Table 3.
Averaged validation results across 10 random training-validation splits using Monte-Carlo cross-validation.
| Condition | Binary accuracy (%) | AUC |
|---|---|---|
| 1 (None–None) | 64.1 ± 7.4 | 0.70 ± 0.08 |
| 2 (40%–10) | 72.0 ± 18.5 | 0.80 ± 0.16 |
| 3 (40%–5) | 76.3 ± 16.7 | 0.81 ± 0.16 |
| 4 (20%–10) | 83.6 ± 13.6 | 0.90 ± 0.09 |
| 5 (20%–5) | 67.9 ± 19.3 | 0.75 ± 0.20 |
| 6 (10%–10) | 75.6 ± 11.7 | 0.81 ± 0.11 |
| 7 (10%–5) | 59.9 ± 12.8 | 0.58 ± 0.23 |
Optimal training parameters are in bold.