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Abstract: It is widely accepted that physical exercise can be used as a tool for the prevention and 

treatment of various diseases or disorders. In addition, in the recent years, exercise has also been 

successfully used to enhance people’s cognition. There is a large amount of research that has 

supported the benefits of physical exercise on human cognition, both in children and adults. Among 

these studies, some have focused on the acute or transitory effects of exercise on cognition, while 

others have focused on the effects of regular physical exercise. However, the relation between 

exercise and cognition is complex and we still have limited knowledge about the moderators and 

mechanisms underlying this relation. Most of human studies have focused on the behavioral aspects 

of exercise-effects on cognition, while animal studies have deepened in its possible neuro-

physiological mechanisms. Even so, thanks to advances in neuroimaging techniques, there is a 

growing body of evidence that provides valuable information regarding these mechanisms in the 

human population. This review aims to analyze the effects of regular and acute aerobic exercise on 

cognition. The exercise-cognition relationship will be reviewed both from the behavioral perspective 

and from the neurophysiological mechanisms. The effects of exercise on animals, adult humans, and 

infant humans will be analyzed separately. Finally, physical exercise intervention programs aiming 

to increase cognitive performance in scholar and workplace environments will be reviewed.   
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1. Introduction 

New scientific evidence is added daily to justify the prescription or recommendation of regular 

physical activity practice. Physical exercise has been shown to be a primary tool in the prevention 

and treatment of diseases or disorders of very diverse origin such as obesity [1], colon or breast 

cancer [2], Parkinson disease [3,4], developmental coordination disorder [5,6], attention deficit 

hyperactivity disorder (ADHD) [7,8], learning impairment [9], or in a multitude of psychological 

problems, such as depression and anxiety [10]. 

Beyond its function as an instrument for the prevention or treatment of disorders and pathologies, 

physical activity, and especially aerobic exercise, has been attributed the property of positively 

influencing cognitive performance [11–14]. Cognition or cognitive function can be defined as a set of 

mental abilities that can be grouped into areas or dimensions, among which we highlight executive 

function (including inhibition, cognitive flexibility, planning and execution, and updating short-term 

memory), attention and memory, as they are closely related to learning capacity [15–18]. In this way, 

the practice of physical exercise could be a tool for the stimulation of cognitive function and learning 

capacity [16,19,20], either from regular exercise (long-term exercise or training) or from participation 

in a single session of physical exercise (acute exercise). 

To understand how aerobic exercise affects cognitive function, researchers have not only 

studies changes in behavior but have also focused on the biological mechanisms that underpin 

these changes. Thanks to advances in neuroimaging techniques, there is a growing volume of 

scientific evidence that allows determining the anatomical and functional changes that occur in 

different brain areas and the magnitude of the benefits that exercise can induce related to cognitive 

function [3,21,22]. Greater difficulties exist when trying to investigate the physiological effects of 

exercise on the human brain due to the high degree of invasiveness that data collection techniques 

would entail. For this reason, the direct observation of exercise effects on brain’s physiology is 

usually approached with animal studies [23], while indirect evaluation in humans is usually 

approached through analysis of blood biomarkers [24]. 

Knowledge of the benefits of physical exercise and the neuro-physiological mechanisms 

involved could provide a greater scientific basis for the development of intervention plans based on 

increasing regular aerobic physical exercise to enhance cognitive performance and even academic 

and professional performance. In addition, the findings derived from acute exercise interventions 

may be especially important for their specific use in populations that are in their formative stages or 

in situations where the improvement of cognitive function would especially benefit their learning 

capacity, for example, in elementary schools, middle or high schools, or even university level. 



152 

AIMS Neuroscience                                                               Volume 9, Issue 2, 150–174   

Thus, below, some of the latest advances in the study of the effects of aerobic physical exercise 

on cognitive function (especially the effects on these dimensions of cognitive function most 

associated with learning capacity) and learning capacity will be reviewed in child and youth (6–17 

years) and young adult (18–35 years) ages. The results obtained from studies with long-term 

interventions (training) will be differentiated from those obtained from participation in a single 

session of physical exercise (acute exercise). Likewise, knowing the existing difficulties in studying 

the physiological effects of exercise on the human brain, we will also rely on studies carried out in 

animals to expose the biological factors involved in the exercise-cognitive capacity association. 

