associated variants, the vast majority of 

this literature comes from studies of individuals of European ancestry, underscoring the 

substantial presence of health disparities in genetic research. Women have also historically 

been underrepresented in medical research. The Penn Medicine BioBank (PMBB), like a 

number of other biobanks, is well suited to address these gaps in the genetics literature given 

the heterogeneity of its participants, who are drawn from a large urban center with a diverse 

population.

Using available summary statistics, we calculated PRS for three common substance-

related traits; smoking initiation, AUD, and OUD, in both African-ancestry (AFR) and 

European-ancestry (EUR) individuals and examined their performance and their phenotypic 

associations in the PMBB. We also performed PheWAS to identify cross-trait associations 

and phenotypic overlap in genetic liability for SUDs, and a secondary PheWAS where the 

primary phenotype was covaried to determine whether identified associations persist when 

controlling for the index phenotype. Lastly, we conducted PheWAS separately in men and 

women to test whether the associations differed by sex.

Methods

Participants

Patients in the Penn Medicine BioBank (PMBB) were ascertained at the time of a medical 

appointment in the University of Pennsylvania Health System. At enrollment, participants 

gave informed consent and provided either a blood or tissue sample and permission to access 

their EHR information. As of July 2020, there were 63,177 individuals in PMBB, 21,263 of 

whom had genome-wide genotyping.

Genotyping and Quality Control

DNA was extracted from blood and samples were genotyped in four batches: 1) N=10,867 

using the Illumina InfiniumOmniExpress-24v1-2_A1 (OMNI) at the Regeneron Genetics 

Center (RGC); 2) N=5,676, using the Global Screening Array (GSA) V1 at the Center for 

Applied Genomics (CAG) at the Children’s Hospital of Philadelphia; 3) N=2,972, using 

the GSA V2 chip at CAG; and 4) N=16,940 using the GSA V2 chip, at RGC. Some 

samples were genotyped multiple times. To impute unique samples, they were combined by 

genotyping chip into two batches (3 GSA chips into a GSA batch and 1 OMNI chip into 

an OMNI batch), with preference for unique samples in the following order: GSA V2, GSA 

V1, OMNI. Each batch underwent quality control separately prior to imputation. Samples 

were removed if the genotyping call rate was <90% or if genotyped sex did not match 

reported gender, leaving 20,079 unique GSA samples and 1,111 unique OMNI samples. 

SNPs were removed if the call rate was <95%, leaving N=622,717 SNPs in GSA and 

N=640,714 SNPs in OMNI.
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Phasing and Imputation

Prior to imputation, SNPs were matched to the appropriate strand and those that were 

palindromic, not matched to the reference panel, with allele frequency difference >0.2, or 

with differing alleles were removed. Genotypes were phased (using EAGLE) and imputed to 

the TOPMed Reference Panel (Freeze 5) on the TOPMed Imputation server.18 In the GSA 

batch, 151,143,913 SNPs were imputed with R2>0.3. In the OMNI batch, 46,386,520 SNPs 

were imputed with R2>0.3.

Imputed genotypes underwent quality control (R2>0.3, marker call rate>95%, sample 

call rate>90%, MAF>0.5%) using PLINK v1.90. Related individuals were identified 

using a graph-based algorithm after applying a Pi-HAT threshold of 0.25, and the 

sample most closely related to multiple other samples was removed (n=738). Following 

removal of related individuals, principal component (PC) analysis was conducted using the 

Eigensoft smartpca module.19 We performed quantitative discriminant analysis to determine 

genetically informed ancestry, using 1000 Genomes, phase 320 as a training set and PMBB 

as a testing set.

