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Abstract

Introduction: Peripheral artery disease (PAD) is a major cause of cardiovascular morbidity and 

mortality, yet timely diagnosis is elusive. Larger genome-wide association studies (GWAS) have 

now provided the ability to evaluate whether genetic data, in the form of genome-wide polygenic 

risk scores (PRS), can help improve our ability to identify patients at high risk of having PAD.

Methods: Using summary statistic data from the largest PAD GWAS from the Million Veteran 

Program, we developed PRSs with genome data from UK Biobank. We then evaluated the clinical 

utility of adding the best-performing PRS to a PAD clinical risk score.

Results: A total of 487,320 participants (5759 PAD cases) were included in our final genetic 

analysis. Compared to participants in the lowest 10% of PRS, those in the highest decile had 

3.1 higher odds of having PAD (95% CI, 3.06–3.21). Additionally, a PAD PRS was associated 

with increased risk of having coronary artery disease, congestive heart failure, and cerebrovascular 

disease. The PRS significantly improved a clinical risk model (Net Reclassification Index = 0.07, 

p < 0.001), with most of the performance seen in downgrading risk of controls. Combining clinical 

and genetic data to detect risk of PAD resulted in a model with an area under the curve of 0.76 

(95% CI, 0.75–0.77).

Conclusion: We demonstrate that a genome-wide PRS can discriminate risk of PAD and other 

cardiovascular diseases. Adding a PAD PRS to clinical risk models may help improve detection of 

prevalent, but undiagnosed disease.
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Introduction

Peripheral artery disease (PAD) affects 200 million individuals world-wide and has an 

estimated annual health care cost of $21 billion in the United States alone.1,2 PAD confers 

a two- to six-fold increased risk of major adverse cardiovascular events (MACE) but often 

goes undiagnosed.3-5 Those who go undiagnosed are less likely to receive evidenced-based 

therapy to reduce cardiovascular and limb-related morbidity and mortality. Thus, strategies 

to improve diagnosis and secondary prevention measures may improve quality of life and 

life expectancy for this patient population.

Older age, smoking, hypertension, hyperlipidemia, and diabetes mellitus are known 

traditional risk factors for PAD.6,7 However, risk factor models using purely clinical 

risk assessment have historically achieved modest performance.8,9 This is likely because 

other factors such as genetic risk can significantly contribute to the development of PAD. 

Although PAD-specific genetic risk loci have been difficult to identify in prior smaller 

studies, a new genome-wide association study (GWAS), including over 30,000 individuals 

with PAD, identified multiple new PAD-specific risk loci.10 These findings may make it 

possible to improve our ability to better quantify genetic risk of PAD and improve diagnosis 

of prevalent and undiagnosed disease.

Similar to coronary artery disease, there are multiple genetic risk variants that have small 

but additive risk for PAD development.10-12 Previously, quantification of this additive risk 

involved linear combinations of a small number of risk variants to develop a polygenic 

risk score (PRS) with mixed results in other diseases.13-15 Now, algorithms such as PRSice 

and PRScs have been developed to allow for the quantification of genetic risk across the 

entire genome.16,17 These methods can incorporate risk attributes from millions of markers 

across the whole genome, and account for different effect size distributions and genetic 

architectures of disease, while remaining computationally scalable.18,19 Research has shown 

that these new algorithms can provide disease risk quantification similar to monogenic 

disease risk.

In this study, we aimed to: (1) develop a genome-wide PRS for PAD, (2) evaluate whether a 

PRS developed from PAD GWAS results was informative for other cardiovascular diseases, 

and (3) quantify the additive value of a PRS when added to a clinical risk model.

Methods

Study population

The study population of interest included 502,536 participants aged 40–69 years from 

the UK Biobank. All participants completed a computer-based assessment, underwent a 

standardized portfolio of clinical measurements, and provided written informed consent for 

the use of their data for research. Approval was obtained by the National Health Service’s 
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National Research Ethics Service North West (11/ NW/0382). Detailed descriptions of 

the study cohort have been previously reported.20,21 This study was approved by our 

institutional review board (e-protocol 55133) and under the UK Biobank application ID 

13721.