Finally, after analyzing the state of the question, we will present some successful intervention studies 

aimed at improving cognitive function and learning capacity in young adult populations and children 

in specific contexts (i.e., current work and academic, respectively). 

2. Long-term exercise (training) effects on cognitive function  

2.1. Effects on animals 

Studies of the effect of regular exercise on cognitive function carried out in animals have 

made it possible to observe directly (from their dissection and extraction of blood and brain tissues) 

and indirectly (via neuroimaging techniques) the physiological alterations that happened to the 

brain. Through these observations, it has been proven that access to means for the practice of 

exercise, such as a running wheel, entails structural changes and an increase in the functionality of 

specific brain regions, such as the hippocampus, a region where memory formation originates [25]. 

It has been observed that these improvements in brain structures could be mainly due to three 

factors: (1) increased secretion of neurotrophic substances that promote neurogenesis or increase in 

the number of neurons [25–30], (2) angiogenesis or increase in vascularization [31,32], and (3) 

increased synaptic plasticity (synaptogenesis) or the organism’s ability to create new connections 

between neurons [32,33]. Thus, based on these factors, it seems that aerobic exercise has the 

ability to structurally affect the brain and therefore improve certain dimensions of cognitive 

function, such as executive function and memory, and consequently, the ability to learn and 

improve motor execution in animals [25,32–38]. In addition, the preventive and therapeutic effect 

of aerobic training in mitigating memory impairment in situations such as chronic stress has been 

examined and confirmed [39]. 

A clear example of these cognitive improvement phenomena is the report by Vaynman et al. [25] 

where the mice that had access to an exercise wheel showed an increase in the production of 

neurotrophic substances and in the formation of new neuronal connections at the hippocampus level. 

This fact was related to their faster learning and better memorization of the maze structure. Likewise, 

in a recent work by Martínez-Drudis et al. [23], where rats’ brains were injured, they began a 25-day 

program of voluntary aerobic physical exercise eleven days after the injury. The exercise served as a 

restorer of memory functions damaged by the induced brain injury. In addition, the concentration of 

the neurotrophic substance BDNF (brain-derived neurotrophic factor) increased in the hippocampus 

and correlated positively with the temporal order recognition memory capacity, but not with the 
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object location recognition memory, evaluated with objects such as Lego pieces or beverage cans 

which varied in shape, color and size. 

Neuroimaging studies appear to corroborate these long-term effects of aerobic exercise. Thus, 

rats that voluntarily ran on an exercise wheel, demonstrated an increase in the gray matter of the 

hippocampus [40] and an increase in the cerebral blood volume in structures involved in the 

formation of new neurons (e.g., the dentate gyrus) [21]. 

On the other hand, other studies have observed that improvements in cognitive function and 

neuro-physiological changes were subject to parameters of the training load such as frequency, 

duration, intensity or type of exercise [36,41,42]. For example, and in relation to intensity, some 

studies have observed how low intensity exercise (light walking) reinforced some cognitive areas 

such as spatial learning and memory [43], while some other neurophysiological changes such as 

neurogenesis, is more reinforced as the intensity of the exercise increases [35]. 

2.2. Effects in human adults 

In studies carried out with humans, aerobic physical exercise has been shown as a potential tool 

to promote the improvement of different areas of human cognition and in populations of different 

ages [14,17,19,44]. Using neuroimaging techniques and indirect measures to assess brain function, it 

has been observed in adult humans how aerobic physical exercise has a direct effect on the biological 

mechanisms underlying cognitive improvements, very similar to those seen in animal studies. 

Changes in brain structure and function in adult humans are also due to the three previously 

mentioned mechanisms: neurogenesis, angiogenesis and synaptogenesis [21,45]. It is thought that 

these processes are mainly regulated by neurotrophic substances (e.g., BDNF) [46,47] and growth 

factors (e.g., insulin-like growth factor 1, IGF-1) [48,49]. It seems that the concentration of these 

substances is altered by long-term aerobic exercise. In the case of BDNF, its level in serum and 

plasma is increased after aerobic training [46]. Feter et al. [47] conducted a systematic review, meta-

analysis and meta-regression on the different parameters of the training load that modulate the 

neurotrophic factors’ blood concentration levels. Based on their conclusion, and to increase BDNF 

concentration levels, they proposed performing aerobic exercise with a minimum intensity of 65% of 

VO2max (i.e., moderate-high intensity), with a frequency of 2–3 times per week, and a duration of at 

least 40 minutes of continuous training per session.  