Polygenic Risk Scores

We retained SNPs present in the HapMap reference panel (n=1,120,629) and merged the two 

batches into a single dataset. We extracted AFR (n=8,276) and EUR (n=10,473) individuals 

and used PLINK v1.90 to calculate ancestry-specific PCs to use as covariates. Summary 

statistics for smoking initiation (current vs. never smokers, Contrast I),10 AUD (AFR8; 

EUR21), and OUD9 were obtained from the Million Veteran Program (MVP) (Supplemental 

Table S1). We chose the MVP sample as our main source of GWAS summary statistics 

as it is the largest available source for these phenotypes in AFR individuals, and is one 

of the largest sources for EUR individuals. Ancestry specific PRS were calculated using 

PRS-CS,22 with AFR GWAS summary statistics and the 1000G AFR LD reference panel 

used in the PMBB AFR individuals, and the EUR GWAS summary statistics and the 1000G 

EUR LD reference panel used in the PMBB EUR individuals. Phi for all traits was fixed to 

1e-2, with default thresholds used for everything else.

Phenotypes

International Classification of Diseases (ICD)-9 and ICD-10 data for 63,199 individuals 

in PMBB were extracted from the EHR and used to assign both primary phenotypes 

and phecodes. To increase the accuracy of diagnostic data, encounter type was filtered 

to include only records representing physician encounters, as previously described.14 This 

left 11,966,749 encounters (5,731,365 ICD-9; 6,235,384 ICD-10) for 63,177 individuals. 

Primary phenotypes were assigned based on the presence or absence of ICD codes. ICD 

codes for TUD, AUD, and OUD were selected based on clinician expertise (Supplemental 

Table S2). We classified primary phenotypes in two ways: a less stringent definition 

(requiring the presence of ≥1 or more ICD codes for the phenotype), and a stringent 

definition (requiring the presence of ≥1 ICD codes as inpatient, or ≥2 as outpatient). To 

create a dataset for PheWAS analysis in the PMBB, we aggregated ICD-9 codes to phecodes 

using the phecode ICD-9 map 1.2 and ICD-10 codes using the phecode ICD-10-CM map 

1.2 (beta). Individuals were considered cases for the phecode if it was assigned on at least 
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2 unique dates, controls if they have no instance of the phecode, and ‘other/missing’ if 

they had one instance or a related phecode.23 In total, 1814 phecodes were generated. The 

final dataset included 18,612 individuals (8,235 AAs, 10,377 EAs) with complete genotype, 

phenotype, and covariate data.

Statistical Analysis

Individuals with a given SUD and those without that SUD were compared on demographics 

and comorbid medical conditions via chi-square for categorical data and t-tests for 

continuous data. PRS were standardized with mean=0 and standard deviation (SD)=1. 

Logistic regression was used to test for the association of each psychiatric risk score with 

the primary phenotype, which was considered significant at p<0.05, and to estimate the 

odds ratio (OR) for cases by comparing the top quintile of polygenic risk to the remaining 

quintiles of risk. We used TUD as the primary phenotype for smoking initiation, as it was 

the most similar one available in the PMBB EHR. The PheWAS analysis was performed 

in R using logistic regression models in which each PRS was the independent variable; 

phecodes were the dependent variables; and age, sex, and the first 10 PCs were covariates. 

We performed a second PheWAS that adjusted for the primary phenotype by including it 

as a covariate in the regression model and a third PheWAS that tested for sex differences. 

Phecodes with >100 cases (n=583 for AFR; n=477 for EUR) were tested (see Supplement 

2). As a different number of Phecodes were tested in each ancestry, Bonferroni-corrected 

phenome-wide significance thresholds to account for multiple testing were p<8.59x10−5 for 

AFR and p<1.05x10−4 for EUR.

Results

Phenotypes in PMBB

Participants’ demographics and information on their comorbid conditions are presented in 

Table 1 for the genotyped sample (n=18,612) by SUD and ancestry. The sample was 53% 

male, with a mean age of 65 (SD=16.7) years, and a mean of 61 (SD=9.9) encounters in 

the EHR. As anticipated due to the initial PMBB recruitment strategy, there were high rates 

of comorbid circulatory system (82%), endocrine/metabolic (73.5%) and respiratory system 

(51%) diagnoses. Notably, individuals with SUDs had significantly higher rates of comorbid 

conditions, irrespective of SUD or ancestry.