For this study, demographic and clinical variables such as chronological age, sex, race, blood 

pressure, smoking status, and total cholesterol were directly obtained from the UK Biobank 

data set, whereas other clinical variables such as diabetes mellitus, coronary artery disease 

(CAD), cerebrovascular disease (CVD), and chronic kidney disease (CKD) were defined 

based on previously published algorithms (online Supplemental Table 1).22

Definition of PAD

The exact definition for PAD is detailed in online Supplemental Table 2 and includes 

primary and secondary diagnosis and surgical codes from hospital episodes, as well as 

use of PAD-specific medications and self-reported PAD diagnoses and surgeries. This PAD 

phenotyping algorithm was chosen to align with the definition of PAD used by Klarin and 

colleagues to validate their PAD GWAS results using the UK Biobank cohort.10 In addition 

to this, we added medication codes for cilostazol, which are specific for PAD treatment, to 

broaden our capture of PAD cases. Our phenotype definition was validated by performing 

a PAD GWAS on our cohort. In doing so we replicated all previously reported PAD risk 

loci. We also performed sensitivity analysis to exclude less specific definitions of PAD such 

as arterial embolism, amputation, and generalized atherosclerosis and re-evaluated model 

performance.

Genotyping and imputation

DNA samples of participants were genotyped using custom Affymetrix arrays (Thermo 

Fisher Scientific, Waltham, MA, USA) and the UK Biobank Axiom array (Thermo Fisher 

Scientific), which were designed to optimize imputation performance across the genome. A 

merged sample of UK10K sequencing and 1000 Genomes Project were used as reference 

panels for genotype imputation via an algorithm implemented in the IMPUTE2 program.23 

Imputed data were provided by the UK Biobank research team. Other detailed information 

regarding genotyping and imputation has been provided in previous studies.20

Genotype quality control

Related individuals and those that failed the X-chromosome sex concordance check were 

removed before imputation. UK Biobank includes three main racial populations: European, 

African, and Asian. Genetic principal components accounting for population stratification 

were centrally computed. We excluded individuals for whom the available information 

on race was incompatible with their genetic information. Individuals with more than 5% 

missing data were also excluded. Regarding genetic data, we excluded ambiguous single 

nucleotide polymorphisms (SNPs), indel SNPs, and SNPs with more than 1% missing data 

or minor allele frequency (MAF) below 1%. Finally, 487,320 participants with both PAD 

status and genotyped data were used for the statistical analyses.
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Polygenic risk score (PRS) calculation

An important component to PRS validity is that the disease of interest be heritable, and thus 

we evaluated this characteristic for PAD. Genome-wide Complex Trait Analysis (GCTA) 

was applied to estimate the variance explained by filtered SNPs. We first calculated the 

genetic relationship matrix (GRM), which contained a measure of the genetic correlation 

among individuals. Then, we estimated the proportion of trait variance explained by genetic 

variation using the restricted maximum likelihood (REML) approach, relying on the GRM 

estimated from all of the SNPs.24 PAD heritability in the UK Biobank was estimated with 

the REML method using sex and age as covariates. We then derived PRSs based on the 

weighted sum of risk alleles using summary statistics from the largest PAD GWAS to date 

(derived from the Million Veteran Program (MVP)).10 Details of our analysis pipeline are 

illustrated in Figure 1.

To identify the optimal algorithm for calculating a PAD PRS, we tested two methods: 

PRSice and PRScs. Both algorithms enable calculation of PRS but use different strategies 

to account for linkage disequilibrium (LD) as well as SNP effects. The PRSice (version 

2.1.11) selects SNPs based on clumping and thresholding, and automatically selects these 

parameters by maximizing R2.16 In contrast, PRScs applies a Bayesian shrinkage parameter 

on effect size estimates for each SNP based on GWAS summary statistics.17 For the testing 

of different parameters to optimize PRScs model performance, we tuned two parameters: 

p-value threshold and global shrinkage parameter phi. Performance of each PRS was 

measured using area under the curve (AUC) adjusted for age, sex, and the first five principal 

components (PCs) of ancestry.