In addition, evidence suggests that a greater amount of exercise and better cardiovascular 

performance is related to the volume of various brain structures, such as the hippocampus [50–52] and 

the basal ganglia [53], both involved in the formation of memory and learning. This relationship 

between cardiovascular performance and brain volume was reaffirmed in a randomized clinical trial by 

Erickson et al. [51]. In this study, a 12-month aerobic physical exercise program intervention resulted 

in a 2% increase in the volume of the hippocampus, which was related to an increase in the secretion 

of neurotrophic substances (measuring their concentration in the blood). The authors indicated that 

these changes could positively affect the improvement in the participants’ memory and learning. 

Such cognitive function benefits appear to be modulated, like in animal findings, by the duration and 

intensity of the training program and the frequency of the sessions [46]. Griffin et al. [19] showed 

how a program of three weekly sessions of 30 to 60 minutes on a cycle ergometer at an intensity 
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close to 60% of VO2max, managed to increase aerobic performance, the secretion of neurotrophic 

substances, and the learning capacity when the program was executed during 5 weeks. Conversely, 

the aforementioned benefits were not achieved if the exercise program was disrupted after the third 

week. Thus, it seems that the optimal effects on brain structures are obtained when training lasts 

longer than three weeks and the intensity of exercise is moderate to high [11,19,54,55]. Furthermore, 

it appears that a frequency of three training sessions per week is already effective in inducing 

neuronal changes [46]. 

Aerobic training interventions of the previously mentioned characteristics have demonstrated a 

positive effect on specific cognitive dimensions [11,17,56], especially in: (1) executive function, (2) 

attention span and information processing speed, and (3) memory. In the same way, learning 

capacity, which is closely related to the mentioned cognitive dimensions, is also positively affected 

by training since the increment of neuro substance like BDNF due to the exercise practice, favors an 

stimulating environment for neural plasticity [48,57]. For instance, focusing on motor learning, 

aerobic training increases the excitability of the cortical response of the muscles involved during the 

learning of the motor skill. This implies that the combination of aerobic training with the practice of 

motor skills improves motor learning to a greater extent than the performance of the isolated motor 

skill practice [58,59]. 

Nevertheless, and from a statistical point of view, the magnitude of the exercise training effects 

on cognitive functions found in systematic reviews examining this subject has been discrete (see 

reviews by: Roig, Nordbrandt, Geertsen, et al. [55]; Smith et al. [17]). Therefore, if exercise is 

capable of inducing positive adaptations at the brain level, why are the changes produced on 

cognitive function in adults relatively small? It seems that the answer to this question lies in the state 

of maturation of the nervous system and initial cognitive performance. Young adults are shown to be 

in the vital moment of maximum cognitive performance [60], thus having a reduced margin of 

improvement due to an exercise intervention [61]. In contrast, in children and elderly populations, 

cognitive performance appears to be conditioned by a maturing or declining nervous system [61]. 

Thus, can an aerobic training intervention increase cognitive performance in child populations to a 

greater extent than in adult populations?  

2.3. Effects on humans of child and youth age  

Through several studies with school-age participants, it has been observed that greater volume of 

physical activity practice and, in turn, better state of physical condition are positively related to greater 

cognitive performance and better academic performance [62–68]. Furthermore, benefits of physical 

activity on cognitive dimensions such as executive function, working memory, and attention have been 

consistently observed [11,12,16]. It seems that, as in the case of adults and animal studies, this 

relationship is not fortuitous, but is due to an improvement in brain functionality due to physical 

exercise practice. Children and adolescents’ maturing brains are in one of the most sensitive stages to 

environmental stimulations [4], and physical exercise interventions are a good example of such stimuli. 