Primary associations of SUD PRS

PRS were calculated for smoking initiation, AUD, and OUD from summary statistics 

available from GWAS conducted in the Million Veteran Program (Supplemental Table S1). 

PRS were significantly correlated within each ancestry (Supplemental Table S3). We tested 

the association of the three PRS with their respective primary phenotypes, using both less 

stringent and stringent case definitions (Table 2). Using the less stringent case definition, 

PRSSmoking was strongly positively associated with TUD in both the AFR and EUR samples 

(AFR cases = 2,769, OR = 1.12, p = 1.4 x 10−8; EUR cases = 3,883, OR = 1.25, p = 3.6 

x 10−22). Likewise, the PRSAUD was positively associated with AUD in both the AFR and 

EUR samples (AFR cases = 592, OR = 1.09, p = 0.04; EUR cases = 424, OR = 1.19, p = 

7.1 x 10−4) as was PRSOUD (AFR cases = 170, OR = 1.24, p = 0.01; EUR cases = 95, OR = 
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1.28, p = 0.02). Similar associations were obtained using the stringent phenotype definition, 

although PRSOUD was no longer significant in the EUR sample (Table 2).

For each phenotype, we determined the case prevalence by PRS quintile. PRSSmoking 

showed an absolute risk of 36.7% for AFR and 44.5% for EUR in the top quintile (Figure 1), 

with corresponding odds ratio (OR) of 1.20 (p = 0.004) for AFR and 1.45 (p = 3.6x10−13) 

(Supplemental Table S4). The top quintile for PRSAUD showed an absolute risk of 7.8% 

for AFR (OR = 1.13, p = 0.25) and 6.1% for EUR (OR = 1.59, p = 5.2x10−5) (Figure 

1; Supplemental Table S4). For PRSOUD, the absolute risk in the top quintile was 2.5% 

for AFR (OR = 1.28, p = 0.21) and 1.3% for EUR (OR = 1.64, p = 0.03) (Figure 1; 

Supplemental Table S4).

Phenome-wide analysis of SUD PRS

Tobacco.—There was a significant association of the AFR PRSSmoking with TUD (OR 

= 1.19, p = 4.95x10−9) and strong, though after Bonferroni correction not statistically 

significant, associations with emphysema (OR = 1.34, p = 1.3x10−4), chronic airway 

obstruction (OR = 1.17, p = 2.8x10−4), alcohol-related disorders (OR = 1.26, p = 2.9x10−4) 

and alcoholism (OR =1.29, p = 3.0x10−4) (Figure 2A). Covarying for TUD, the AFR 

PRSSmoking showed no statistically significant associations (Figure 2B). The analysis by sex 

(Supplemental Figure S1) showed there were strong associations of the PRSSmoking with 

TUD in both men (OR = 1.23, p= 2.46x10−5) and women (OR = 1.18, p = 3.27x10−5).

The EUR PRSSmoking was significantly associated with 12 phenotypes, including increased 

risk of TUD (OR = 1.25, p = 2.61x10−10), chronic airway obstruction (OR = 1.21, p = 

1.57x10−7), ischemic heart disease (OR = 1.14, p = 4.43x10−7), coronary atherosclerosis 

(OR = 1.14, p = 6.11x10−7) and Type 2 diabetes (OR = 1.14, p = 6.53x10−6) (Figure 

2A). Covarying TUD, the only association that remained significant was a protective effect 

against benign neoplasm of skin (OR = 0.88, p = 2.09x10−5) (Figure 2B). Analysis by sex 

(Supplemental Figure S1) showed that, in men, PRSSmoking was significantly associated with 

10 phenotypes, including TUD (OR = 1.24, p = 1.24x10−7), chronic airway obstruction 

(OR = 1.22, p = 8.67x10−6), several circulatory system diseases (e.g., hypertension, OR 

= 1.16, p = 1.57x10−5), and Type 2 diabetes (OR= 1.16, p = 1.87x10−5). In women, 

PRSSmoking remained strongly associated with TUD (OR = 1.28, p = 7.22x10−5), with 

smaller associations with thyroid disorders (OR = 0.62, p = 4.8x10−4), benign neoplasm of 

skin (OR = 0.86, p = 5.3x10−4).