To select the optimal data for a PAD PRS, we evaluated performance of PRSs derived 

from summary statistics from the MVP PAD GWAS and two GWASs for CAD (Coronary 

Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM)25 and 

CARDIoGRAM plus The Coronary Artery Disease consortium (C4D)26) to see if general 

atherosclerotic risk also translated to high discrimination of PAD risk. The performance of 

the PRSs was validated using a nonoverlapping set of participants from the UK Biobank 

using 10-fold cross-validation.

Lastly, we evaluated the performance of a clinical model in identifying risk of PAD and 

a clinical model combined with the PRS (i.e., the PRS-enhanced clinical risk model). The 

clinical and PRS-enhanced models were compared in terms of AUC and reclassification 

metrics.

Statistical analysis

We compared demographic and clinical factors for those with and without PAD. A two-

sided Student’s t-test was used for continuous variables and chi-squared test was used for 

categorical variables. Generalized linear models were used to estimate odds ratios (ORs) for 

risk of PAD across the three different PRSs (derived from the MVP PAD GWAS and CAD 

GWAS studies) as well as risk of CAD, CHF, and CVD across PAD PRS deciles. We also 

evaluated the odds of each disease (i.e., PAD, CAD, CHF, CVD) using a scaled PRS to 

enable direct comparison of risk of disease given 1 SD increase in the PRS.
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We used the best performing PRS to evaluate the utility of a PAD-specific PRS in 

discriminating risk of PAD across the population. To this end, we divided the dataset into 

100 groups based on the PRS score and evaluated the prevalence of PAD across percentiles. 

To assess the clinical usefulness of a PRS we combined the PRS with a clinical risk 

score and evaluated differences in model performance. The clinical risk score we used was 

developed by Duval and colleagues as a way to determine risk of prevalent PAD, which 

is our current use case.8 The clinical model described by Duval et al. evaluates risk of 

PAD using 10 variables: age, sex, race/ethnicity, diabetes, BMI, hypertension, smoking 

status, CAD, cerebrovascular disease, and CHF. In using this risk score, we calculated each 

individual’s nomogram score. Because PRS and the nomogram scores were on different 

scales, we used z-transformed PRS and z-transformed clinical risk nomogram scores to build 

a PRS-enhanced clinical risk model. Model discrimination performance was validated by 

performing 10-fold cross-validation using nonoverlapping 90%/10% splits (using 90% of 

the individuals to build the predictor and the remaining 10% of the individuals to test). 

To evaluate the additive effect of the PRS to the clinical model we evaluated the model 

goodness-of-fit by calculating C-statistics on models with an increasing number of variables, 

adding the PRS to the final model. We also calculated the net reclassification index (NRI) 

for the combined (clinical and PRS model) compared to the clinical model only. Model 

AUCs were compared using the DeLong test of significance, a nonparametric approach 

to comparing two or more correlated receiver operating characteristic curves.27 Lastly, we 

evaluated PRS-enhanced model calibration by plotting model predicted risk by observed 

risk. Patients with insufficient data to calculate their clinical risk score were excluded from 

this analysis. R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) was 

used for statistical analyses.