As a consequence of better physical condition or greater physical activity, studies of the brain through 

neuroimaging techniques have shown changes in brain regions involved in some dimensions of 

cognitive function (see Meijer et al. [69], for a systematic review and meta-analysis), such as greater 
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integrity of the white matter and greater volume of the hippocampus [70,71] or greater volume of the 

basal ganglia [11,72]. In turn, the maturation and/or transitory improvement of the prefrontal cortex 

performance could be also facilitated [15]. Additionally, it has been demonstrated that a better state of 

physical condition is also related to a better distribution of attentional resources [73,74] and a decrease 

in the latency of impulses’ transmission through the brain [75]. 

Beyond its association with fitness level, cognitive and academic performance have been 

shown to benefit from children’s participation in an aerobic training program. In a review,  

Tomporowski et al. [20] explained how, despite the small number of existing randomized clinical 

trials, interventions through physical activity, of an aerobic nature and with moderate to high 

intensity, contributed positively to the improvement of cognitive function, especially executive 

function, and children’s academic performance. This increase in academic performance due to 

physical exercise has been demonstrated independently of the cognitive performance level prior to 

the intervention. However, the effect of exercise seems not to be independent of the level of 

aerobic performance and degree of participation in physical activity before the intervention. More 

specifically, it has been observed that BMI is a moderator of the effect of exercise on children’s 

executive function, being those individuals with higher BMI those that obtained larger benefits 

from exercise interventions [76]. This phenomenon could be explained by a worse initial cognitive 

performance in overweight children [76–78], as well as a greater response to exercise due to their 

low fitness level.  

Thus, it seems that aerobic training of moderate to high intensity has the ability to positively 

affect the young brain, especially the prefrontal cortex and the executive functions, both of which are 

in a maturation state well below that of adults [15,20]. Nevertheless, more studies are needed to 

improve our understanding of the relationship between physical exercise interventions and cognitive 

performance in children. 

3. Acute effects of exercise on cognitive function  

3.1. Effects on animals  

Although to date the majority of studies looking at the effects of exercise on cognitive function 

in animals have used long-term exercise interventions, there is a growing number of studies focused 

on the use of acute exercise as an intervention. Several publications have shown how acute exercise 

can be a precursor of (1) neurogenesis, increasing the levels of neuron growth regulating proteins or 

factors such as BDNF [77]; (2) angiogenesis, increasing growth factors that are fundamental in the 

improvement of the cerebral vascular system [79]; (3) synaptogenesis, for example, increasing the 

synaptic activity of the hippocampus [77]. For example, acute exercise sessions seem to produce 

positive effects on the regulation of the expression of neurochemicals (e.g., lactate or cortisol), 

neurotrophic substances (e.g., BDNF) and growth factors (e.g., IGF-1) [80], producing 

improvements in brain structures such as the hippocampus by increasing its neuroplasticity [77]. 

Furthermore, it has been suggested that acute doses of exercise may have a lower stress response 

than chronic exercise (i.e., without restricting access to a treadmill), since a high stress response 

would be detrimental to cell proliferation in the hippocampus [81]. 
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Likewise, these neuro-physiological improvements produced by acute exercise seem to favor 

the enhancement of cognitive dimensions such as memory, thus facilitating learning [77,82]. For 

instance, Fernandes, Soares, do Amaral Baliego, & Arida [83], examined the effects of a single 

exercise session on consolidation in memory of fear conditioning. They showed for the first time that 

a single exercise session applied just after conditioning increased contextual memory in rats. On the 

other hand, studies such as da Silva de Vargas, Neves, Roehrs, Izquierdo, & Mello-Carpes [84] and 

Rossi Daré, Garcia, Neves, & Mello-Carpes [85], also evaluated the effects of acute exercise on 

memory but, in these cases, they focused on object recognition memory. They found that, acting 

through the hippocampal noradrenergic mechanisms, a single session of aerobic exercise presented 

immediately after performing the encoding phase of an object recognition memory task, improved 

learning and memory persistence after 24 hours, 7 and 14 days. Therefore, these authors proposed 

acute exercise as a non-pharmacological intervention, without side effects, that may help in the 

consolidation and persistence of memory. 

Finally, exercise parameters, such as intensity, duration or type of exercise, should be considered 

as they may produce different cognitive effects depending in their variation. For instance, in the case of 

acute exercise and reviewing exercise intensity, it has been shown that high levels are even more 

beneficial for neurogenesis and cell survival in the dentate gyrus than moderate intensities [86]. 