Alcohol.—The AFR PRSAUD was not significantly associated with any phenotype (Figure 

3A), which was not altered by adding AUD as a covariate (Figure 3B) or examining 

PRSAUD by sex (Supplemental Figure S2).

The EUR PRSAUD showed significant positive associations with mood disorders (OR = 

1.16, p = 5.49x10−5), depression (OR = 1.16, p = 7.65x10−5), alcohol-related disorders (OR 

= 1.35, p = 8.49x10−5), and chronic airway obstruction (OR = 1.15, p = 9.63x10−5) (Figure 

3A). Further, it was nominally positively associated with TUD (OR = 1.14, p = 1.62x10−4). 

Covarying AUD demonstrated a nominally significant relationships with protective effect 

for disease of the larynx and vocal chords (OR = 0.78, p = 2.97x10−4), chronic airway 

Hartwell et al. Page 6

Addict Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obstruction (OR = 1.13, p = 3.36x10−4) and mood disorders (OR = 1.13, p = 9.62x10−4) 

(Figure 3B). In men, there were strong positive associations with mood disorders (OR = 

1.25, p = 1.12x10−5), depression (OR = 1.25, p = 1.54x10−5), and alcohol-related disorders 

(OR = 1.43, p = 2.06x10−5), but no strong associations in women (Supplemental Figure S2).

Opioids.—The AFR PRSOUD was not significantly associated with any phenotype (Figure 

4A), though there were nominal, positive associations with fracture of ankle and foot (OR 

= 1.31, p = 1.56x10−3) and acute pulmonary heart disease (OR = 1.22, p = 3.48x10−3). A 

similar pattern of findings was obtained when OUD was included as a covariate (Figure 4B). 

Analysis by sex showed no significant associations (Supplemental Figures S3A and S3B).

The EUR PRSOUD was not significantly associated with any phenotype, though there was a 

nominally positive association with mood disorders (OR = 1.12, p = 1.2x10−3) and diseases 

of the larynx and vocal chords (OR = 0.82, p = 2.2x10−3) (Figure 4A). Covarying OUD 

yielded similar results (Figure 4B). When examining PRS by sex, men showed significant 

positive associations with mood disorders (OR = 1.22, p = 3.89x10−5) and depression 

(OR = 1.19, p = 3.44x10−4) (Supplemental Figure S3A), while there were no significant 

associations in women (Supplemental Figure S3B).

Discussion

In this study of 18,612 AFR and EUR individuals from the PMBB, all PRS were associated 

with their respective diagnoses in both ancestral populations, with the most robust findings 

being for PRSSmoking. The PRSOUD performed less well than the other SUD PRS. The 

PheWAS results yielded multiple cross-trait associations which have important implications 

for our understanding of potential shared genetic etiology for comorbid conditions, such as 

mood and alcohol use disorders. These findings provide new insights into common genetic 

factors underlying SUD in both AFR and EUR ancestry samples. Given the increasing 

attention to the lack of diversity in genetic studies,24 these findings begin to address the gap 

in our understanding of the genetic risk factor underlying SUD in African Americans.

The strongest associations were found for PRSSmoking, followed by PRSAUD and PRSOUD. 