Results

Baseline characteristics of the study cohort

Of the total 487,320 individuals included in our final genetic analysis, 5759 had PAD. As 

outlined in Table 1, many baseline characteristics significantly differed between those with 

and without PAD. Those with PAD were more likely to be older than noncases, with a mean 

age of 61.1 years compared to 56.5 years (p < 0.001). There were also more men with PAD 

(65.7% vs 45.5%, p = 5.54 × 10−215), and a higher proportion of smokers (24.9 vs 10.3, p = 

1.6 × 10−92) and those with first-degree relatives with a history of CAD (52.9% vs 43.7%, p 
= 1.39 × 10−47). On average, systolic blood pressure was significantly higher in PAD cases 

compared to controls (p = 3.13 × 10−74), and high-density lipoprotein (HDL) was lower in 

those with PAD (p = 4.21 × 10−155). Total cholesterol was lower in individuals with PAD 

(p = 4.31 × 10−283) and they were also more likely to be on a lipid-lowering medication 

compared to those without PAD (p < 0.001). Those with PAD also had higher prevalence of 

diabetes mellitus, CAD, cerebrovascular disease, and chronic kidney disease compared with 

those without PAD (p < 0.001).

Performance of PAD PRS

The calculated general genetic heritability of PAD in the UK Biobank was 11% (standard 

error, 0.06). The best performing PRS model adjusted for age, sex, and the first five PCs 
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was derived from the largest PAD-specific GWAS with an AUC of 0.72 (95% CI 0.71–

0.72; online Supplemental Tables 3 and 4). The PAD-specific PRS also produced higher 

odds of prevalent disease than PRSs generated from CARDIoGRAM or C4D GWAS data 

(online Supplemental Figure 1A-C). The distribution of PRS for PAD cases and noncases 

is illustrated in Figure 2A. As illustrated in Figure 2B, the prevalence of PAD increases as 

the PRS percentile increases. In the group with the highest PRS, the prevalence of PAD 

is 2.83%, which is a 4.5-fold difference compared with a PAD prevalence of 0.63% in the 

lowest PRS group.

The performance of PAD PRS in detecting risk of PAD and other cardiovascular diseases

To evaluate the association between a PAD-specific PRS and odds of PAD and other 

cardiovascular diseases, we categorized PAD PRS into deciles and calculated log odds 

of disease based on these score deciles. As expected, participants with the highest PAD 

PRS scores (90–100% PAD PRS percentile) showed the highest risk for PAD (OR = 

3.1, 95% CI 3.06–3.21; Figure 3A) when compared to the lowest decile group (0–10% 

PAD PRS percentile) in this cross-section study design. When comparing the group in the 

highest decile and in the top 5th percentile to the rest of the population, the OR was 1.83 

(95% CI 1.73–1.92; online Supplemental Figure 2A) and 1.91 (95% CI 1.80–2.01; online 

Supplemental Figure 2B), respectively. For cardiovascular-related diseases, we observed 

strong associations between the PAD PRS and prevalence of CAD and CHF (Figures 3B 

and 3C), and a moderate association with CVD (Figure 3D). When we scale the PRS for 

more direct comparisons across diseases, we observe a similar pattern of increased odds of 

disease for each standard deviation increase in the PRS score, with the relationship being 

more attenuated for CVD (Table 2).

PRS-enhanced clinical risk model

We next evaluated whether adding the PRS to a clinical risk model improved overall model 

performance. By evaluating changes in model goodness-of-fit using the C-statistic metric, 

we found that a simple model with age and sex produced a C-statistic of 0.695, whereas 

adding clinical factors from the model described by Duval and colleagues increased the 

model performance to 0.797. The further addition of the PRS led to a modest increase 

in the C-statistic of 0.007 (AUC = 0.804; online Supplemental Figure 3A). We found our 

PRS-enhanced model to be well calibrated (online Supplemental Figure 3B).

After categorizing the clinical risk model scores and PRS-enhanced risk model scores into 

deciles, we plotted prevalence of PAD by decile. As shown in online Supplemental Figure 

4, the PRS-enhanced model identified a higher prevalence of PAD cases at higher deciles 

of risk compared to the clinical risk model alone. The PRS-enhanced clinical risk model 

demonstrated an overall AUC of 0.76 in the UK Biobank cohort (Table 3) and when adding 

the PRS to the clinical model there was an NRI improvement of 0.073 (95% CI 0.05–0.085) 

(online Supplemental Table 5). Stratified analyses revealed that the PRS-enhanced clinical 

model performed better in men compared with women (NRImen = 0.10, NRIwomen = 0.04), 

in Europeans compared to nonEuropeans (NRIEuropean = 0.04; NRInonEuropean = 0.03), and 

in those older than 50 years of age (NRIage > 50 = 0.10). When evaluating reclassification 

metrics in detail, we found that the addition of the PRS downgraded risk in 14.7% of 
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controls, and increased risk assessment in 8%. For cases, the PRS-enhanced clinical model 

increased risk estimates in 9.2% of cases and downgraded risk in 8.6% (online Supplemental 

Table 6).