3.2. Effects on adults 

Beyond the benefits of a training program in cognitive performance, it has been shown that 

a single session of aerobic physical exercise can positively affect human cognition  [19,87]. There 

is evidence that acute aerobic exercise can promote an optimal environment for the development 

of neuroplasticity [88] and positively and selectively affect the connectivity and functionality of 

various brain structures such as the hippocampus, motor cortex or prefrontal cortex [89–92]. In 

addition, it has been observed that acute aerobic exercise can positively affect several cognitive 

dimensions [93] and learning processes [94,95]. For instance, a single exercise session has been 

shown to produce improvements in executive function and attention [96–99], or memory 

formation processes [55,100–104]. 

It seems that the mechanisms by which acute exercise can produce these cognitive and learning 

process improvements are similar to those induced by aerobic exercise training, mainly an increase 

in the secretion of neurotrophic substances and neurotransmitters and an increase in blood flow to the 

brain [55,67,105]. Results from studies suggest that peripheral BDNF blood concentration is 

increased after a single session of exercise [105,106]. Furthermore, exercise would produce 

metabolites like lactate and the ketone body β-hydroxybutyrate (DBHB), which have the ability to 

cross the blood-brain barrier, act on the nuclear protein SIRT-I and inhibit class I HDACs, which 

activates the expression of cerebral BDNF [105,106]. Elevated cerebral BDNF concentrations may 

result in increased neuronal growth, survival, and synaptogenesis, leading to the cognitive and 

affective benefits observed after exercise. On the other hand, increased cerebral blood flow is also 

thought to be responsible of the exercise-enhancing effect on cognition due to its relation to the 

oxygen availability to the brain [67]. However, recent evidences have shown that altered cerebral 

blood flow via hypercapnic respiratory gas during acute exercise did not alter cognitive 
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performance [107] or moderate exercise-induced cognitive benefits [108]. These authors propose 

that exercise benefits on cognition might be regulated by multiple factors but not by exercise-

induced alterations in blood flow [108]. Even so, the benefits obtained through this type of 

intervention seem to depend on certain moderators such as the characteristics of the exercise 

(intensity, duration, and type), the person’s level of cardiovascular physical condition, the 

cognitive task to develop or learn, the time elapsed between the exercise session and the cognitive 

task, and the temporal order in which they occur [109–112].  

The characteristics of exercise could be one of the most relevant moderators, since they seem to 

have a very direct relationship with the secretion of neurotrophic substances [46,54,55,104,110,111,113] 

and the modulation of certain brain areas [89,114,115]. In relation to the exercise intensity, it seems 

that the greatest benefits would be obtained from interventions of moderate to high intensity, while 

exercise of too low intensity has been shown to have a very limited effect at the cognitive function 

level [54]. Thus, a moderate intensity exercise would produce the greatest benefits in cognitive 

dimensions such as executive function [54,115], while other dimensions like memory or attention 

could benefit more from a higher intensity exercise [55,104,116–119]. Regarding the exercise 

duration, it should be taken into account that an excessively long exercise can generate excess fatigue 

and at the same time cause an excessive degree of dehydration, thus interfering with cognitive 

performance and also causing a negative effect of exercise on cognition [120]. Similarly, too short 

exercise bouts may not represent a sufficient stimulus to enhance cognition [11,121]. Recent reviews 

have observed that best cognitive enhancements were obtained between 11 and 21 min when 

exercising at moderate-to-vigorous intensity [11], and between 10 to 30 min when performing 

aerobic high intensity interval training type of exercises [121]. However, one has to consider that 

there are few studies that have used exercise durations outside of these ranges, especially on the 

lower end, and that little is known regarding the moderating mechanisms related to exercise duration. 

Finally, it seems that benefits from acute exercise were more frequent when exercise type was 

cycling compared to other forms of exercise (mainly running) [121,122]. Although some studies, 

performed with children and adolescents, have argued that cognitive engaging exercises could have a 

greater impact on cognition [15,123,124], adult studies have found contradictory results [125–127]. 

Furthermore, it is difficult to argue that cycling is more cognitively engaging than running, although 

one could think that cycling could be a novel movement pattern for some people while running might 

be more familiar for everyone.     