The difference in the strength of association between PRS and diagnosis is likely a reflection 

of both the originating GWAS sample size and the prevalence and accuracy of diagnosis 

in the PMBB dataset. As in previous studies,25 the variance explained by PRS for all 

SUDs was small (e.g., a 13% difference in case prevalence between top and bottom quintile 

for PRSSmoking in EUR individuals). Thus, while indicative of the risk for the respective 

SUDs, PRS for the substance-related phenotypes of smoking initiation, AUD, and OUD are 

currently not adequately predictive to identify cases in an unselected sample.

As expected, in addition to its association with TUD in both ancestral samples, PRSSmoking 

was associated with alcohol-related disorders and other diseases commonly found in 

smokers, such as coronary and respiratory disorders. These findings align with both the 

strong phenotypic relationship between smoking and alcohol use and the known genetic 

overlap between these traits.5,10,26 Interestingly, in both the AFR and EUR samples, these 

associations were no longer significant after covarying for the primary TUD diagnosis, 
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suggesting that the association between PRS and these phenotypes may be mediated by the 

TUD diagnosis.

Mirroring known phenotypic comorbidity between AUD and mood disorders,5 the EUR 

sample PRSAUD was associated with mood disorders and depression. This confirms research 

in other samples that shows that the PRS for MDD is predictive of alcohol dependence.27 

The association between the PRSAUD and chronic airway obstruction is likely a secondary 

consequence of smoking, which is also nominally positively associated. These findings 

replicate the previously observed common genetic factors underlying TUD, alcohol-related 

disorders, mood disorders, and chronic airway obstruction. However, prior PheWASs of 

alcohol-related PRS in European samples8,21 yielded more significant associations than 

found here, likely due to their larger sample sizes.

The PRSOUD PheWAS showed no significant associations in either ancestral sample, likely 

due to the limited power of the PRS as the originating GWAS9 on which they were based 

was smaller than that of the alcohol8,21 or smoking10 GWAS. In addition, OUD may be 

underrepresented and under-diagnosed in EHRs in academic medical centers.

There were noteworthy sex differences in our findings, many of which align with established 

phenotypic patterns regarding SUDs and comorbid conditions. In both men and women, 

PRSSmoking was significantly associated with TUD. However, there were sex differences in 

somatic and psychiatric comorbidity; PRSSmoking was not associated with any other mental 

health conditions in men, whereas it was associated with anxiety disorders in women. This 

likely reflects the finding that women are more likely to smoke to regulate their mood and 

mitigate stress28 as well as suffer more stress and anxiety from nicotine withdrawal than 

men.29 In contrast, PRSSmoking was associated with circulatory system diseases and Type 

2 diabetes in men but not women. This could be because men smoke more cigarettes per 

day, inhale more deeply, and smoke cigarettes with higher nicotine content in men than in 

women.30

There were also sex differences in the associations with PRSAUD, which were associated 

with mood disorders in EUR men, but not in either EUR or AFR women or AFR men. Given 

that the comorbidity of mood disorders and SUDs are typically more common in women 

than men,31,32 these findings were not expected. The lack of association of the PRSAUD in 

women could be attributable to the preponderance of males in the MVP GWAS sample that 

was used to calculate PRS. Data are mixed regarding whether there is a different genetic 

liability for alcohol-related outcomes between men and women.33,34

The sex-specific association between PRSOUD and mood disorders in EUR men is consistent 

with findings that mood disorders and OUD are commonly comorbid32 and significantly 

genetically correlated.9 As with alcohol and tobacco use, there are sex-specific patterns of 

opioid use, with younger women using smaller amounts of opioids for shorter periods,35 

which could either reflect either social or genetic factors.