Sensitivity analysis

In performing sensitivity analysis to restrict the definition of PAD, a total of 280 individuals 

were excluded. We found that our model AUC was similar at 0.756 for the clinical risk 

model alone and 0.762 for the PRS-enhanced model. NRI for the PRS-enhanced model 

ranged from 0.045 to 0.064.

Discussion

In this paper, we demonstrate that: (1) a PRS performs well in discriminating risk 

between PAD cases and noncases, (2) a PAD-specific PRS is associated with risk of other 

cardiovascular diseases, and (3) a PAD PRS can add to the performance of a clinical 

risk model. These results provide promising support that PRSs can improve accuracy in 

identifying risk of prevalent PAD.

Although certain areas of health care, such as oncology, have seen growth in the clinical 

application of precision health through the incorporation of genetic data, the progress has 

been slower for cardiovascular diseases. Though previous studies have found utility in 

incorporating PRS in determining risk of diseases such as CAD, such analysis has never 

been published for PAD. This is in large part due to the previous lack of PAD-specific 

risk loci identified by prior GWAS. In previous work, only four loci reached genome-wide 

significance for PAD, and one of these loci, 9p21, has been found to broadly increase risk of 

other cardiovascular diseases, not just PAD.28-31 One likely reason for the small number of 

risk loci is related to the relatively low number of PAD cases in each of these studies.

In contrast, Klarin and colleagues performed the largest GWAS to date using PAD diagnosis 

as the outcome variable. In this analysis, 19 PAD-specific risk loci reaching genome wide 

significance were identified, of which 18 were not previously reported.10 In addition to its 

size, their analysis included a racially and ethnically diverse cohort with 72% Caucasian, 

20% African Americans, and 8% Hispanics. In our analyses, we were able to utilize 

summary statistics from 7,497,749 SNPs across the entire genome. And although we 

utilized a GWAS from a US population (MVP) to assess risk in a European population 

(UK Biobank), we still found the PRS to be clinically useful. Furthermore, our analyses 

demonstrate that a GWAS attuned to a specific type of cardiovascular disease – in this 

case PAD – can better quantify genetic risk than when using GWAS data from other 

cardiovascular diseases such as CAD.

Our PRS-enhanced model demonstrated excellent calibration and goodness-of-fit with a 

C-statistic of 0.804 (online Supplemental Figures 3A and B). Additionally, using 10-fold 

cross-validation, our PRS-enhanced model demonstrated a significant improvement in AUC 

compared to a clinical model alone. Because additions of biomarkers may only show small 

changes in AUC yet be clinically useful,32 we also evaluated the NRI of adding the PRS. 

This demonstrated that overall the addition of the PRS net improved PAD risk classification 
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beyond the clinical risk model alone. In particular, the PRS-enhanced model primarily 

helped to downgrade risk of controls and increased risk category for cases, though to a 

smaller extent.

Our findings compare favorably to studies evaluating PRS for CAD risk discrimination. 

Elliott and colleagues developed a PRS for CAD using summary statistics from the 

CARDIoGRAMplusC4D GWAS meta-analyses.22 They found that a CAD PRS achieved 

a C-statistic of 0.61 and when combining clinical and genetic data their overall model 

performance improved to 0.78. In our adjusted models, we found that those in the highest 

PRS decile had 3.1 higher odds of having prevalent PAD than those in the lowest decile. 