In relation to the moderating effect of fitness level, several studies have analyzed the effect of 

cardiovascular fitness level on brain function and cognitive performance [115,128,129]. Some of 

these studies have observed the modulatory effect of the fitness level in the activation of specific 

brain regions, such as the anterior cingulate cortex [130,131] and prefrontal and parietal areas [130] 

and in the cognitive performance, such as executive function [132] or spatial learning tasks [131]. In 

addition, better aerobic capacity has also been positively associated with potential structural effects 

in the brain such as the viscoelasticity of the hippocampus, which positively correlates with memory 

performance [21,133]. These factors, as has been reviewed above, predispose higher fit individuals 

to a better cognitive functioning. These pieces of evidence have led to belief that fitness level could 

have a positive modulating effect on the relationship between acute exercise and cognitive 

performance. However, one could think that those individuals with lower fitness and thus lower 
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baseline cognitive performance could have a greater opportunity to benefit from acute exercise 

interventions. Conversely, evidence shows that those individuals with higher fitness level present 

greater effects on cognitive function when exposed to acute exercise than those with lower fitness 

level [55,121]. Although it’s an underdeveloped topic it could be that higher fit individuals present a 

better tolerance to aerobic exercise effort, thus experiencing lesser fatigue-related adversities 

immediately after the exercise. According to this thought, a meta-analysis by Chang et al 2012 

observed that higher fit individuals presented better cognitive stimulation compared to lower fit 

when cognitive function was assessed either during or immediately after a bout of exercise. In fact, 

in a similar example, it has been observed how the intensity of exercise does not affect the 

stimulation of attention in athletes in the same way compared to non-athletes [134]. More 

specifically, athletes continued increasing attention with higher exercise intensities while non-

athletes’ attention showed an inverted-U curve. That is, non-athletes attention increased as exercise 

intensity did, finding the greatest level in attention with moderate exercise intensities, but decreased 

when the exercise intensity became higher. Additionally, fitness level could also prime 

neurobiological mechanisms like baseline production of BDNF which could also explain the 

moderator effect of fitness level on the exercise-cognition relationship [93,135]. In this way, the 

regular practice of physical exercise could not only have a direct effect on cognition, but could also 

enhance the effects that acute exercise has on cognitive performance [136]. Still, further research is 

needed to be able to replicate these results and generalize them to other cognitive dimensions. 

Regardless of the characteristics of the exercise and the level of physical fitness, the type of 

cognitive task, the temporal proximity and the temporal order of the cognitive task and exercise can 

also act as moderators of the acute exercise-cognition relationship. It has been observed that for the 

effects of exercise on cognition to be relevant, the cognitive task must be difficult enough to be 

challenging, complex to attract attention, and specific to the needs of the population (e.g., a task that 

requires motor circuits in the case of Parkinson’s patients) [4,137]. Considering the time elapsed 

between the exercise session and the cognitive task, there is evidence that the effects of exercise are 

dependent on the time passed between these two events [138]. Excessively long times between the 

task and the exercise can result in a null effect, although there is controversy in the literature about 

the size of the effective time window and the optimal timing between the two [139,140]. Van 

Dongen et al. [141] found that best exercise-induced benefits on the recall of episodic memory were 

seen when the exercise bout was performed 4 hours after the task’s encoding phase, compared to 

immediate exercise or non-exercising. Conversely, other studies have shown better exercise-derived 

benefits when memory tasks with motor components were temporally closer to the exercise bout, 

even presenting a time gradient effect of the exercise benefits on memory recall [87,140]. 

Furthermore, a recent review has shown that benefits from high intensity aerobic exercise 

interventions on executive function only occurred within a window of 30 min from exercise 

performance [121]. Therefore, it seems that up-to-date, the best results could be expected when 

exercise and the cognitive task are presented in close temporal relation. However, further research is 

needed to understand the mechanisms underlying the optimal time-widow where exercise could 

benefit cognition and their interaction with other moderators like exercise intensity or cognitive task 

type. Lastly, studies exploring the effect of the temporal order between the exercise session and the 
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cognitive task observed that exercising before an episodic memory test produced greater effects on 

short- and long-term memory than performing the exercise during or after the task [142–145]. 