Limitations of this study include the low prevalence of SUD diagnoses in the PMBB, 

particularly OUD, which limited statistical power to detect associations. The higher age 

composition of the PMBB than the general population, associated with a lower prevalence 
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of SUDs, as is typically seen in older adults, likely contributed to the comparatively low 

prevalence of AUD and OUD. Rates of cardiovascular disease are high in the PMBB 

because of a concerted effort to recruit from cardiovascular clinics. Therefore, the findings 

reported here may not generalize to other clinical populations. Additionally, findings from 

MVP data may not generalize to other populations given the unique nature of the sample 

(i.e., Veterans, predominantly male, high rates of comorbid conditions). Future studies 

should consider using as training data summary statistics from GWAS that have covaried 

for possible influential comorbidities to test whether the associations in this study continue 

to hold. We were unable to test for sample overlap between the two biobanks, which could 

bias results; however, this possibility is unlikely given the low percentage of the MVP 

sample (<2%) that was recruited from the Philadelphia region. Finally, the reliance on EHR 

diagnoses, rather than those obtained through self-report or diagnostic interviews, may have 

led to misclassification of disorders and the omission of those that occurred outside of Penn 

Medicine.

The primary strength of this study is the diversity of the PMBB sample, which enabled 

us to study the large and growing sample of AFR-ancestry individuals in the PMBB. The 

availability of summary statistics from independent GWAS of AFR-ancestry individuals 

enabled us to conduct analyses in this understudied population. For this reason, we limited 

our selection of GWAS summary statistics to those available from MVP. Larger GWASs for 

these and related phenotypes are available for European-ancestry samples, but are not yet 

available for non-European ancestry samples. Another strength of the study is the wealth 

of phenotypic information available in the Penn Medicine EHR, making it possible to 

conduct PheWAS. As further GWAS are conducted in diverse ancestral groups, such as those 

possible in MVP where there are increasing in samples of Latinos and East Asians, and 

summary statistics become available, we will extend this work to other populations.

This study adds to the growing body of literature demonstrating the genetic liability 

for SUDs and cross-trait associations with medical and psychiatric comorbidity in AFR- 

and EUR-ancestry individuals. Identifying differential risk profiles in multiple population 

groupsand in both sexes may help to interpret the heterogeneity that has challenged our 

understanding of the genetic architecture of SUD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Case prevalence (%) by PRS quintile for AUD, OUD, and TUD using the less stringent 

definition
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Figure 2. 
Phenome-wide association of polygenic risk scores for smoking initiation.

A presents the unadjusted smoking initiation results.

B presents PRSSmoking, covarying for TUD.
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Figure 3. 
Phenome-wide association of polygenic risk scores for alcohol use disorder (AUD).

A presents the unadjusted AUD results.

B presents PRSAUD, covarying for AUD.
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Figure 4. 
Phenome-wide association of polygenic risk scores for opioid use disorder (OUD).

A presents the unadjusted OUD results.

B presents PRSOUD, covarying for OUD.
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Table 2.

Polygenic risk scores results by substance use using the PRS-CS method

Training Set Testing Set (Penn Medicine Biobank)

SUD Ancestry Phenotype
[Reference]

Total Sample
Size

Phenotype OR SE P

Tobacco

AFR

Initiation (Contrast I, current vs. never smokers) 
[10]

55,890 AFR
Less stringent 1.12 1.06-1.18 1.8x10−5

Stringent 1.12 1.07-1.19 1.4x10−5

EUR 209,915 EUR
Less stringent 1.25 1.19-1.31 3.6x10−22

Stringent 1.25 1.20-1.31 5.7x10−22

Alcohol

AFR

AUD [8, 21]

56,648 AFR
Less stringent 1.09 1.00-1.19 0.04

Stringent 1.11 1.01-1.22 0.02

EUR 313,959 EUR
Less stringent 1.19 1.08-1.32 7.1x10−4

Stringent 1.21 1.09-1.35 3.5x10−4

Opioids

AFR

OUD [9]

31,462 AFR
Less stringent 1.24 1.05-1.47 0.01

Stringent 1.23 1.02-1.50 0.03

EUR 80,219 EUR
Less stringent 1.28 1.04-1.58 0.02

Stringent 1.23 0.97-1.56 0.09

SUD=Substance use disorder; AFR=African ancestry; EUR=European ancestry. Bolded p-values are p<0.05.
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