Similarly, Wang et al. were able to develop a CAD PRS that improved clinical risk 

assessment in the South Asian population where they found those with the highest quintile 

PRS had an increased CAD risk of 2.16-fold compared to the lowest risk group.33

Stratified analysis revealed that a clinical risk score for PAD enhanced with the PRS 

performs less well in women than in men. Reasons for these findings could be explained by 

differences in environmental risk factors that may attenuate or exacerbate genetic risk. For 

instance, smoking is a well-known risk factor for PAD, and previous gene-environment 

studies have found genetic factors that interact with smoking to increase the risk of 

PAD.34,35 In this study, there were many more current smokers among men (12.5%) 

compared to women (8.9%) (p < 0.001). This may increase the discrimination performance 

of the PRS for men. Disease prevalence can also affect metrics such as AUC and women 

did demonstrate lower prevalence of disease in this cohort – only 34% of PAD cases 

were women. Conversely, there may be sex-specific protective factors that are present in 

the women but not seen in men.36,37 Furthermore, genetic differences in risk of disease 

may also play an important factor in differences in model performance between men and 

woman. Indeed, Huang and colleagues recently demonstrated that genetic risk scores for 

CAD risk differed in performance among men and women, and part of this difference was 

due to at least one genetic locus that demonstrated meaningful genetic–sex interactions for 

incident CAD.38 Our findings suggest that similar studies of sex differences in genetic risk 

of PAD may be warranted. Lastly, we posit that the lower clinical and PRS-enhanced model 

performance in the younger age cohort was due to low prevalence of PAD (0.45%), and the 

nature of cardiovascular diseases in general, that manifest after decades of smoking and high 

blood pressure, for instance. Even so, adding the PRS, slightly, but significantly, increased 

model performance in the younger cohort.

Study strengths and limitations

Although this study is strengthened by the use of two of the largest biobanks developed to 

date and the use of a genome-wide approach to develop and evaluate a PAD PRS, there 

are limitations. First, our models were developed to detect prevalent disease, rather than 

incident disease. Although it is helpful to identify prevalent PAD given the large number of 

undiagnosed individuals, another important use case would be to identify high–risk patients 

before development of PAD or in the earlier stages of disease to engage in aggressive 

risk management that may better improve long-term outcomes. Another limitation is the 

youthful age structure of UK Biobank, which leads to a low prevalence of PAD that limits 

Wang et al. Page 8

Vasc Med. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the performance of a PRS-enhanced clinical model. Furthermore, previous work has shown 

that when different populations are used to develop and test genetic risk factors, these 

risk models can demonstrate decreased performance.39 The MVP cohorts consist of 72% 

European, 19.7% African, and 8.3% with Hispanic ancestries, whereas the UK Biobank 

has 96% Europeans, 1.4% African, and 2.6% Asians. Such racial and ethnic differences 

likely attenuate the performance of our PRS-enhanced risk model. This can be due to the 

differences in variant frequencies, as well as the linkage disequilibrium patterns between 

racial and ethnic populations. Thus, it is possible that a PRS tested in a US-based population 

would achieve better performance metrics given that the summary statistics used to generate 

the PRS are from a US cohort. Future studies should evaluate the performance of the PAD 

GWAS in larger, older US-based populations to determine differences in PRS performance 

across diverse populations and in higher risk cohorts. Another potential weakness of this 

study is that the ‘non-PAD’ controls could potentially have PAD but be undiagnosed. In 

this sense, the PRS score reported here may be more reflective of the PAD patients who 

were more sensitive to symptoms of lower-extremity atherosclerosis. Indeed, we did find 

that changing the definition of PAD did slightly change the AUC and NRI, and thus 

performance of a PRS in general is likely sensitive to cohort definitions. Furthermore, it 

is difficult to know for sure from the net reclassification statistics whether those controls 

deemed higher risk for PAD in the PRS-enhanced model may actually have the disease 

but be asymptomatic and undiagnosed. Further study could focus on a cohort for which a 

more objective test such as the ankle–brachial index is used to define cases and controls, 

regardless of symptoms. However, this information was not available to us in the UK 

Biobank cohort. We are also limited by the available genetic data related to risk of PAD. 