3.3. Effects on humans of child and youth age  

In the same way as in adults, in the case of children, it has been observed that acute aerobic 

exercise can induce improvements in cognitive capacity [20,67,146]. It seems that the cognitive 

dimension that is most susceptible to the effect of acute exercise is executive function, where those 

individuals who experience changes in development, such as young children and pre-adolescents, 

show the greatest sensitivity and a positive response to exercise [15,147,148]. Likewise, there is also 

evidence that an acute exercise intervention can positively influence long-term memory formation 

processes [149,150], and according to neurophysiological correlates, can contribute to an optimal 

allocation of attentional resources [139]. 

Regarding the moderators that seem to regulate the effects of exercise, it has been observed that 

the best results are obtained from an exercise intervention of moderate intensity and a duration of 

between 10 and 50 min [146,151]. However, there are reports that intense exercise bouts of only 5 

min can enhance memory consolidation of a motor learning task [152]. On the other hand, it seems 

important to pay attention to the level of physical condition, since those children with higher levels 

of physical condition obtain greater cognitive benefits from the performance of acute exercise, than 

their lower fit counterparts [143,151]. Thus, Oberste et al. [144] examined the role of cardiovascular 

fitness level in cognitive function, specifically in interference control performance, finding that 

individuals with a high level of physical condition benefited more from exercise than those 

individuals with a medium or low level.  

In addition, another important moderator of the effect of exercise on cognition could be the 

cognitive activation that exercise itself entails. It has been observed that, from the use of exercise tasks 

that include a greater cognitive implication (such as team games, tasks involving decision making, …), 

the effect that exercise produces in cognitive capacity is greater compared to the effect produced by an 

exercise task that aims only at the physiological activation of the organism [15,124,153]. However, it 

should be borne in mind that in this type of exercise, the level of intensity and participation of the 

children can be more difficult to control. For example, Jäger et al. [154] demonstrated that in an 

exercise intervention avoiding laboratory tasks and using tasks more similar to children’s real play 

through a physical education class session, only those participants who had higher fitness level 

showed an improvement in executive functions. These results could be explained by the difficulty in 

individualizing the intensity of the exercise during the game, so that for some participants the 

exercise could have been too high or too low, causing the non-manifestation of the benefits [54]. 

Another possible explanation could be found in the differences found in the effect of exercise on 

executive functions according to the child’s level of cognitive development [15]. Depending on the 

child’s development and the type of cognitive involvement that is included in the exercise, we could 

find diverse and even adverse results, especially if the exercise turns out to be too cognitively 

demanding [151]. According to Best [15], in pre-adult ages, executive function may present a 

temporary period of greater sensitivity to acute exercise, and the different components of executive 

functions (i.e., inhibition, updating short-term memory, cognitive flexibility) may also have different 
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sensitivity to exercise. Thus, Best [15], based on the findings from other studies [155–157], proposes 

that young children would be more sensitive to exercises where the executive function involved 

inhibition than exercises intended to affect the cognitive flexibility component of executive function, 

while the opposite would happen in adolescents. Still, to date, this is a controversial topic that needs 

further exploration.  

Finally, we highlight that research is not only focusing on the use of this type of intervention in 

typically developing children, but also in children with special educational needs caused by various 

disorders [158–161]. An example of this research is the study of the effects of exercise on the 

cognitive capacity of children diagnosed with ADHD where improvements in the behavioral and 

cognitive symptoms of the disorder have been observed [7,109,162,163]. Physical activity, whether 

acute or chronic, has even been suggested as a treatment to improve brain development in this 

population [164], given the possible regulation of neurotransmitters involved in this disorder, such as 

dopamine and norepinephrine [162,165]. Seeing that an acute aerobic exercise intervention shows 

positive effects, both in children with disorders and in children with typical development, it seems 

that exercise could be a valid tool for cognitive stimulation in both populations. 

4. Exercise interventions in the workplace and the classroom 

Given the cognitive benefits shown by aerobic physical exercise from both acute interventions 

and training interventions, we support their use as strategies to enhance cognitive performance. 

However, interventions with physical exercise seem sometimes very difficult to implement due to the 

current context where individuals have tight schedules organized around what is considered their 

main function in society: (1) production at work for adults, and (2) formal learning in school for 

children and adolescents. In addition, current work and academic contexts bring individuals to 

maintain sedentary life styles that entail obvious adverse consequences for their health and well-

being [166] and, likely, their cognitive abilities due to lack of exercise-based stimuli that facilitate 

their development and/or their maintenance [167]. 

Several studies have analyzed the possible effects of exercise on cognition and on school or work 

performance. Training interventions in the workplace context have proposed the introduction of 

exercise during work breaks. Initially, the proposal to carry out physical exercise during work breaks 

aimed to improve workers’ health, job satisfaction and increase productivity [168,169], but its positive 

effects on cognition have also been demonstrated [170]. On the other hand, in the academic context, 

exercise intervention proposals have been usually based on increasing the weekly volume of physical 

education throughout the pre-university academic stage. In a review, Trudeau & Shephard [68] 

observed that with a 40-minute increase in physical education per week, students tented to improve 

their academic performance. This academic improvement was also observed in the studies where the 

volume of weekly physical education hours increased, despite reducing the number of hours devoted to 

other subjects. On the contrary, the overall academic performance of students worsened when the 

volume of physical education hours was reduced in favor of increasing other subject matters. 

Nevertheless, it appears that 1-hour-per-week increase in physical education can only make a modest 

contribution to students’ academic performance. Therefore, other complementary strategies, such as 
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extracurricular or recreational sport, should be sought to increase the overall effects of exercise on the 

enhancement of students’ performance. 

An alternative solution to achieve an even greater increase in cognitive and school/work 

performance would be the combined use of the acute effects of exercise with the benefits of regular 

exercise. There are some indications suggesting that this combined intervention is more effective 

than their use alone. Hopkins et al. [136] found that a 4-week training program using aerobic 

exercise or an acute intervention using a single session of aerobic exercise (2 hours before the 

cognitive task) did not produce any improvement in a memory task performed at the end of the 

intervention. In contrast, the combination of both interventions (4-weeks training + acute exercise 2 

hours before the memory task) led to a significant improvement in memory. Thus, these authors 

concluded that the effects of acute exercise were enhanced by the cognitive benefits of regular 

exercise, proposing that both forms of exercise intervention should be used together. 

Other studies have applied strategies similar to that proposed Hopkins et al. [136], by 

implementing the performance of small doses of aerobic physical exercise (approx. 10 min) together 

with situations that require cognitive effort and repeated over several weeks, thus achieving an 

accumulation of the benefits of acute and regular exercise on cognition. One of the best examples of 

this strategy was carried out in the academic context [171]. Mahar et al. [171] showed an important 

positive impact when performing what they called “Energizers” (i.e., physical exercise activities in 

class that contributed to the teaching of the content reviewed in the theoretical subjects) several times 

a day and during a period of 12 weeks. The intervention through “Energizers” contributed 

significantly to the increase in the amount of physical activity that students did during the school 

hours, as well as benefiting students’ attention to class assignments by 8%. Similarly, those students 

who usually showed a more deficient attention in class tasks improved their attention by 20%. Other 

studies have shown the benefits of several sessions of acute exercise practiced over several weeks on 

academic performance [172,173] or work situations [174–176]. Thus, these types of strategies, that is, 

combining acute and regular exercise, could be one of the best ways to implement the potential 

benefits of physical exercise on cognition in academic and workplace situations. 

5. Conclusions 

This review examined the relationship between physical exercise and cognition. There are 

several cognitive benefits associated with the practice of both acute physical exercise and the 

practice of regular physical exercise on cognitive function. These positive exercise effects have been 

evidenced both in animal and in humans of adult and child age. Both, the acute benefits and those 

derived from regular exercise could be achieved from moderate to high intensity exercises of 

moderate duration. Even so, there are several moderating factors that can shape the exercise-

cognition relationship, such as the level of physical condition of the person, the temporality of the 

exercise-cognitive task, or the type of cognitive task to be carried out, among others. Both, the acute 

and regular exercise benefits on cognition could be due to an improvement in synaptic activity, blood 

flow and brain irrigation, and an improvement in neuronal plasticity. Finally, several studies have 

implemented these exercise interventions in workplace and academic contexts, observing benefits on 

the individuals’ work or academic performance, as well as on their health and well-being.  
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