Using a REML approach, we found the heritability of PAD to be 11%; however, given 

previous estimates, the genetic risk of PAD may be as high as 21%.40 There are likely 

genetic risk variants that remain unaccounted for and warrant further study. For example, 

gene-environment studies that can identify risk variants that only become significant due to 

exposure to certain environmental risks may help improve our ability to quantify genetic 

risk of PAD. Li et al., for instance, found that GSTT1 interacts with smoking to increase 

the risk of lower-extremity arterial disease.34 Another approach entirely would be to perform 

whole-genome sequencing to better identify rare disease variants that can significantly 

amplify risk of PAD.41 Whole-genome sequencing is currently prohibitively expensive for 

clinical use, but just as costs related to genotyping have significantly decreased over the last 

decade, a similar cost-trajectory for whole-genome sequencing may make its routine use 

increasingly possible.

Conclusion

In conclusion, we demonstrate that a PRS can determine risk of prevalent PAD and that 

the PRS can enhance the performance of a clinical risk model. Furthermore, a PAD PRS is 

associated with the risk of CAD, CHF, and CVD. Validation of our PRS-enhanced model in 

a larger, older, and better aligned racial/ethnic cohort may improve performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design and flowchart for PAD. To select the optimal genetic data for a PAD genome-

wide PRS, we evaluated the performance of PRSs derived from summary statistics from 

the Million Veteran Program PAD GWAS and two GWASs for coronary artery disease 

(CARDIoGRAM and CARDIoGRAMplusC4D). The best-performing PRS was applied to a 

nonoverlapping set of participants from the UK Biobank by 10-fold cross-validation. Lastly, 

we evaluated the performance of a clinical model in identifying risk of PAD and a clinical 

model combined with the PRS (i.e., the PRS-enhanced clinical risk model).

CARDIoGRAM, Coronary Artery Disease Genome-Wide Replication and Meta-Analysis; 

C4D, The Coronary Artery Disease consortium; GWAS, genome-wide association analysis; 

PAD, peripheral artery disease; PRS, polygenic risk score.
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Figure 2. 
Genome-wide PRS and the risk of PAD. (A) Density plot of PRS in PAD cases and 

noncases. (B) Prevalence of PAD across 100 groups based on PAD PRS percentiles.

PAD, peripheral artery disease; PRS, polygenic risk score.
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Figure 3. 
PAD genome-wide PRS is mainly predictive of vascular outcomes. A PAD PRS was 

calculated and categorized into deciles. (A–D) The PRS–outcome associations are shown 

for PAD and cardiovascular diseases (CAD: 28,744 cases, 458,576 controls; CHF: 11,849 

cases, 475,471 controls; CVD: 10,047 cases, 477,273 controls).

Effect sizes and 95% CI are shown per decile per disease.

CAD, coronary artery disease; CHF, congestive heart failure; CVD, cerebrovascular disease; 

PAD, peripheral artery disease; PRS, polygenic risk score.
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Table 2.

Odds of different cardiovascular diseases based on polygenic risk score.

Cardiovascular disease Odds ratio (95% CI)
a p-value

Peripheral artery disease 1.44 (1.41, 1.46) 1.81 × 10−113

Coronary artery disease 1.33 (1.32, 1.34) 9.10 × 10−300

Congestive heart failure 1.34 (1.33, 1.36) 7.10 × 10−140

Cerebrovascular disease 1.20 (1.19, 1.22) 2.85 × 10−51

a
Polygenic risk scores (PRSs) scaled (center PRS −0.07 ± 0.83). Thus, for each 0.83 increase in PRS, the odds of peripheral artery disease or 

coronary artery disease increase by 44% and 33%, respectively. Odds ratios derived from logistic regression models of each disease, adjusting for 
age, sex, and first five principal components and using scaled PRS.
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